Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome

Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 17; číslo 1; s. 203
Hlavní autoři: Kawaguchi, Risa, Kiryu, Hisanori
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 06.05.2016
BioMed Central Ltd
Springer Nature B.V
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Results Our novel software, “ParasoR” , is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k -mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. Conclusions We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR .
AbstractList Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Results Our novel software, “ParasoR” , is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k -mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. Conclusions We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR .
RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems.BACKGROUNDRNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems.Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions.RESULTSOur novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions.We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR .CONCLUSIONSWe have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR .
RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR .
RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR.
Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Results Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k -mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. Conclusions We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at Keywords: RNA secondary structure prediction, Parallel computation, PARS, Intron, Splicing
Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Results Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. Conclusions We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR.
ArticleNumber 203
Audience Academic
Author Kiryu, Hisanori
Kawaguchi, Risa
Author_xml – sequence: 1
  givenname: Risa
  surname: Kawaguchi
  fullname: Kawaguchi, Risa
  email: kawaguchi-rs@cb.k.u-tokyo.ac.jp
  organization: Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo
– sequence: 2
  givenname: Hisanori
  surname: Kiryu
  fullname: Kiryu, Hisanori
  organization: Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27153986$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB_wA9igSGzKIsWP2Ik3SKOKR6UKUIG15To301SJPdgOgn_PjTItMxWgKIrjfOck9-QckwMfPBDynNEzxhr1OjHeSF1SpkpGVV3qR-SIVTUrOaPyYGd9SI5TuqWU1Q2VT8ghr5kUulFHZPxsox0GGAoXxs2Ube6DL0JXrMGHEcrk7ADF1cdVkcAF39r4q0g5Ti5PEYocihYyuHy_Z2cjj3e29zkV6HUzjdZv7Z6Sx50dEjzbXk_It3dvv55_KC8_vb84X12WTok6l5UEHAwkZ1wrzhWXCkRLOyUAqk6ptml0K9W100xUtmqZoty2wjYUBFXWiRPyZvHdTNcjtA48ftBgNrEfcQATbG_2n_j-xqzDD1M1smmqGg1OtwYxfJ8gZTP2ycEwWA9hSgaDrLWQWglEXz5Ab8MUPY6HlK4F1RVVf6g15ml63wV8r5tNzaqSTM2nROrsLxQeLYw95gpdj_t7gld7AmQy_MxrO6VkLr5c7bMvdkO5T-OuDAjUC-BiSClCZ1y_FGL-nYNh1My1M0vtDNbOzLUzGpXsgfLO_H8avmgSsn4NcSe3f4p-A9vg6JQ
CitedBy_id crossref_primary_10_1038_s41576_018_0034_x
crossref_primary_10_1038_s42003_020_01164_0
crossref_primary_10_1093_nar_gkac825
crossref_primary_10_1038_s41467_020_15061_x
crossref_primary_10_1186_s12864_018_5275_8
crossref_primary_10_1038_s41467_020_19699_5
crossref_primary_10_1093_bioadv_vbac078
crossref_primary_10_1186_s12859_019_2645_4
crossref_primary_10_1016_j_biomaterials_2017_02_033
crossref_primary_10_1186_s12862_017_0985_0
crossref_primary_10_1186_s12859_020_3535_5
crossref_primary_10_3389_fmolb_2017_00090
Cites_doi 10.1016/0959-437X(94)90066-3
10.1073/pnas.0707419104
10.1186/1471-2105-10-76
10.1042/BST0360641
10.1073/pnas.0801692105
10.1093/bioinformatics/btn601
10.1093/bioinformatics/btm223
10.1038/nature13182
10.1142/S0219720006002363
10.1093/nar/gkt1114
10.1093/nar/gkn188
10.1186/1471-2105-5-105
10.1126/science.2468181
10.1093/nar/gkv1209
10.1038/nprot.2008.211
10.1093/nar/gks181
10.1038/ng2135
10.1002/bip.360290621
10.1186/1471-2105-7-297
10.1093/bioinformatics/btu817
10.1128/JVI.73.6.4962-4971.1999
10.1093/nar/gkr662
10.1093/nar/28.21.4364
10.1101/gad.1048803
10.1038/nrm3525
10.1093/nar/gkl1050
10.1093/bioinformatics/btk014
10.1038/nsmb.1959
10.1128/MCB.24.24.10505-10514.2004
10.1016/j.bbadis.2008.09.017
10.1016/j.molcel.2014.12.004
10.1016/j.molcel.2014.04.016
10.1038/nrg3049
10.1093/nar/gku1063
10.1093/bioinformatics/btg388
10.1186/gb-2014-15-1-r16
10.1128/jvi.65.12.6645-6653.1991
10.1038/nn.2779
10.1186/1471-2164-12-90
10.1093/bioinformatics/btm591
10.1073/pnas.0909910107
10.1126/science.1254806
10.1101/gad.190173.112
10.1261/rna.1069408
10.1261/rna.030767.111
10.1093/bioinformatics/btr276
10.1016/j.tibs.2009.10.004
10.1371/journal.pgen.0030204
10.1186/s13059-014-0560-6
10.1186/gb-2005-6-9-r75
10.1038/nature12946
10.1038/nature09322
10.1093/molbev/msl111
10.1038/nbt1404
10.1093/nar/gku1177
10.1126/science.1261909
ContentType Journal Article
Copyright Kawaguchi and Kiryu. 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright BioMed Central 2016
Copyright_xml – notice: Kawaguchi and Kiryu. 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
– notice: Copyright BioMed Central 2016
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1186/s12859-016-1067-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection (ProQuest)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
ExternalDocumentID PMC4858847
4090658281
A451645165
27153986
10_1186_s12859_016_1067_9
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 22240031; 14J00402; 25870190; 25134701; 15H01465
– fundername: ;
  grantid: 22240031; 14J00402; 25870190; 25134701; 15H01465
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c637t-45e285e521296226256e3d0f63ee4f66d889d56bc9134a4d1602ad3a80e306ac3
IEDL.DBID M7P
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375848300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Nov 04 01:51:57 EST 2025
Wed Oct 01 17:14:38 EDT 2025
Mon Oct 06 18:36:55 EDT 2025
Tue Nov 11 10:56:59 EST 2025
Tue Nov 04 18:19:43 EST 2025
Thu Nov 13 16:43:05 EST 2025
Thu Apr 03 07:09:30 EDT 2025
Sat Nov 29 05:39:59 EST 2025
Tue Nov 18 22:22:07 EST 2025
Sat Sep 06 07:21:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Parallel computation
Intron
Splicing
RNA secondary structure prediction
PARS
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-45e285e521296226256e3d0f63ee4f66d889d56bc9134a4d1602ad3a80e306ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1797309406?pq-origsite=%requestingapplication%
PMID 27153986
PQID 1797309406
PQPubID 44065
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4858847
proquest_miscellaneous_1787935963
proquest_journals_1797309406
gale_infotracmisc_A451645165
gale_infotracacademiconefile_A451645165
gale_incontextgauss_ISR_A451645165
pubmed_primary_27153986
crossref_citationtrail_10_1186_s12859_016_1067_9
crossref_primary_10_1186_s12859_016_1067_9
springer_journals_10_1186_s12859_016_1067_9
PublicationCentury 2000
PublicationDate 2016-05-06
PublicationDateYYYYMMDD 2016-05-06
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-06
  day: 06
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References O Gahura (1067_CR11) 2011; 39
Y Wan (1067_CR37) 2014; 505
Y Yang (1067_CR14) 2011; 18
J Tazi (1067_CR7) 2009; 1792
NA Faustino (1067_CR3) 2003; 17
K Sawicka (1067_CR43) 2008; 36
H Kiryu (1067_CR34) 2011; 27
XF Wan (1067_CR27) 2006; 4
M Kertesz (1067_CR32) 2007; 39
M Lizio (1067_CR56) 2015; 16
J Zhang (1067_CR18) 2011; 12
EP Nawrocki (1067_CR36) 2015; 43
PJ Kersey (1067_CR48) 2016; 44
SA Marashi (1067_CR6) 2006; 7
M Hiller (1067_CR19) 2007; 3
Y Horesh (1067_CR28) 2009; 10
T Tuller (1067_CR49) 2010; 107
SJ Lange (1067_CR29) 2012; 40
C Zhang (1067_CR50) 2008; 105
S Baskerville (1067_CR41) 1999; 73
M Andronescu (1067_CR54) 2007; 23
IL Hofacker (1067_CR24) 2004; 20
PJ Shepard (1067_CR17) 2008; 14
DJ Patterson (1067_CR9) 2001
X Hong (1067_CR4) 2006; 23
SJ Gosai (1067_CR16) 2015; 57
M Zuker (1067_CR22) 1989; 244
DW Huang (1067_CR47) 2009; 4
E Buratti (1067_CR42) 2004; 24
CE Lane (1067_CR2) 2007; 104
KJ Doshi (1067_CR35) 2004; 5
DH Goldman (1067_CR51) 2015; 348
M Plass (1067_CR44) 2012; 18
N Lambert (1067_CR21) 2014; 54
NN Singh (1067_CR39) 2007; 35
KR Rosenbloom (1067_CR52) 2015; 43
J Chamary (1067_CR45) 2005; 6
B Hu (1067_CR57) 2015; 31
JS McCaskill (1067_CR23) 1990; 29
AC Black (1067_CR40) 1991; 65
H Tafer (1067_CR33) 2008; 26
TF Consortium (1067_CR55) 2014; 507
T Fukunaga (1067_CR30) 2014; 15
M Burset (1067_CR5) 2000; 28
M Polymenidou (1067_CR8) 2011; 14
X Roca (1067_CR13) 2012; 26
MB Warf (1067_CR46) 2010; 35
M Hamada (1067_CR31) 2009; 25
Y Wan (1067_CR12) 2011; 12
M Kertesz (1067_CR15) 2010; 467
AR Gruber (1067_CR38) 2008; 36
HY Xiong (1067_CR10) 2015; 347
KD Pruitt (1067_CR53) 2014; 42
H Kiryu (1067_CR26) 2008; 24
SH Bernhart (1067_CR25) 2006; 22
AR Kornblihtt (1067_CR20) 2013; 14
JS Mattick (1067_CR1) 1994; 4
16772025 - BMC Bioinformatics. 2006;7:297
21281513 - BMC Genomics. 2011;12:90
25428374 - Nucleic Acids Res. 2015 Jan;43(Database issue):D670-81
25908824 - Science. 2015 Apr 24;348(6233):457-60
25525159 - Science. 2015 Jan 9;347(6218):1254806
24837674 - Mol Cell. 2014 Jun 5;54(5):887-900
24447569 - Genome Biol. 2014;15(1):R16
22588721 - Genes Dev. 2012 May 15;26(10):1098-109
20811459 - Nature. 2010 Sep 2;467(7311):103-7
18391195 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5797-802
20133581 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3645-50
18056736 - Bioinformatics. 2008 Feb 1;24(3):367-73
15572659 - Mol Cell Biol. 2004 Dec;24(24):10505-14
17893677 - Nat Genet. 2007 Oct;39(10):1278-84
12600935 - Genes Dev. 2003 Feb 15;17(4):419-37
17646296 - Bioinformatics. 2007 Jul 1;23(13):i19-28
1695107 - Biopolymers. 1990 May-Jun;29(6-7):1105-19
16168082 - Genome Biol. 2005;6(9):R75
24476892 - Nature. 2014 Jan 30;505(7485):706-9
21850044 - Nat Rev Genet. 2011 Sep;12(9):641-55
25557549 - Mol Cell. 2015 Jan 22;57(2):376-88
7888751 - Curr Opin Genet Dev. 1994 Dec;4(6):823-31
11928478 - Pac Symp Biocomput. 2002;:223-34
22539526 - RNA. 2012 Jun;18(6):1103-15
25392425 - Nucleic Acids Res. 2015 Jan;43(Database issue):D130-7
21217700 - Nat Struct Mol Biol. 2011 Feb;18(2):159-68
22373926 - Nucleic Acids Res. 2012 Jul;40(12):5215-26
19257906 - BMC Bioinformatics. 2009;10:76
2468181 - Science. 1989 Apr 7;244(4900):48-52
24259432 - Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63
26578574 - Nucleic Acids Res. 2016 Jan 4;44(D1):D574-80
16368769 - Bioinformatics. 2006 Mar 1;22(5):614-5
14734309 - Bioinformatics. 2004 Jan 22;20(2):186-90
19959365 - Trends Biochem Sci. 2010 Mar;35(3):169-78
18020710 - PLoS Genet. 2007 Nov;3(11):e204
17099939 - J Bioinform Comput Biol. 2006 Oct;4(5):1015-31
19095700 - Bioinformatics. 2009 Feb 15;25(4):465-73
10233958 - J Virol. 1999 Jun;73(6):4962-71
18438400 - Nat Biotechnol. 2008 May;26(5):578-83
18424795 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W70-4
18631133 - Biochem Soc Trans. 2008 Aug;36(Pt 4):641-7
18992329 - Biochim Biophys Acta. 2009 Jan;1792(1):14-26
21531769 - Bioinformatics. 2011 Jul 1;27(13):1788-97
17170000 - Nucleic Acids Res. 2007;35(2):371-89
18579871 - RNA. 2008 Aug;14(8):1463-9
18077423 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19908-13
23385723 - Nat Rev Mol Cell Biol. 2013 Mar;14(3):153-65
25504850 - Bioinformatics. 2015 Apr 15;31(8):1296-7
15296519 - BMC Bioinformatics. 2004 Aug 5;5:105
1942248 - J Virol. 1991 Dec;65(12):6645-53
21358643 - Nat Neurosci. 2011 Apr;14(4):459-68
11058137 - Nucleic Acids Res. 2000 Nov 1;28(21):4364-75
25723102 - Genome Biol. 2015;16:22
16980575 - Mol Biol Evol. 2006 Dec;23(12):2392-404
24670764 - Nature. 2014 Mar 27;507(7493):462-70
19131956 - Nat Protoc. 2009;4(1):44-57
21893588 - Nucleic Acids Res. 2011 Dec;39(22):9759-67
References_xml – volume: 4
  start-page: 823
  issue: 6
  year: 1994
  ident: 1067_CR1
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/0959-437X(94)90066-3
– volume: 104
  start-page: 19908
  issue: 50
  year: 2007
  ident: 1067_CR2
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.0707419104
– volume: 10
  start-page: 76
  issue: 1
  year: 2009
  ident: 1067_CR28
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-76
– volume: 36
  start-page: 641
  issue: 4
  year: 2008
  ident: 1067_CR43
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST0360641
– volume: 105
  start-page: 5797
  issue: 15
  year: 2008
  ident: 1067_CR50
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.0801692105
– volume: 25
  start-page: 465
  issue: 4
  year: 2009
  ident: 1067_CR31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn601
– volume: 23
  start-page: 19
  issue: 13
  year: 2007
  ident: 1067_CR54
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm223
– volume: 507
  start-page: 462
  issue: 7493
  year: 2014
  ident: 1067_CR55
  publication-title: Nature
  doi: 10.1038/nature13182
– volume: 4
  start-page: 1015
  issue: 05
  year: 2006
  ident: 1067_CR27
  publication-title: J Bioinformatics Comput Biol
  doi: 10.1142/S0219720006002363
– volume: 42
  start-page: 756
  issue: D1
  year: 2014
  ident: 1067_CR53
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1114
– volume: 36
  start-page: 70
  issue: suppl 2
  year: 2008
  ident: 1067_CR38
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn188
– volume: 5
  start-page: 1
  issue: 1
  year: 2004
  ident: 1067_CR35
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-105
– volume: 244
  start-page: 48
  issue: 4900
  year: 1989
  ident: 1067_CR22
  publication-title: Science
  doi: 10.1126/science.2468181
– volume: 44
  start-page: 574
  issue: D1
  year: 2016
  ident: 1067_CR48
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1209
– volume: 4
  start-page: 44
  issue: 1
  year: 2009
  ident: 1067_CR47
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.211
– volume: 40
  start-page: 5215
  issue: 12
  year: 2012
  ident: 1067_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks181
– volume: 39
  start-page: 1278
  issue: 10
  year: 2007
  ident: 1067_CR32
  publication-title: Nat Genet
  doi: 10.1038/ng2135
– volume: 29
  start-page: 1105
  issue: 6–7
  year: 1990
  ident: 1067_CR23
  publication-title: Biopolymers
  doi: 10.1002/bip.360290621
– volume: 7
  start-page: 297
  issue: 1
  year: 2006
  ident: 1067_CR6
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-297
– volume: 31
  start-page: 1296
  issue: 8
  year: 2015
  ident: 1067_CR57
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu817
– volume: 73
  start-page: 4962
  issue: 6
  year: 1999
  ident: 1067_CR41
  publication-title: J Virol
  doi: 10.1128/JVI.73.6.4962-4971.1999
– volume: 39
  start-page: 9759
  issue: 22
  year: 2011
  ident: 1067_CR11
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr662
– volume: 28
  start-page: 4364
  issue: 21
  year: 2000
  ident: 1067_CR5
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.21.4364
– volume: 17
  start-page: 419
  issue: 4
  year: 2003
  ident: 1067_CR3
  publication-title: Genes Dev
  doi: 10.1101/gad.1048803
– volume: 14
  start-page: 153
  issue: 3
  year: 2013
  ident: 1067_CR20
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3525
– volume-title: Pacific Symposium on Biocomputing
  year: 2001
  ident: 1067_CR9
– volume: 35
  start-page: 371
  issue: 2
  year: 2007
  ident: 1067_CR39
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl1050
– volume: 22
  start-page: 614
  issue: 5
  year: 2006
  ident: 1067_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btk014
– volume: 18
  start-page: 159
  issue: 2
  year: 2011
  ident: 1067_CR14
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1959
– volume: 24
  start-page: 10505
  issue: 24
  year: 2004
  ident: 1067_CR42
  publication-title: Mol Cellular Biol
  doi: 10.1128/MCB.24.24.10505-10514.2004
– volume: 1792
  start-page: 14
  issue: 1
  year: 2009
  ident: 1067_CR7
  publication-title: Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease
  doi: 10.1016/j.bbadis.2008.09.017
– volume: 57
  start-page: 376
  issue: 2
  year: 2015
  ident: 1067_CR16
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.12.004
– volume: 54
  start-page: 887
  issue: 5
  year: 2014
  ident: 1067_CR21
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.04.016
– volume: 12
  start-page: 641
  issue: 9
  year: 2011
  ident: 1067_CR12
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3049
– volume: 43
  start-page: D130
  issue: D1
  year: 2015
  ident: 1067_CR36
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1063
– volume: 20
  start-page: 186
  issue: 2
  year: 2004
  ident: 1067_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg388
– volume: 15
  start-page: 16
  issue: 1
  year: 2014
  ident: 1067_CR30
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-1-r16
– volume: 65
  start-page: 6645
  issue: 12
  year: 1991
  ident: 1067_CR40
  publication-title: J Virol
  doi: 10.1128/jvi.65.12.6645-6653.1991
– volume: 14
  start-page: 459
  issue: 4
  year: 2011
  ident: 1067_CR8
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2779
– volume: 12
  start-page: 90
  issue: 1
  year: 2011
  ident: 1067_CR18
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-90
– volume: 24
  start-page: 367
  issue: 3
  year: 2008
  ident: 1067_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm591
– volume: 107
  start-page: 3645
  issue: 8
  year: 2010
  ident: 1067_CR49
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.0909910107
– volume: 347
  start-page: 1254806
  issue: 6218
  year: 2015
  ident: 1067_CR10
  publication-title: Science
  doi: 10.1126/science.1254806
– volume: 26
  start-page: 1098
  issue: 10
  year: 2012
  ident: 1067_CR13
  publication-title: Genes Dev
  doi: 10.1101/gad.190173.112
– volume: 14
  start-page: 1463
  issue: 8
  year: 2008
  ident: 1067_CR17
  publication-title: RNA
  doi: 10.1261/rna.1069408
– volume: 18
  start-page: 1103
  issue: 6
  year: 2012
  ident: 1067_CR44
  publication-title: RNA
  doi: 10.1261/rna.030767.111
– volume: 27
  start-page: 1788
  issue: 13
  year: 2011
  ident: 1067_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr276
– volume: 35
  start-page: 169
  issue: 3
  year: 2010
  ident: 1067_CR46
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2009.10.004
– volume: 3
  start-page: 204
  issue: 11
  year: 2007
  ident: 1067_CR19
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030204
– volume: 16
  start-page: 1
  issue: 1
  year: 2015
  ident: 1067_CR56
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0560-6
– volume: 6
  start-page: 75
  issue: 9
  year: 2005
  ident: 1067_CR45
  publication-title: Genome Biol
  doi: 10.1186/gb-2005-6-9-r75
– volume: 505
  start-page: 706
  issue: 7485
  year: 2014
  ident: 1067_CR37
  publication-title: Nature
  doi: 10.1038/nature12946
– volume: 467
  start-page: 103
  issue: 7311
  year: 2010
  ident: 1067_CR15
  publication-title: Nature
  doi: 10.1038/nature09322
– volume: 23
  start-page: 2392
  issue: 12
  year: 2006
  ident: 1067_CR4
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msl111
– volume: 26
  start-page: 578
  issue: 5
  year: 2008
  ident: 1067_CR33
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1404
– volume: 43
  start-page: 670
  issue: D1
  year: 2015
  ident: 1067_CR52
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1177
– volume: 348
  start-page: 457
  issue: 6233
  year: 2015
  ident: 1067_CR51
  publication-title: Science
  doi: 10.1126/science.1261909
– reference: 11928478 - Pac Symp Biocomput. 2002;:223-34
– reference: 25525159 - Science. 2015 Jan 9;347(6218):1254806
– reference: 21893588 - Nucleic Acids Res. 2011 Dec;39(22):9759-67
– reference: 20811459 - Nature. 2010 Sep 2;467(7311):103-7
– reference: 16980575 - Mol Biol Evol. 2006 Dec;23(12):2392-404
– reference: 18391195 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5797-802
– reference: 18020710 - PLoS Genet. 2007 Nov;3(11):e204
– reference: 20133581 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3645-50
– reference: 21217700 - Nat Struct Mol Biol. 2011 Feb;18(2):159-68
– reference: 22539526 - RNA. 2012 Jun;18(6):1103-15
– reference: 25428374 - Nucleic Acids Res. 2015 Jan;43(Database issue):D670-81
– reference: 18631133 - Biochem Soc Trans. 2008 Aug;36(Pt 4):641-7
– reference: 24476892 - Nature. 2014 Jan 30;505(7485):706-9
– reference: 18056736 - Bioinformatics. 2008 Feb 1;24(3):367-73
– reference: 25504850 - Bioinformatics. 2015 Apr 15;31(8):1296-7
– reference: 25557549 - Mol Cell. 2015 Jan 22;57(2):376-88
– reference: 15572659 - Mol Cell Biol. 2004 Dec;24(24):10505-14
– reference: 21531769 - Bioinformatics. 2011 Jul 1;27(13):1788-97
– reference: 19257906 - BMC Bioinformatics. 2009;10:76
– reference: 1942248 - J Virol. 1991 Dec;65(12):6645-53
– reference: 25723102 - Genome Biol. 2015;16:22
– reference: 24837674 - Mol Cell. 2014 Jun 5;54(5):887-900
– reference: 24259432 - Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63
– reference: 16168082 - Genome Biol. 2005;6(9):R75
– reference: 15296519 - BMC Bioinformatics. 2004 Aug 5;5:105
– reference: 1695107 - Biopolymers. 1990 May-Jun;29(6-7):1105-19
– reference: 19131956 - Nat Protoc. 2009;4(1):44-57
– reference: 21850044 - Nat Rev Genet. 2011 Sep;12(9):641-55
– reference: 26578574 - Nucleic Acids Res. 2016 Jan 4;44(D1):D574-80
– reference: 7888751 - Curr Opin Genet Dev. 1994 Dec;4(6):823-31
– reference: 19095700 - Bioinformatics. 2009 Feb 15;25(4):465-73
– reference: 17893677 - Nat Genet. 2007 Oct;39(10):1278-84
– reference: 17099939 - J Bioinform Comput Biol. 2006 Oct;4(5):1015-31
– reference: 18438400 - Nat Biotechnol. 2008 May;26(5):578-83
– reference: 25908824 - Science. 2015 Apr 24;348(6233):457-60
– reference: 22588721 - Genes Dev. 2012 May 15;26(10):1098-109
– reference: 2468181 - Science. 1989 Apr 7;244(4900):48-52
– reference: 21358643 - Nat Neurosci. 2011 Apr;14(4):459-68
– reference: 18077423 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19908-13
– reference: 21281513 - BMC Genomics. 2011;12:90
– reference: 19959365 - Trends Biochem Sci. 2010 Mar;35(3):169-78
– reference: 25392425 - Nucleic Acids Res. 2015 Jan;43(Database issue):D130-7
– reference: 11058137 - Nucleic Acids Res. 2000 Nov 1;28(21):4364-75
– reference: 16772025 - BMC Bioinformatics. 2006;7:297
– reference: 22373926 - Nucleic Acids Res. 2012 Jul;40(12):5215-26
– reference: 12600935 - Genes Dev. 2003 Feb 15;17(4):419-37
– reference: 14734309 - Bioinformatics. 2004 Jan 22;20(2):186-90
– reference: 23385723 - Nat Rev Mol Cell Biol. 2013 Mar;14(3):153-65
– reference: 24670764 - Nature. 2014 Mar 27;507(7493):462-70
– reference: 10233958 - J Virol. 1999 Jun;73(6):4962-71
– reference: 18992329 - Biochim Biophys Acta. 2009 Jan;1792(1):14-26
– reference: 17170000 - Nucleic Acids Res. 2007;35(2):371-89
– reference: 18579871 - RNA. 2008 Aug;14(8):1463-9
– reference: 18424795 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W70-4
– reference: 16368769 - Bioinformatics. 2006 Mar 1;22(5):614-5
– reference: 17646296 - Bioinformatics. 2007 Jul 1;23(13):i19-28
– reference: 24447569 - Genome Biol. 2014;15(1):R16
SSID ssj0017805
Score 2.3148909
Snippet Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the...
RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural...
Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 203
SubjectTerms Algorithms
Animals
Area Under Curve
Base Sequence
Bioinformatics
Biomedical and Life Sciences
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer Simulation
Gene expression
Gene Ontology
Genome, Human
Human genome
Humans
Life Sciences
Methodology
Methodology Article
Mice
Microarrays
Microfilament Proteins - metabolism
Nucleic Acid Conformation
Physiological aspects
Propensity Score
Reproducibility of Results
RNA
RNA - chemistry
RNA - genetics
RNA Precursors - genetics
RNA Precursors - metabolism
RNA Splicing - genetics
RNA, Messenger - genetics
RNA, Messenger - metabolism
Sequence analysis (methods)
Software
Structure
Transcription, Genetic
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_0VPDFb73qKVEEQQm2m26aPC7ioSDLsadybyGbpOfCXSvb3YP7751JP7guKuhDX5pJmiaTmQkz8xuA15Nc-mWWOe5V6nkubcq1Sx0PpVDST0tUshFn9ksxn6uTE33U5XE3fbR775KMkjoeayXfNxlhreHVV3KCPeP6OtxAbaeoXsPi-PvgOiCQ_s59-dtuIwW0K4av6KHdGMkdR2nUP4d3_2vm9-BOZ26yWcsf9-FaqB7ArbYA5eVDOD-yayqmcsZcrO4Qt4nVJSPo1vPAG9zBwBbzGWvo4uzt-pK1iLPbdWCbmvlATojhnaWBCJPWrqpNw3CsWAOwG-4RfDv8-PXDJ94VYOBOimLD82nAmQdK79US7TQ0j4LwaSlFCHkppVdK-6lcOnLf29xnMp1YL6xKA95ErBOPYa-qq7APbCmckrottp6H1C5LVI1aZJnIlhqtzATSfleM69DJabJnJt5SlDTtKhqKSKNVNDqBt0OXny00x9-IX9FWG4K8qCim5tRum8Z8Pl6YGdUqpmeawJuOqKzx4852KQr4C4SSNaI8GFHimXTj5p6jTCcTGoOiD8WpRgsqgZdDM_WkOLcq1FuiUQXlSkuRwJOWAYd_mxSonbTC3sWINQcCQgoft1SrHxExPFeUj1wk8K5n0CvT-tOSPf0n6mdwe0IcTrGg8gD2kO_Cc7jpLjarZv0iHtFfe8A3Bw
  priority: 102
  providerName: Springer Nature
Title Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome
URI https://link.springer.com/article/10.1186/s12859-016-1067-9
https://www.ncbi.nlm.nih.gov/pubmed/27153986
https://www.proquest.com/docview/1797309406
https://www.proquest.com/docview/1787935963
https://pubmed.ncbi.nlm.nih.gov/PMC4858847
Volume 17
WOSCitedRecordID wos000375848300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvfMMCozIICQlkLWlSx35CBW1iAqqoA1T2Ejm2wyptyWhapP333DluWCqxFx5iKfHZiXNnn-07_46QV8OEmyKKNDMiNCzhKmRSh5rZMhbcjEpQsg5n9nM6mYjZTGZ-w63xbpXrMdEN1KbWuEe-D4IDwihB_7y7-MUwahRaV30IjS2ygygJQ-e6l3VWBMTr95bMSPD9JkK0Nlg8c4bAaUz2dNHmiHxFJW26S27YTJ0qOrz7v424R-74SSgdt1Jzn9yw1QNyqw1LefmQnGdqgSFWzqh2MR8c82hdUgR0PbesAb5aOp2MaYPLaaMWl7TFoV0tLF3W1Fg0TXTPFFaESLVqXi0bCnW5yIC-ukfk2-HB1w8fmQ_LwDSP0yVLRhb-o8VDv5LD7A0mTTY2Yclja5OScyOENCNeaDTqq8REPBwqEysRWlifKB0_JttVXdldQotYCy7bEOyJDVVRgsKUcRTFUSFh7hmQcM2gXHvMcvzYs9ytXQTPW57m6KeGPM1lQN50RS5awI7riF8i13MEwqjQ0-anWjVNfnQ8zccYwRivUUBee6Kyhpdr5Q8uQBMQO6tHudejhJ6q-9lrqcj9SNHkf0UiIC-6bCyJ3m-VrVdII1I8Qc3jgDxpZbFr2zAFnSUFlE57UtoRIH54P6eanzoc8UTgKeU0IG_X8nzls_71y55e34hn5PYQOxi6hPI9sg2CZp-Tm_r3ct4sBmQrnaUuFQOy8_5gkk0HbhcE0k8pG7juC2k2OoH87OhL9gPupsff_wClJUpu
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggEEgJJDVJE4c54DQCqi62mVVlVbqzXhtB1Zqk7LZBe2f4jfiyYtmJXrrgcNe4rE3Tr7xjDPjbwBehhE30yDQ1Ajf0Igrn6ba19RmTHATZ87IVjyz42QyEUdH6d4G_G7PwmBaZbsmVgu1KTR-I992wHFgTJ39eX_6g2LVKIyutiU0aliM7OqX27KV74Yf3ft9FYY7nw4-7NKmqgDVnCULGsU2FLHFM6spd86Hs_mWGT_jzNoo49wIkZqYTzXGpFVkAu6HyjAlfOvca6WZG_cSXI6YSFCvRgntohZYH6CJnAaCb5cBssO5zTqnSNRG057tW7cAZ0zgenrmWoy2Mn07N_-3h3YLbjRONhnUWnEbNmx-B67WZTdXd-FkT82xhMwx0VVNiwqcpMgIEtaeWFo63FqyPxmQEj8XGDVfkZpndzm3ZFEQYzH00l1TOBAy8apZviiJG6uqfNgMdw8OL2Su92EzL3L7EMiUacHTusR8ZH01zZxDkLIgYME0db61B34LCKkbTna82WNZ7c0ElzWGJObhIYZk6sGbrstpTUhynvALRJlEoo8cM4m-qWVZyuGXfTnACs34iz143QhlhftzrZqDGW4KyA3Wk9zqSbqVSPebWxTKZiUs5V8IevC8a8aemN2X22KJMiLBE-KcefCgxn43tzBxNjkVrnfS04pOAPnR-y357HvFkx4JPIWdePC21Z8zt_WvR_bo_Ek8g2u7B5_HcjycjB7D9RCVG9Nf-RZsOtDZJ3BF_1zMyvnTamkg8PWi1eoPc7qbmA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0_MAXvz-qp0YRhJNw7aabJo-Lunh4LMudyr2FNEl14a49tl3h_nszbVquiwriw740k2w-JpkZZuY3AG8mKbd5khhqRWxpynVMpYkNdQUT3E4LL2RbnNnDbLEQJydyGeqc1n20e--S7HIaEKWpbPbPbdFdccH36wRx17wZzClCoFF5Fa6lGEeP5vrxt8GNgID9wZX5224jYbT9JF-SSdvxkltO01YWze_89yruwu2ghpJZxzf34Ior78ONrjDlxQM4W-o1Flk5Jaat-tAeH6kKgpCuZ47W_mQdOVrMSI0GtdXrC9Ih0W7WjjQVsQ6dE8M3jQMhVq1elU1N_FhtbcAw3EP4Ov_45f0nGgozUMNZ1tB06vzMHab9Su71N682OWbjgjPn0oJzK4S0U54bdOvr1CY8nmjLtIidt1C0YY9gp6xK9wRIzozgsivCnrpY54UXmZIlCUty6bXPCOL-hJQJqOU42VPVWi-Cq24XFUaq4S4qGcHe0OW8g-z4G_FrPHaFUBglxtp815u6VgfHR2qGNYzxN43gbSAqKv_nRofUBb8ERM8aUe6OKP1dNePmnrtUeCtq5Z9E_8xKr1lF8Gpoxp4Y_1a6aoM0IsMcas4ieNwx47C2SeallhS-dzZi04EAEcTHLeXqR4skngrMU84ieNcz66Vp_WnLnv4T9Uu4ufwwV4cHi8_P4NYEmR3DRfku7HgWdM_huvnZrOr1i_bm_gKrbkLP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+computation+of+genome-scale+RNA+secondary+structure+to+detect+structural+constraints+on+human+genome&rft.jtitle=BMC+bioinformatics&rft.au=Kawaguchi%2C+Risa&rft.au=Kiryu%2C+Hisanori&rft.date=2016-05-06&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=17&rft_id=info:doi/10.1186%2Fs12859-016-1067-9&rft.externalDocID=4090658281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon