Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome
Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational l...
Uloženo v:
| Vydáno v: | BMC bioinformatics Ročník 17; číslo 1; s. 203 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
06.05.2016
BioMed Central Ltd Springer Nature B.V |
| Témata: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems.
Results
Our novel software,
“ParasoR”
, is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses.
Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and
k
-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions.
Conclusions
We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at
https://github.com/carushi/ParasoR
. |
|---|---|
| AbstractList | Background
RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems.
Results
Our novel software,
“ParasoR”
, is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses.
Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and
k
-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions.
Conclusions
We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at
https://github.com/carushi/ParasoR
. RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems.BACKGROUNDRNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems.Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions.RESULTSOur novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions.We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR .CONCLUSIONSWe have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR . RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR . RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR. Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Results Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k -mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. Conclusions We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at Keywords: RNA secondary structure prediction, Parallel computation, PARS, Intron, Splicing Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Results Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. Conclusions We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR. |
| ArticleNumber | 203 |
| Audience | Academic |
| Author | Kiryu, Hisanori Kawaguchi, Risa |
| Author_xml | – sequence: 1 givenname: Risa surname: Kawaguchi fullname: Kawaguchi, Risa email: kawaguchi-rs@cb.k.u-tokyo.ac.jp organization: Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo – sequence: 2 givenname: Hisanori surname: Kiryu fullname: Kiryu, Hisanori organization: Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27153986$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhS1URB_wA9igSGzKIsWP2Ik3SKOKR6UKUIG15To301SJPdgOgn_PjTItMxWgKIrjfOck9-QckwMfPBDynNEzxhr1OjHeSF1SpkpGVV3qR-SIVTUrOaPyYGd9SI5TuqWU1Q2VT8ghr5kUulFHZPxsox0GGAoXxs2Ube6DL0JXrMGHEcrk7ADF1cdVkcAF39r4q0g5Ti5PEYocihYyuHy_Z2cjj3e29zkV6HUzjdZv7Z6Sx50dEjzbXk_It3dvv55_KC8_vb84X12WTok6l5UEHAwkZ1wrzhWXCkRLOyUAqk6ptml0K9W100xUtmqZoty2wjYUBFXWiRPyZvHdTNcjtA48ftBgNrEfcQATbG_2n_j-xqzDD1M1smmqGg1OtwYxfJ8gZTP2ycEwWA9hSgaDrLWQWglEXz5Ab8MUPY6HlK4F1RVVf6g15ml63wV8r5tNzaqSTM2nROrsLxQeLYw95gpdj_t7gld7AmQy_MxrO6VkLr5c7bMvdkO5T-OuDAjUC-BiSClCZ1y_FGL-nYNh1My1M0vtDNbOzLUzGpXsgfLO_H8avmgSsn4NcSe3f4p-A9vg6JQ |
| CitedBy_id | crossref_primary_10_1038_s41576_018_0034_x crossref_primary_10_1038_s42003_020_01164_0 crossref_primary_10_1093_nar_gkac825 crossref_primary_10_1038_s41467_020_15061_x crossref_primary_10_1186_s12864_018_5275_8 crossref_primary_10_1038_s41467_020_19699_5 crossref_primary_10_1093_bioadv_vbac078 crossref_primary_10_1186_s12859_019_2645_4 crossref_primary_10_1016_j_biomaterials_2017_02_033 crossref_primary_10_1186_s12862_017_0985_0 crossref_primary_10_1186_s12859_020_3535_5 crossref_primary_10_3389_fmolb_2017_00090 |
| Cites_doi | 10.1016/0959-437X(94)90066-3 10.1073/pnas.0707419104 10.1186/1471-2105-10-76 10.1042/BST0360641 10.1073/pnas.0801692105 10.1093/bioinformatics/btn601 10.1093/bioinformatics/btm223 10.1038/nature13182 10.1142/S0219720006002363 10.1093/nar/gkt1114 10.1093/nar/gkn188 10.1186/1471-2105-5-105 10.1126/science.2468181 10.1093/nar/gkv1209 10.1038/nprot.2008.211 10.1093/nar/gks181 10.1038/ng2135 10.1002/bip.360290621 10.1186/1471-2105-7-297 10.1093/bioinformatics/btu817 10.1128/JVI.73.6.4962-4971.1999 10.1093/nar/gkr662 10.1093/nar/28.21.4364 10.1101/gad.1048803 10.1038/nrm3525 10.1093/nar/gkl1050 10.1093/bioinformatics/btk014 10.1038/nsmb.1959 10.1128/MCB.24.24.10505-10514.2004 10.1016/j.bbadis.2008.09.017 10.1016/j.molcel.2014.12.004 10.1016/j.molcel.2014.04.016 10.1038/nrg3049 10.1093/nar/gku1063 10.1093/bioinformatics/btg388 10.1186/gb-2014-15-1-r16 10.1128/jvi.65.12.6645-6653.1991 10.1038/nn.2779 10.1186/1471-2164-12-90 10.1093/bioinformatics/btm591 10.1073/pnas.0909910107 10.1126/science.1254806 10.1101/gad.190173.112 10.1261/rna.1069408 10.1261/rna.030767.111 10.1093/bioinformatics/btr276 10.1016/j.tibs.2009.10.004 10.1371/journal.pgen.0030204 10.1186/s13059-014-0560-6 10.1186/gb-2005-6-9-r75 10.1038/nature12946 10.1038/nature09322 10.1093/molbev/msl111 10.1038/nbt1404 10.1093/nar/gku1177 10.1126/science.1261909 |
| ContentType | Journal Article |
| Copyright | Kawaguchi and Kiryu. 2016 COPYRIGHT 2016 BioMed Central Ltd. Copyright BioMed Central 2016 |
| Copyright_xml | – notice: Kawaguchi and Kiryu. 2016 – notice: COPYRIGHT 2016 BioMed Central Ltd. – notice: Copyright BioMed Central 2016 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1186/s12859-016-1067-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection (ProQuest) ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| ExternalDocumentID | PMC4858847 4090658281 A451645165 27153986 10_1186_s12859_016_1067_9 |
| Genre | Journal Article |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GrantInformation_xml | – fundername: JSPS KAKENHI grantid: 22240031; 14J00402; 25870190; 25134701; 15H01465 – fundername: ; grantid: 22240031; 14J00402; 25870190; 25134701; 15H01465 |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c637t-45e285e521296226256e3d0f63ee4f66d889d56bc9134a4d1602ad3a80e306ac3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375848300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Tue Nov 04 01:51:57 EST 2025 Wed Oct 01 17:14:38 EDT 2025 Mon Oct 06 18:36:55 EDT 2025 Tue Nov 11 10:56:59 EST 2025 Tue Nov 04 18:19:43 EST 2025 Thu Nov 13 16:43:05 EST 2025 Thu Apr 03 07:09:30 EDT 2025 Sat Nov 29 05:39:59 EST 2025 Tue Nov 18 22:22:07 EST 2025 Sat Sep 06 07:21:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Parallel computation Intron Splicing RNA secondary structure prediction PARS |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c637t-45e285e521296226256e3d0f63ee4f66d889d56bc9134a4d1602ad3a80e306ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/1797309406?pq-origsite=%requestingapplication% |
| PMID | 27153986 |
| PQID | 1797309406 |
| PQPubID | 44065 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4858847 proquest_miscellaneous_1787935963 proquest_journals_1797309406 gale_infotracmisc_A451645165 gale_infotracacademiconefile_A451645165 gale_incontextgauss_ISR_A451645165 pubmed_primary_27153986 crossref_citationtrail_10_1186_s12859_016_1067_9 crossref_primary_10_1186_s12859_016_1067_9 springer_journals_10_1186_s12859_016_1067_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-06 |
| PublicationDateYYYYMMDD | 2016-05-06 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | BMC series – open, inclusive and trusted |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2016 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | O Gahura (1067_CR11) 2011; 39 Y Wan (1067_CR37) 2014; 505 Y Yang (1067_CR14) 2011; 18 J Tazi (1067_CR7) 2009; 1792 NA Faustino (1067_CR3) 2003; 17 K Sawicka (1067_CR43) 2008; 36 H Kiryu (1067_CR34) 2011; 27 XF Wan (1067_CR27) 2006; 4 M Kertesz (1067_CR32) 2007; 39 M Lizio (1067_CR56) 2015; 16 J Zhang (1067_CR18) 2011; 12 EP Nawrocki (1067_CR36) 2015; 43 PJ Kersey (1067_CR48) 2016; 44 SA Marashi (1067_CR6) 2006; 7 M Hiller (1067_CR19) 2007; 3 Y Horesh (1067_CR28) 2009; 10 T Tuller (1067_CR49) 2010; 107 SJ Lange (1067_CR29) 2012; 40 C Zhang (1067_CR50) 2008; 105 S Baskerville (1067_CR41) 1999; 73 M Andronescu (1067_CR54) 2007; 23 IL Hofacker (1067_CR24) 2004; 20 PJ Shepard (1067_CR17) 2008; 14 DJ Patterson (1067_CR9) 2001 X Hong (1067_CR4) 2006; 23 SJ Gosai (1067_CR16) 2015; 57 M Zuker (1067_CR22) 1989; 244 DW Huang (1067_CR47) 2009; 4 E Buratti (1067_CR42) 2004; 24 CE Lane (1067_CR2) 2007; 104 KJ Doshi (1067_CR35) 2004; 5 DH Goldman (1067_CR51) 2015; 348 M Plass (1067_CR44) 2012; 18 N Lambert (1067_CR21) 2014; 54 NN Singh (1067_CR39) 2007; 35 KR Rosenbloom (1067_CR52) 2015; 43 J Chamary (1067_CR45) 2005; 6 B Hu (1067_CR57) 2015; 31 JS McCaskill (1067_CR23) 1990; 29 AC Black (1067_CR40) 1991; 65 H Tafer (1067_CR33) 2008; 26 TF Consortium (1067_CR55) 2014; 507 T Fukunaga (1067_CR30) 2014; 15 M Burset (1067_CR5) 2000; 28 M Polymenidou (1067_CR8) 2011; 14 X Roca (1067_CR13) 2012; 26 MB Warf (1067_CR46) 2010; 35 M Hamada (1067_CR31) 2009; 25 Y Wan (1067_CR12) 2011; 12 M Kertesz (1067_CR15) 2010; 467 AR Gruber (1067_CR38) 2008; 36 HY Xiong (1067_CR10) 2015; 347 KD Pruitt (1067_CR53) 2014; 42 H Kiryu (1067_CR26) 2008; 24 SH Bernhart (1067_CR25) 2006; 22 AR Kornblihtt (1067_CR20) 2013; 14 JS Mattick (1067_CR1) 1994; 4 16772025 - BMC Bioinformatics. 2006;7:297 21281513 - BMC Genomics. 2011;12:90 25428374 - Nucleic Acids Res. 2015 Jan;43(Database issue):D670-81 25908824 - Science. 2015 Apr 24;348(6233):457-60 25525159 - Science. 2015 Jan 9;347(6218):1254806 24837674 - Mol Cell. 2014 Jun 5;54(5):887-900 24447569 - Genome Biol. 2014;15(1):R16 22588721 - Genes Dev. 2012 May 15;26(10):1098-109 20811459 - Nature. 2010 Sep 2;467(7311):103-7 18391195 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5797-802 20133581 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3645-50 18056736 - Bioinformatics. 2008 Feb 1;24(3):367-73 15572659 - Mol Cell Biol. 2004 Dec;24(24):10505-14 17893677 - Nat Genet. 2007 Oct;39(10):1278-84 12600935 - Genes Dev. 2003 Feb 15;17(4):419-37 17646296 - Bioinformatics. 2007 Jul 1;23(13):i19-28 1695107 - Biopolymers. 1990 May-Jun;29(6-7):1105-19 16168082 - Genome Biol. 2005;6(9):R75 24476892 - Nature. 2014 Jan 30;505(7485):706-9 21850044 - Nat Rev Genet. 2011 Sep;12(9):641-55 25557549 - Mol Cell. 2015 Jan 22;57(2):376-88 7888751 - Curr Opin Genet Dev. 1994 Dec;4(6):823-31 11928478 - Pac Symp Biocomput. 2002;:223-34 22539526 - RNA. 2012 Jun;18(6):1103-15 25392425 - Nucleic Acids Res. 2015 Jan;43(Database issue):D130-7 21217700 - Nat Struct Mol Biol. 2011 Feb;18(2):159-68 22373926 - Nucleic Acids Res. 2012 Jul;40(12):5215-26 19257906 - BMC Bioinformatics. 2009;10:76 2468181 - Science. 1989 Apr 7;244(4900):48-52 24259432 - Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63 26578574 - Nucleic Acids Res. 2016 Jan 4;44(D1):D574-80 16368769 - Bioinformatics. 2006 Mar 1;22(5):614-5 14734309 - Bioinformatics. 2004 Jan 22;20(2):186-90 19959365 - Trends Biochem Sci. 2010 Mar;35(3):169-78 18020710 - PLoS Genet. 2007 Nov;3(11):e204 17099939 - J Bioinform Comput Biol. 2006 Oct;4(5):1015-31 19095700 - Bioinformatics. 2009 Feb 15;25(4):465-73 10233958 - J Virol. 1999 Jun;73(6):4962-71 18438400 - Nat Biotechnol. 2008 May;26(5):578-83 18424795 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W70-4 18631133 - Biochem Soc Trans. 2008 Aug;36(Pt 4):641-7 18992329 - Biochim Biophys Acta. 2009 Jan;1792(1):14-26 21531769 - Bioinformatics. 2011 Jul 1;27(13):1788-97 17170000 - Nucleic Acids Res. 2007;35(2):371-89 18579871 - RNA. 2008 Aug;14(8):1463-9 18077423 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19908-13 23385723 - Nat Rev Mol Cell Biol. 2013 Mar;14(3):153-65 25504850 - Bioinformatics. 2015 Apr 15;31(8):1296-7 15296519 - BMC Bioinformatics. 2004 Aug 5;5:105 1942248 - J Virol. 1991 Dec;65(12):6645-53 21358643 - Nat Neurosci. 2011 Apr;14(4):459-68 11058137 - Nucleic Acids Res. 2000 Nov 1;28(21):4364-75 25723102 - Genome Biol. 2015;16:22 16980575 - Mol Biol Evol. 2006 Dec;23(12):2392-404 24670764 - Nature. 2014 Mar 27;507(7493):462-70 19131956 - Nat Protoc. 2009;4(1):44-57 21893588 - Nucleic Acids Res. 2011 Dec;39(22):9759-67 |
| References_xml | – volume: 4 start-page: 823 issue: 6 year: 1994 ident: 1067_CR1 publication-title: Curr Opin Genet Dev doi: 10.1016/0959-437X(94)90066-3 – volume: 104 start-page: 19908 issue: 50 year: 2007 ident: 1067_CR2 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.0707419104 – volume: 10 start-page: 76 issue: 1 year: 2009 ident: 1067_CR28 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-76 – volume: 36 start-page: 641 issue: 4 year: 2008 ident: 1067_CR43 publication-title: Biochem Soc Trans doi: 10.1042/BST0360641 – volume: 105 start-page: 5797 issue: 15 year: 2008 ident: 1067_CR50 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.0801692105 – volume: 25 start-page: 465 issue: 4 year: 2009 ident: 1067_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn601 – volume: 23 start-page: 19 issue: 13 year: 2007 ident: 1067_CR54 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm223 – volume: 507 start-page: 462 issue: 7493 year: 2014 ident: 1067_CR55 publication-title: Nature doi: 10.1038/nature13182 – volume: 4 start-page: 1015 issue: 05 year: 2006 ident: 1067_CR27 publication-title: J Bioinformatics Comput Biol doi: 10.1142/S0219720006002363 – volume: 42 start-page: 756 issue: D1 year: 2014 ident: 1067_CR53 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1114 – volume: 36 start-page: 70 issue: suppl 2 year: 2008 ident: 1067_CR38 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn188 – volume: 5 start-page: 1 issue: 1 year: 2004 ident: 1067_CR35 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-105 – volume: 244 start-page: 48 issue: 4900 year: 1989 ident: 1067_CR22 publication-title: Science doi: 10.1126/science.2468181 – volume: 44 start-page: 574 issue: D1 year: 2016 ident: 1067_CR48 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1209 – volume: 4 start-page: 44 issue: 1 year: 2009 ident: 1067_CR47 publication-title: Nat Protoc doi: 10.1038/nprot.2008.211 – volume: 40 start-page: 5215 issue: 12 year: 2012 ident: 1067_CR29 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks181 – volume: 39 start-page: 1278 issue: 10 year: 2007 ident: 1067_CR32 publication-title: Nat Genet doi: 10.1038/ng2135 – volume: 29 start-page: 1105 issue: 6–7 year: 1990 ident: 1067_CR23 publication-title: Biopolymers doi: 10.1002/bip.360290621 – volume: 7 start-page: 297 issue: 1 year: 2006 ident: 1067_CR6 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-297 – volume: 31 start-page: 1296 issue: 8 year: 2015 ident: 1067_CR57 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu817 – volume: 73 start-page: 4962 issue: 6 year: 1999 ident: 1067_CR41 publication-title: J Virol doi: 10.1128/JVI.73.6.4962-4971.1999 – volume: 39 start-page: 9759 issue: 22 year: 2011 ident: 1067_CR11 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr662 – volume: 28 start-page: 4364 issue: 21 year: 2000 ident: 1067_CR5 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.21.4364 – volume: 17 start-page: 419 issue: 4 year: 2003 ident: 1067_CR3 publication-title: Genes Dev doi: 10.1101/gad.1048803 – volume: 14 start-page: 153 issue: 3 year: 2013 ident: 1067_CR20 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3525 – volume-title: Pacific Symposium on Biocomputing year: 2001 ident: 1067_CR9 – volume: 35 start-page: 371 issue: 2 year: 2007 ident: 1067_CR39 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl1050 – volume: 22 start-page: 614 issue: 5 year: 2006 ident: 1067_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btk014 – volume: 18 start-page: 159 issue: 2 year: 2011 ident: 1067_CR14 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1959 – volume: 24 start-page: 10505 issue: 24 year: 2004 ident: 1067_CR42 publication-title: Mol Cellular Biol doi: 10.1128/MCB.24.24.10505-10514.2004 – volume: 1792 start-page: 14 issue: 1 year: 2009 ident: 1067_CR7 publication-title: Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease doi: 10.1016/j.bbadis.2008.09.017 – volume: 57 start-page: 376 issue: 2 year: 2015 ident: 1067_CR16 publication-title: Mol Cell doi: 10.1016/j.molcel.2014.12.004 – volume: 54 start-page: 887 issue: 5 year: 2014 ident: 1067_CR21 publication-title: Mol Cell doi: 10.1016/j.molcel.2014.04.016 – volume: 12 start-page: 641 issue: 9 year: 2011 ident: 1067_CR12 publication-title: Nat Rev Genet doi: 10.1038/nrg3049 – volume: 43 start-page: D130 issue: D1 year: 2015 ident: 1067_CR36 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1063 – volume: 20 start-page: 186 issue: 2 year: 2004 ident: 1067_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg388 – volume: 15 start-page: 16 issue: 1 year: 2014 ident: 1067_CR30 publication-title: Genome Biol doi: 10.1186/gb-2014-15-1-r16 – volume: 65 start-page: 6645 issue: 12 year: 1991 ident: 1067_CR40 publication-title: J Virol doi: 10.1128/jvi.65.12.6645-6653.1991 – volume: 14 start-page: 459 issue: 4 year: 2011 ident: 1067_CR8 publication-title: Nat Neurosci doi: 10.1038/nn.2779 – volume: 12 start-page: 90 issue: 1 year: 2011 ident: 1067_CR18 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-90 – volume: 24 start-page: 367 issue: 3 year: 2008 ident: 1067_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm591 – volume: 107 start-page: 3645 issue: 8 year: 2010 ident: 1067_CR49 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.0909910107 – volume: 347 start-page: 1254806 issue: 6218 year: 2015 ident: 1067_CR10 publication-title: Science doi: 10.1126/science.1254806 – volume: 26 start-page: 1098 issue: 10 year: 2012 ident: 1067_CR13 publication-title: Genes Dev doi: 10.1101/gad.190173.112 – volume: 14 start-page: 1463 issue: 8 year: 2008 ident: 1067_CR17 publication-title: RNA doi: 10.1261/rna.1069408 – volume: 18 start-page: 1103 issue: 6 year: 2012 ident: 1067_CR44 publication-title: RNA doi: 10.1261/rna.030767.111 – volume: 27 start-page: 1788 issue: 13 year: 2011 ident: 1067_CR34 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr276 – volume: 35 start-page: 169 issue: 3 year: 2010 ident: 1067_CR46 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2009.10.004 – volume: 3 start-page: 204 issue: 11 year: 2007 ident: 1067_CR19 publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030204 – volume: 16 start-page: 1 issue: 1 year: 2015 ident: 1067_CR56 publication-title: Genome Biol doi: 10.1186/s13059-014-0560-6 – volume: 6 start-page: 75 issue: 9 year: 2005 ident: 1067_CR45 publication-title: Genome Biol doi: 10.1186/gb-2005-6-9-r75 – volume: 505 start-page: 706 issue: 7485 year: 2014 ident: 1067_CR37 publication-title: Nature doi: 10.1038/nature12946 – volume: 467 start-page: 103 issue: 7311 year: 2010 ident: 1067_CR15 publication-title: Nature doi: 10.1038/nature09322 – volume: 23 start-page: 2392 issue: 12 year: 2006 ident: 1067_CR4 publication-title: Mol Biol Evol doi: 10.1093/molbev/msl111 – volume: 26 start-page: 578 issue: 5 year: 2008 ident: 1067_CR33 publication-title: Nat Biotechnol doi: 10.1038/nbt1404 – volume: 43 start-page: 670 issue: D1 year: 2015 ident: 1067_CR52 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1177 – volume: 348 start-page: 457 issue: 6233 year: 2015 ident: 1067_CR51 publication-title: Science doi: 10.1126/science.1261909 – reference: 11928478 - Pac Symp Biocomput. 2002;:223-34 – reference: 25525159 - Science. 2015 Jan 9;347(6218):1254806 – reference: 21893588 - Nucleic Acids Res. 2011 Dec;39(22):9759-67 – reference: 20811459 - Nature. 2010 Sep 2;467(7311):103-7 – reference: 16980575 - Mol Biol Evol. 2006 Dec;23(12):2392-404 – reference: 18391195 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5797-802 – reference: 18020710 - PLoS Genet. 2007 Nov;3(11):e204 – reference: 20133581 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3645-50 – reference: 21217700 - Nat Struct Mol Biol. 2011 Feb;18(2):159-68 – reference: 22539526 - RNA. 2012 Jun;18(6):1103-15 – reference: 25428374 - Nucleic Acids Res. 2015 Jan;43(Database issue):D670-81 – reference: 18631133 - Biochem Soc Trans. 2008 Aug;36(Pt 4):641-7 – reference: 24476892 - Nature. 2014 Jan 30;505(7485):706-9 – reference: 18056736 - Bioinformatics. 2008 Feb 1;24(3):367-73 – reference: 25504850 - Bioinformatics. 2015 Apr 15;31(8):1296-7 – reference: 25557549 - Mol Cell. 2015 Jan 22;57(2):376-88 – reference: 15572659 - Mol Cell Biol. 2004 Dec;24(24):10505-14 – reference: 21531769 - Bioinformatics. 2011 Jul 1;27(13):1788-97 – reference: 19257906 - BMC Bioinformatics. 2009;10:76 – reference: 1942248 - J Virol. 1991 Dec;65(12):6645-53 – reference: 25723102 - Genome Biol. 2015;16:22 – reference: 24837674 - Mol Cell. 2014 Jun 5;54(5):887-900 – reference: 24259432 - Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63 – reference: 16168082 - Genome Biol. 2005;6(9):R75 – reference: 15296519 - BMC Bioinformatics. 2004 Aug 5;5:105 – reference: 1695107 - Biopolymers. 1990 May-Jun;29(6-7):1105-19 – reference: 19131956 - Nat Protoc. 2009;4(1):44-57 – reference: 21850044 - Nat Rev Genet. 2011 Sep;12(9):641-55 – reference: 26578574 - Nucleic Acids Res. 2016 Jan 4;44(D1):D574-80 – reference: 7888751 - Curr Opin Genet Dev. 1994 Dec;4(6):823-31 – reference: 19095700 - Bioinformatics. 2009 Feb 15;25(4):465-73 – reference: 17893677 - Nat Genet. 2007 Oct;39(10):1278-84 – reference: 17099939 - J Bioinform Comput Biol. 2006 Oct;4(5):1015-31 – reference: 18438400 - Nat Biotechnol. 2008 May;26(5):578-83 – reference: 25908824 - Science. 2015 Apr 24;348(6233):457-60 – reference: 22588721 - Genes Dev. 2012 May 15;26(10):1098-109 – reference: 2468181 - Science. 1989 Apr 7;244(4900):48-52 – reference: 21358643 - Nat Neurosci. 2011 Apr;14(4):459-68 – reference: 18077423 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19908-13 – reference: 21281513 - BMC Genomics. 2011;12:90 – reference: 19959365 - Trends Biochem Sci. 2010 Mar;35(3):169-78 – reference: 25392425 - Nucleic Acids Res. 2015 Jan;43(Database issue):D130-7 – reference: 11058137 - Nucleic Acids Res. 2000 Nov 1;28(21):4364-75 – reference: 16772025 - BMC Bioinformatics. 2006;7:297 – reference: 22373926 - Nucleic Acids Res. 2012 Jul;40(12):5215-26 – reference: 12600935 - Genes Dev. 2003 Feb 15;17(4):419-37 – reference: 14734309 - Bioinformatics. 2004 Jan 22;20(2):186-90 – reference: 23385723 - Nat Rev Mol Cell Biol. 2013 Mar;14(3):153-65 – reference: 24670764 - Nature. 2014 Mar 27;507(7493):462-70 – reference: 10233958 - J Virol. 1999 Jun;73(6):4962-71 – reference: 18992329 - Biochim Biophys Acta. 2009 Jan;1792(1):14-26 – reference: 17170000 - Nucleic Acids Res. 2007;35(2):371-89 – reference: 18579871 - RNA. 2008 Aug;14(8):1463-9 – reference: 18424795 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W70-4 – reference: 16368769 - Bioinformatics. 2006 Mar 1;22(5):614-5 – reference: 17646296 - Bioinformatics. 2007 Jul 1;23(13):i19-28 – reference: 24447569 - Genome Biol. 2014;15(1):R16 |
| SSID | ssj0017805 |
| Score | 2.3148909 |
| Snippet | Background
RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the... RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural... Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 203 |
| SubjectTerms | Algorithms Animals Area Under Curve Base Sequence Bioinformatics Biomedical and Life Sciences Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer Simulation Gene expression Gene Ontology Genome, Human Human genome Humans Life Sciences Methodology Methodology Article Mice Microarrays Microfilament Proteins - metabolism Nucleic Acid Conformation Physiological aspects Propensity Score Reproducibility of Results RNA RNA - chemistry RNA - genetics RNA Precursors - genetics RNA Precursors - metabolism RNA Splicing - genetics RNA, Messenger - genetics RNA, Messenger - metabolism Sequence analysis (methods) Software Structure Transcription, Genetic |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_0VPDFb73qKVEEQQm2m26aPC7ioSDLsadybyGbpOfCXSvb3YP7751JP7guKuhDX5pJmiaTmQkz8xuA15Nc-mWWOe5V6nkubcq1Sx0PpVDST0tUshFn9ksxn6uTE33U5XE3fbR775KMkjoeayXfNxlhreHVV3KCPeP6OtxAbaeoXsPi-PvgOiCQ_s59-dtuIwW0K4av6KHdGMkdR2nUP4d3_2vm9-BOZ26yWcsf9-FaqB7ArbYA5eVDOD-yayqmcsZcrO4Qt4nVJSPo1vPAG9zBwBbzGWvo4uzt-pK1iLPbdWCbmvlATojhnaWBCJPWrqpNw3CsWAOwG-4RfDv8-PXDJ94VYOBOimLD82nAmQdK79US7TQ0j4LwaSlFCHkppVdK-6lcOnLf29xnMp1YL6xKA95ErBOPYa-qq7APbCmckrottp6H1C5LVI1aZJnIlhqtzATSfleM69DJabJnJt5SlDTtKhqKSKNVNDqBt0OXny00x9-IX9FWG4K8qCim5tRum8Z8Pl6YGdUqpmeawJuOqKzx4852KQr4C4SSNaI8GFHimXTj5p6jTCcTGoOiD8WpRgsqgZdDM_WkOLcq1FuiUQXlSkuRwJOWAYd_mxSonbTC3sWINQcCQgoft1SrHxExPFeUj1wk8K5n0CvT-tOSPf0n6mdwe0IcTrGg8gD2kO_Cc7jpLjarZv0iHtFfe8A3Bw priority: 102 providerName: Springer Nature |
| Title | Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome |
| URI | https://link.springer.com/article/10.1186/s12859-016-1067-9 https://www.ncbi.nlm.nih.gov/pubmed/27153986 https://www.proquest.com/docview/1797309406 https://www.proquest.com/docview/1787935963 https://pubmed.ncbi.nlm.nih.gov/PMC4858847 |
| Volume | 17 |
| WOSCitedRecordID | wos000375848300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvfMMCozIICQlkLWlSx35CBW1iAqqoA1T2Ejm2wyptyWhapP333DluWCqxFx5iKfHZiXNnn-07_46QV8OEmyKKNDMiNCzhKmRSh5rZMhbcjEpQsg5n9nM6mYjZTGZ-w63xbpXrMdEN1KbWuEe-D4IDwihB_7y7-MUwahRaV30IjS2ygygJQ-e6l3VWBMTr95bMSPD9JkK0Nlg8c4bAaUz2dNHmiHxFJW26S27YTJ0qOrz7v424R-74SSgdt1Jzn9yw1QNyqw1LefmQnGdqgSFWzqh2MR8c82hdUgR0PbesAb5aOp2MaYPLaaMWl7TFoV0tLF3W1Fg0TXTPFFaESLVqXi0bCnW5yIC-ukfk2-HB1w8fmQ_LwDSP0yVLRhb-o8VDv5LD7A0mTTY2Yclja5OScyOENCNeaDTqq8REPBwqEysRWlifKB0_JttVXdldQotYCy7bEOyJDVVRgsKUcRTFUSFh7hmQcM2gXHvMcvzYs9ytXQTPW57m6KeGPM1lQN50RS5awI7riF8i13MEwqjQ0-anWjVNfnQ8zccYwRivUUBee6Kyhpdr5Q8uQBMQO6tHudejhJ6q-9lrqcj9SNHkf0UiIC-6bCyJ3m-VrVdII1I8Qc3jgDxpZbFr2zAFnSUFlE57UtoRIH54P6eanzoc8UTgKeU0IG_X8nzls_71y55e34hn5PYQOxi6hPI9sg2CZp-Tm_r3ct4sBmQrnaUuFQOy8_5gkk0HbhcE0k8pG7juC2k2OoH87OhL9gPupsff_wClJUpu |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggEEgJJDVJE4c54DQCqi62mVVlVbqzXhtB1Zqk7LZBe2f4jfiyYtmJXrrgcNe4rE3Tr7xjDPjbwBehhE30yDQ1Ajf0Igrn6ba19RmTHATZ87IVjyz42QyEUdH6d4G_G7PwmBaZbsmVgu1KTR-I992wHFgTJ39eX_6g2LVKIyutiU0aliM7OqX27KV74Yf3ft9FYY7nw4-7NKmqgDVnCULGsU2FLHFM6spd86Hs_mWGT_jzNoo49wIkZqYTzXGpFVkAu6HyjAlfOvca6WZG_cSXI6YSFCvRgntohZYH6CJnAaCb5cBssO5zTqnSNRG057tW7cAZ0zgenrmWoy2Mn07N_-3h3YLbjRONhnUWnEbNmx-B67WZTdXd-FkT82xhMwx0VVNiwqcpMgIEtaeWFo63FqyPxmQEj8XGDVfkZpndzm3ZFEQYzH00l1TOBAy8apZviiJG6uqfNgMdw8OL2Su92EzL3L7EMiUacHTusR8ZH01zZxDkLIgYME0db61B34LCKkbTna82WNZ7c0ElzWGJObhIYZk6sGbrstpTUhynvALRJlEoo8cM4m-qWVZyuGXfTnACs34iz143QhlhftzrZqDGW4KyA3Wk9zqSbqVSPebWxTKZiUs5V8IevC8a8aemN2X22KJMiLBE-KcefCgxn43tzBxNjkVrnfS04pOAPnR-y357HvFkx4JPIWdePC21Z8zt_WvR_bo_Ek8g2u7B5_HcjycjB7D9RCVG9Nf-RZsOtDZJ3BF_1zMyvnTamkg8PWi1eoPc7qbmA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0_MAXvz-qp0YRhJNw7aabJo-Lunh4LMudyr2FNEl14a49tl3h_nszbVquiwriw740k2w-JpkZZuY3AG8mKbd5khhqRWxpynVMpYkNdQUT3E4LL2RbnNnDbLEQJydyGeqc1n20e--S7HIaEKWpbPbPbdFdccH36wRx17wZzClCoFF5Fa6lGEeP5vrxt8GNgID9wZX5224jYbT9JF-SSdvxkltO01YWze_89yruwu2ghpJZxzf34Ior78ONrjDlxQM4W-o1Flk5Jaat-tAeH6kKgpCuZ47W_mQdOVrMSI0GtdXrC9Ih0W7WjjQVsQ6dE8M3jQMhVq1elU1N_FhtbcAw3EP4Ov_45f0nGgozUMNZ1tB06vzMHab9Su71N682OWbjgjPn0oJzK4S0U54bdOvr1CY8nmjLtIidt1C0YY9gp6xK9wRIzozgsivCnrpY54UXmZIlCUty6bXPCOL-hJQJqOU42VPVWi-Cq24XFUaq4S4qGcHe0OW8g-z4G_FrPHaFUBglxtp815u6VgfHR2qGNYzxN43gbSAqKv_nRofUBb8ERM8aUe6OKP1dNePmnrtUeCtq5Z9E_8xKr1lF8Gpoxp4Y_1a6aoM0IsMcas4ieNwx47C2SeallhS-dzZi04EAEcTHLeXqR4skngrMU84ieNcz66Vp_WnLnv4T9Uu4ufwwV4cHi8_P4NYEmR3DRfku7HgWdM_huvnZrOr1i_bm_gKrbkLP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+computation+of+genome-scale+RNA+secondary+structure+to+detect+structural+constraints+on+human+genome&rft.jtitle=BMC+bioinformatics&rft.au=Kawaguchi%2C+Risa&rft.au=Kiryu%2C+Hisanori&rft.date=2016-05-06&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=17&rft_id=info:doi/10.1186%2Fs12859-016-1067-9&rft.externalDocID=4090658281 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |