A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis

Background Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq data...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 21; no. 1; pp. 64 - 11
Main Authors: Lin, Eugene, Mukherjee, Sudipto, Kannan, Sreeram
Format: Journal Article
Language:English
Published: London BioMed Central 21.02.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging for traditional methods due to their high dimensional measurements as well as an abundance of dropout events (that is, zero expression measurements). Results To overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data. Conclusions Our results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods.
AbstractList Background Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging for traditional methods due to their high dimensional measurements as well as an abundance of dropout events (that is, zero expression measurements). Results To overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data. Conclusions Our results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods.
Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging for traditional methods due to their high dimensional measurements as well as an abundance of dropout events (that is, zero expression measurements). To overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data. Our results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods.
Background Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging for traditional methods due to their high dimensional measurements as well as an abundance of dropout events (that is, zero expression measurements). Results To overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data. Conclusions Our results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods.
Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging for traditional methods due to their high dimensional measurements as well as an abundance of dropout events (that is, zero expression measurements). To overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data. Our results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods.
Abstract Background Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging for traditional methods due to their high dimensional measurements as well as an abundance of dropout events (that is, zero expression measurements). Results To overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data. Conclusions Our results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods.
Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging for traditional methods due to their high dimensional measurements as well as an abundance of dropout events (that is, zero expression measurements).BACKGROUNDSingle-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging for traditional methods due to their high dimensional measurements as well as an abundance of dropout events (that is, zero expression measurements).To overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data.RESULTSTo overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data.Our results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods.CONCLUSIONSOur results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods.
Background Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging for traditional methods due to their high dimensional measurements as well as an abundance of dropout events (that is, zero expression measurements). Results To overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data. Conclusions Our results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods. Keywords: Adversarial autoencoder, Variational autoencoder, Dimensionality reduction, Generative adversarial networks, Single-cell RNA sequencing
ArticleNumber 64
Audience Academic
Author Lin, Eugene
Mukherjee, Sudipto
Kannan, Sreeram
Author_xml – sequence: 1
  givenname: Eugene
  surname: Lin
  fullname: Lin, Eugene
  organization: Department of Electrical & Computer Engineering, University of Washington, Department of Biostatistics, University of Washington, Graduate Institute of Biomedical Sciences, China Medical University
– sequence: 2
  givenname: Sudipto
  surname: Mukherjee
  fullname: Mukherjee, Sudipto
  organization: Department of Electrical & Computer Engineering, University of Washington
– sequence: 3
  givenname: Sreeram
  surname: Kannan
  fullname: Kannan, Sreeram
  email: ksreeram@uw.edu
  organization: Department of Electrical & Computer Engineering, University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32085701$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGzKIsXP2NkgjSoeI1UgFVhbjn0dPMrEg52M6L_HmSltpwIUybauv3Ns35zT4mgIAxTFS4wuMJb124SJ5E2FCKooQ7jiT4oTzASuCEb86MH6uDhNaYUQFhLxZ8UxJUhygfBJMS5KC7Aptd1CTDp63ZfbeRp9GPJaT2OAwQQLsVznsS9diKX1axjSjvDjTRnBTmYWlH4okx-6HioDfV9ef16UCX5O2SFXS535m-TT8-Kp032CF7fzWfH9w_tvl5-qqy8fl5eLq8rUVIxVTZwUjiAQrLV1o6kRbcM4N04yi1suiaCW5gJvakaEboh0NW9J7aw0gBk9K5Z7Xxv0Sm2iX-t4o4L2alcIsVM6jt70oBxziFGNGicYA9xqApyCbVrrMEhMs9e7vddmatdgDQxj1P2B6eHO4H-oLmyVQJQLyrPB-a1BDLkjaVRrn-Yu6QHClBShdf4ruCHzvV8_Qldhirl5MyVkTaUg_J7qdH6AH1zI55rZVC1qXDOMCZOZuvgLlT8La29ynpzP9QPBmwNBZkb4NXZ6Skktv14fsq8eNuWuG3_ylQG8B0wMKUVwdwhGas6w2mdY5QyrOcNqfpd4pDF-3OUx39z3_1WSvTLlU4YO4n3f_i36DZBJA9U
CitedBy_id crossref_primary_10_1016_j_matdes_2022_111236
crossref_primary_10_1186_s12859_021_04150_3
crossref_primary_10_1016_j_gpb_2022_11_011
crossref_primary_10_1093_bib_bbab473
crossref_primary_10_1016_j_ygeno_2021_01_007
crossref_primary_10_3389_fgene_2020_00786
crossref_primary_10_3390_ijms22157911
crossref_primary_10_1093_nar_gkab1147
crossref_primary_10_1109_TCBB_2021_3066086
crossref_primary_10_1007_s00500_021_06639_8
crossref_primary_10_1109_JSEN_2023_3323328
crossref_primary_10_3389_fenrg_2022_1012721
crossref_primary_10_7717_peerj_cs_2443
crossref_primary_10_3390_jpm11070597
crossref_primary_10_1111_cgf_70151
crossref_primary_10_1016_j_jas_2022_105640
crossref_primary_10_24018_ejece_2025_9_3_711
crossref_primary_10_1016_j_ailsci_2022_100045
crossref_primary_10_1093_bib_bbab508
crossref_primary_10_1109_TCBB_2021_3098394
crossref_primary_10_1002_aps3_11559
crossref_primary_10_1093_burnst_tkaf032
crossref_primary_10_3390_electronics11030305
crossref_primary_10_1093_gigascience_giaa122
crossref_primary_10_1109_TCBB_2022_3227202
crossref_primary_10_1002_alz_13427
crossref_primary_10_4155_fmc_2021_0243
crossref_primary_10_1109_ACCESS_2025_3550097
crossref_primary_10_3390_molecules25143250
crossref_primary_10_1186_s12931_023_02368_8
crossref_primary_10_1093_bfgp_elae023
crossref_primary_10_3390_ddc4030028
crossref_primary_10_1016_j_inffus_2023_101945
crossref_primary_10_1016_j_ajp_2022_103008
crossref_primary_10_1093_bioinformatics_btae393
crossref_primary_10_3390_ph13100305
crossref_primary_10_3390_cells11091421
crossref_primary_10_3389_fpsyg_2025_1474292
crossref_primary_10_1038_s41467_023_43590_8
crossref_primary_10_3389_fbioe_2022_998298
crossref_primary_10_1016_j_ins_2024_121864
crossref_primary_10_1016_j_drudis_2020_12_003
crossref_primary_10_3390_math11143055
crossref_primary_10_1007_s11831_025_10230_x
crossref_primary_10_3389_frai_2024_1424012
Cites_doi 10.1016/j.cell.2015.05.002
10.1016/j.mam.2017.07.002
10.1093/bioinformatics/bty293
10.1126/science.aam8999
10.1038/s41592-018-0229-2
10.1126/science.aaa1934
10.1109/TMI.2018.2858752
10.1021/acs.molpharmaceut.7b00346
10.1186/s13059-015-0805-z
10.1038/nmeth.2930
10.18632/oncotarget.14073
10.1109/TPAMI.2013.50
10.1109/JBHI.2018.2852639
10.1038/s41592-019-0576-7
10.1016/j.cels.2016.08.011
10.1016/j.media.2018.07.001
10.1038/s41467-017-02554-5
10.1016/S0031-3203(03)00035-9
10.1038/ncomms14049
10.4324/9781315788135
10.1038/nn.4495
10.1038/nbt.4314
10.1007/978-3-642-04898-2_455
ContentType Journal Article
Copyright The Author(s). 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-020-3401-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE



MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 11
ExternalDocumentID oai_doaj_org_article_f4f043a09f744e1ba2e53ed9bdf1e813
PMC7035735
A616411248
32085701
10_1186_s12859_020_3401_5
Genre Evaluation Study
Journal Article
GrantInformation_xml – fundername: National Science Foundation (US)
  grantid: Career award (grant 1651236)
– fundername: National Human Genome Research Institute
  grantid: R01HG008164
  funderid: http://dx.doi.org/10.13039/100000051
– fundername: NHGRI NIH HHS
  grantid: R01HG008164
– fundername: ;
  grantid: Career award (grant 1651236)
– fundername: ;
  grantid: R01HG008164
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c637t-62f87f20e74bd69a3c7b9455cf84d1b58273d3455596427a928f65b26fd8ce143
IEDL.DBID K7-
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518036400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:43:43 EDT 2025
Tue Nov 04 01:55:53 EST 2025
Sun Nov 09 12:19:52 EST 2025
Tue Oct 07 05:12:34 EDT 2025
Tue Nov 11 10:44:15 EST 2025
Tue Nov 04 18:07:34 EST 2025
Thu Nov 13 14:47:14 EST 2025
Wed Feb 19 02:30:03 EST 2025
Tue Nov 18 22:13:30 EST 2025
Sat Nov 29 05:40:06 EST 2025
Sat Sep 06 07:27:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dimensionality reduction
Variational autoencoder
Generative adversarial networks
Single-cell RNA sequencing
Adversarial autoencoder
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-62f87f20e74bd69a3c7b9455cf84d1b58273d3455596427a928f65b26fd8ce143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/2378638725?pq-origsite=%requestingapplication%
PMID 32085701
PQID 2378638725
PQPubID 44065
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_f4f043a09f744e1ba2e53ed9bdf1e813
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035735
proquest_miscellaneous_2362081924
proquest_journals_2378638725
gale_infotracmisc_A616411248
gale_infotracacademiconefile_A616411248
gale_incontextgauss_ISR_A616411248
pubmed_primary_32085701
crossref_primary_10_1186_s12859_020_3401_5
crossref_citationtrail_10_1186_s12859_020_3401_5
springer_journals_10_1186_s12859_020_3401_5
PublicationCentury 2000
PublicationDate 2020-02-21
PublicationDateYYYYMMDD 2020-02-21
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References I Goodfellow (3401_CR15) 2014
S Mukherjee (3401_CR33) 2018
Ian Jolliffe (3401_CR3) 2011
A Strehl (3401_CR28) 2002; 3
EZ Macosko (3401_CR10) 2015; 161
M Mardani (3401_CR18) 2018; 38
Matthew Amodio (3401_CR8) 2019; 16
M Baron (3401_CR11) 2016; 3
L Maaten (3401_CR12) 2008; 9
GX Zheng (3401_CR26) 2017; 8
M Arjovsky (3401_CR30) 2017
AB Rosenberg (3401_CR27) 2018; 360
D Grün (3401_CR23) 2014; 11
I Gulrajani (3401_CR24) 2017
E Pierson (3401_CR6) 2015; 16
E Becht (3401_CR14) 2019; 37
A Kadurin (3401_CR20) 2017; 8
A Zeisel (3401_CR1) 2015; 347
DP Kingma (3401_CR29) 2014
Y Bengio (3401_CR32) 2013; 35
R Lopez (3401_CR7) 2018; 15
E Choi (3401_CR25) 2003; 36
JN Campbell (3401_CR9) 2017; 20
A Makhzani (3401_CR19) 2015
B Hu (3401_CR17) 2018; 23
DP Kingma (3401_CR22) 2013
L McInnes (3401_CR13) 2018
H Zhao (3401_CR16) 2018; 49
D Risso (3401_CR31) 2018; 9
A Kadurin (3401_CR21) 2017; 14
S Mukherjee (3401_CR2) 2018; 34
Paul Kline (3401_CR5) 2014
TS Andrews (3401_CR4) 2018; 59
References_xml – volume: 161
  start-page: 1202
  issue: 5
  year: 2015
  ident: 3401_CR10
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume-title: Adam: A method for stochastic optimization
  year: 2014
  ident: 3401_CR29
– volume: 59
  start-page: 114
  year: 2018
  ident: 3401_CR4
  publication-title: Mol Asp Med
  doi: 10.1016/j.mam.2017.07.002
– volume-title: Auto-encoding variational bayes
  year: 2013
  ident: 3401_CR22
– volume-title: Umap: Uniform manifold approximation and projection for dimension reduction
  year: 2018
  ident: 3401_CR13
– volume: 34
  start-page: i124
  issue: 13
  year: 2018
  ident: 3401_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty293
– volume: 360
  start-page: 176
  issue: 6385
  year: 2018
  ident: 3401_CR27
  publication-title: Science
  doi: 10.1126/science.aam8999
– volume: 15
  start-page: 1053
  issue: 12
  year: 2018
  ident: 3401_CR7
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 347
  start-page: 1138
  issue: 6226
  year: 2015
  ident: 3401_CR1
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 3
  start-page: 583
  issue: Dec
  year: 2002
  ident: 3401_CR28
  publication-title: J Mach Learn Res
– volume-title: Wasserstein gan
  year: 2017
  ident: 3401_CR30
– volume: 38
  start-page: 167
  issue: 1
  year: 2018
  ident: 3401_CR18
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2858752
– volume: 14
  start-page: 3098
  issue: 9
  year: 2017
  ident: 3401_CR21
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.7b00346
– volume: 16
  start-page: 241
  year: 2015
  ident: 3401_CR6
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0805-z
– volume: 11
  start-page: 637
  issue: 6
  year: 2014
  ident: 3401_CR23
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2930
– volume: 8
  start-page: 10883
  issue: 7
  year: 2017
  ident: 3401_CR20
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14073
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 3401_CR32
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.50
– volume-title: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence
  year: 2018
  ident: 3401_CR33
– volume: 23
  start-page: 1316
  issue: 3
  year: 2018
  ident: 3401_CR17
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2852639
– volume: 16
  start-page: 1139
  issue: 11
  year: 2019
  ident: 3401_CR8
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0576-7
– start-page: 5767
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 3401_CR24
– volume: 3
  start-page: 346
  issue: 4
  year: 2016
  ident: 3401_CR11
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.08.011
– volume: 49
  start-page: 14
  year: 2018
  ident: 3401_CR16
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.07.001
– volume: 9
  start-page: 284
  issue: 1
  year: 2018
  ident: 3401_CR31
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02554-5
– volume: 36
  start-page: 1703
  issue: 8
  year: 2003
  ident: 3401_CR25
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(03)00035-9
– volume: 8
  start-page: 14049
  year: 2017
  ident: 3401_CR26
  publication-title: Nat Commun
  doi: 10.1038/ncomms14049
– volume-title: An Easy Guide to Factor Analysis
  year: 2014
  ident: 3401_CR5
  doi: 10.4324/9781315788135
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 3401_CR12
  publication-title: J Mach Learn Res
– volume: 20
  start-page: 484
  issue: 3
  year: 2017
  ident: 3401_CR9
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4495
– volume-title: Adversarial autoencoders
  year: 2015
  ident: 3401_CR19
– volume: 37
  start-page: 38
  issue: 1
  year: 2019
  ident: 3401_CR14
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4314
– start-page: 2672
  volume-title: Advances in neural information processing systems
  year: 2014
  ident: 3401_CR15
– start-page: 1094
  volume-title: International Encyclopedia of Statistical Science
  year: 2011
  ident: 3401_CR3
  doi: 10.1007/978-3-642-04898-2_455
SSID ssj0017805
Score 2.561095
Snippet Background Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at...
Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at the single...
Background Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell variability at...
Abstract Background Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an individual cell and cell-to-cell...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Adversarial autoencoder
Algorithms
Analysis
Artificial intelligence
Bioinformatics
Biomedical and Life Sciences
Cluster Analysis
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Dimensionality reduction
Gene sequencing
Generative adversarial networks
Humans
Learning algorithms
Life Sciences
Machine learning
Machine Learning and Artificial Intelligence in Bioinformatics
Machine learning for computational and systems biology
Methodology
Methodology Article
Microarrays
Novels
Ribonucleic acid
RNA
RNA sequencing
RNA-Seq - methods
Sequence analysis
Single-Cell Analysis - methods
Single-cell RNA sequencing
Technology
Variational autoencoder
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yKPgifls9JYogKOWa7-RxFQ99WeRUuLeQtokuHN1j2z3wv3emza7XE_XFpy7JhDaTSfKbZPY3hLxkzjjYWFVpgxClZDKUlhldwlhHU2lnwZsbk02Y5dKenrpPl1J9YUzYRA88Ke4oyVRJESqXjJSR1YFHJWLr6jaxaMd8tRxQz86ZyvcHyNSf7zCZ1Uc9Q562El0lAQ5FqWa70EjW__uSfGlPuhoveeXSdNyLjm-TWxlE0sX08XfItdjdJTemtJI_7pFhQdsYz2nAZMt9QBOjF_iYzv1o2A5r5K9s44aOmXAoIFfaIs__xNEByJxukNMVG9BVR_FA4SyWeMpPT5YLmgOwoZSGzGpyn3w9fv_l3YcyZ1coGy3MUGqerEm8ikbWrXZBNKZ2UqkmWdmyWlkANq2AAuXARzHBcZu0qrlOrW0iwKwH5KBbd_ERoRUUBGOTMNAAfoQAQAZwEhdJ1QBxClLttO2bTD2OGTDO_OiCWO2nAfIwQB4HyKuCvN43OZ94N_4m_BaHcC-IlNljARiSz4bk_2VIBXmBBuCRFKPDqJtvYdv3_uPnE7_Q4FQCMJXQk1dZKK2hB03If2IAPSCP1kzycCYJs7aZV-_szOdVo_dcGAvroeHQo-f7amyJkXBdXG9RRnOEcVwW5OFklvt-izHhasUKYmYGO1PMvKZbfR85xWHhV0bAe9_sTPvXZ_1R74__h96fkJscJybSBLBDcjBstvEpud5cDKt-82yc1j8BKcFOoA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Kvji98fqKVEEQSm2-e7jKh76ssieyr2FtE3uFo7u0e4e-N87k2arPT9An3ZJZtidyUxmpkl_Q8iLotQlBFaZGcd5JgrhMlNolcFae52r0kA1F5tN6MXCHB2Vn9J73P3utvvuSDLu1NGtjXrTF4i1lmG5w6EoyORlcgWinUFvXB5-HY8OEKQ_HV_-lm0SgCJO_6-78U_h6OJVyQvnpTEMHdz8LwFukRsp66TzwUxuk0u-vUOuDX0ov90lmzltvD-jDrsz9w5tkp7jx_CgkLrtZo2Al43vaGydQyHVpQ02BhhAPSCVpx2CwCIDXbUUn0Cc-gyPBehyMafpxjaMUpdgUO6RLwfvP7_7kKV2DFmtuN5kigWjA8u9FlWjSsdrXZVCyjoY0RSVNJAJNRwGZAlFjXYlM0HJiqnQmNpDXnaf7LXr1j8kNIcBp03gGhjgi3OQ-UBixXiQFeREM5Lv1sjWCascW2ac2lizGGUHZVpQpkVlWjkjr0aWswGo42_Eb3HhR0LE2I4D6-7YJpe1QYRccJeXQQvhi8oxL7lvyqoJhTcFn5HnaDYWUTRavKZz7LZ9bz8eLu1cQRUKmawASV4morAGCWqX3noAPSDw1oRyf0IJbl5Pp3fWadM201vGtYENVDOQ6Nk4jZx4da716y3SKIZ5HxMz8mAw5lFuHju05sWM6ImZTxQznWlXJxGEHCKF1Bx-9_XO2H_8rT_q_dE_UT8m1xl6CwIIFPtkb9Nt_RNytT7frPruafT6769dUV0
  priority: 102
  providerName: Springer Nature
Title A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis
URI https://link.springer.com/article/10.1186/s12859-020-3401-5
https://www.ncbi.nlm.nih.gov/pubmed/32085701
https://www.proquest.com/docview/2378638725
https://www.proquest.com/docview/2362081924
https://pubmed.ncbi.nlm.nih.gov/PMC7035735
https://doaj.org/article/f4f043a09f744e1ba2e53ed9bdf1e813
Volume 21
WOSCitedRecordID wos000518036400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Sciences
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Health and Medical Complete
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvfA8CozIICQkULbbj2HlCHdrEhKiiDtDgxXISZ1SaktK0k_jvuUvcjgyxF17S1j6rPd_5fGdff0fIK5aqFDZWGWorRBiz2IaaqSQEWTsVJamGaK4rNqEmE316mmb-wK31aZVrm9gZ6rIp8Ix8nwulQVcUl-_mP0OsGoW3q76ExhbZYZwz1POPKtzcIiBev7_JZDrZbxmitYUYMAkIK0I52Is6yP6_DfMfO9PVrMkrV6fdjnR09395uUfueF-UjnvluU9uuPoBudVXp_z1kCzHtHRuTi3WbG4taiq9wJf--JDa1bJBGMzSLWhXUIeCA0xLLBfQQ32Ag08XCA2LA-ispnguce5CvCyg08mY-jxuaKXWg6M8Il-ODj-__xD6Ig1hkQi1DBNeaVXxyKk4L5PUikLlaSxlUem4ZLnU4B-VAhpkCqGOsinXVSJznlSlLhx4a7tku25q94TQCBqs0pVQMADeWAv-ELhbXFQyB08pINFaXKbwCOZYSOPcdJGMTkwvYQMSNihhIwPyZjNk3sN3XEd8gDqwIUTk7a6hWZwZv5BNFVdRLGyUViqOHcstd1K4Ms3LijnNREBeogYZxNaoMXnnzK7a1hyfTM04gdgU_NsYOHntiaoGOCis_y8EzAPCcQ0o9waUsPiLYfdaw4w3Pq25VK-AvNh040hMqKtds0KahKM3yOOAPO71esO36Oq2RiwgaqDxg4kZ9tSzHx00OewfUgn43rfrtXH5s_4570-vZ-IZuc1xzSKOANsj28vFyj0nN4uL5axdjMiWOlXdU4_IzsHhJJuOuoOVUWcLRpjMm8Ezk9-hPzv-lH2DT9OTr78BIM1k2A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMEL90thgEEgJJC1xI5j5wGhcplWdVRoDGlvxknsUWlKStMO7U_xGzknl44Msbc98NTKPm5j51xj5_sIeR4mKoHAKpm2QrAojCzToYoZ3GungjjRUM3VZBNqMtH7-8nnNfKrexcGj1V2PrF21HmZ4TPyTS6UBl1RXL6d_WDIGoW7qx2FRqMWY3f8E0q26s3oA9zfF5xvfdx7v81aVgGWxUItWMy9Vp4HTkVpHidWZCpNIikzr6M8TKWGgJ4LaJAJ5ObKJlz7WKY89rnOHKQX8LsXyMUIrgWx-seKrXYtkB-g3TkNdbxZhYgOx7BAE1DGMNmLfTVFwN-B4I9IePqU5qmt2joCbl3_39buBrnW5tp02BjHTbLmilvkcsO-eXybLIY0d25GLXJSVxYtkR7hR_N4lNrlokSYz9zNaU0YRCHBpznSITRQJlDA0DlC3-IAOi0oPnc5dAw3Q-juZEjbc-rQSm0L_nKHfD2XKd8l60VZuPuEBtBglfZCwQD4Yi3ke5BOcuFlCpnggASdepisRWhHopBDU1dqOjaNRhnQKIMaZeSAvFoNmTXwJGcJv0OdWwkisnjdUM4PTOuojI98EAkbJF5FkQtTy50ULk_S3IdOh2JAnqHGGsQOKfBw0oFdVpUZfdk1wxhqb8jfI5jJy1bIlzCDzLbvesA6INxYT3KjJwnOLet3dxptWudamRN1HpCnq24ciQcGC1cuUSbmmO3yaEDuNXa0mreoeWmDcEBUz8J6C9PvKabfa-h1iI9SCfjf150tnlzWP9f9wdmTeEKubO992jE7o8n4IbnK0V8gZkK4QdYX86V7RC5lR4tpNX9cextKvp23if4GSR22nA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEF-0PvCLb-tp1VUEoRKa7Dsfz8dhUY7SqvTbskl224OSOy65gv-9M8neaeoDxE85dmfIzWR2dyYz-Q0hL7Nc53CwysQ4zhORCZeYTKsEnrXXqcoNRHNdswk9nZrj4_wg9jlt1tXu65Rk_00DojTV7d6iCv0SN2qvyRB3LcHQh0OAkMjL5IrAnkEYrh993aQRELA_pjJ_yzY4jDrM_l935p-Opotlkxdyp92RNLn138LcJjejN0rHvfncIZd8fZdc6_tTfrtH2jGtvF9Qh12bG4e2Ss_x0r9ApG7VzhEIs_JL2rXUoeAC0wobBvRgH-Di0yWCwyIDndUU30yc-QTTBfRwOqaxkhtGqYvwKPfJl8n7z28_JLFNQ1IqrttEsWB0YKnXoqhU7nipi1xIWQYjqqyQBjykisOAzCHY0S5nJihZMBUqU3rw1x6QrXpe-4eEpjDgtAlcAwP8cA48InC4GA-yAF9pRNL187JlxDDHVhpntotljLK9Mi0o06IyrRyR3Q3Logfw-BvxGzSCDSFib3cD8-WJjUvZBhFSwV2aBy2EzwrHvOS-yosqZN5kfEReoAlZRNeosXznxK2axu4fHdqxgugUPFwBkryKRGEOEpQufg0BekBArgHlzoASln85nF5bqo3bT2MZ1wY2Vs1AouebaeTEkrraz1dIoxj6g0yMyHZv2Bu5ede5Nc1GRA9MfqCY4Uw9O-3AyeEEkZrDfV-vDf_H3_qj3h_9E_Uzcv3g3cR-2p9-fExuMFw4iDGQ7ZCtdrnyT8jV8rydNcun3WbwHdRnXSU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+adversarial+variational+autoencoder+model+for+dimensionality+reduction+in+single-cell+RNA+sequencing+analysis&rft.jtitle=BMC+bioinformatics&rft.au=Lin%2C+Eugene&rft.au=Mukherjee%2C+Sudipto&rft.au=Kannan%2C+Sreeram&rft.date=2020-02-21&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-020-3401-5&rft.externalDocID=A616411248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon