Discovering large conserved functional components in global network alignment by graph matching

Background Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics Vol. 19; no. Suppl 7; pp. 670 - 58
Main Authors: Zhu, Yuanyuan, Li, Yuezhi, Liu, Juan, Qin, Lu, Yu, Jeffrey Xu
Format: Journal Article
Language:English
Published: London BioMed Central 24.09.2018
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:1471-2164, 1471-2164
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Aligning protein-protein interaction (PPI) networks is very important to discover the functionally conserved sub-structures between different species. In recent years, the global PPI network alignment problem has been extensively studied aiming at finding the one-to-one alignment with the maximum matching score. However, finding large conserved components remains challenging due to its NP-hardness. Results We propose a new graph matching method GMAlign for global PPI network alignment. It first selects some pairs of important proteins as seeds, followed by a gradual expansion to obtain an initial matching, and then it refines the current result to obtain an optimal alignment result iteratively based on the vertex cover. We compare GMAlign with the state-of-the-art methods on the PPI network pairs obtained from the largest BioGRID dataset and validate its performance. The results show that our algorithm can produce larger size of alignment, and can find bigger and denser common connected subgraphs as well for the first time. Meanwhile, GMAlign can achieve high quality biological results, as measured by functional consistency and semantic similarity of the Gene Ontology terms. Moreover, we also show that GMAlign can achieve better results which are structurally and biologically meaningful in the detection of large conserved biological pathways between species. Conclusions GMAlign is a novel global network alignment tool to discover large conserved functional components between PPI networks. It also has many potential biological applications such as conserved pathway and protein complex discovery across species. The GMAlign software and datasets are avaialbile at https://github.com/yzlwhu/GMAlign .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-018-5027-9