Manhattan Harvester and Cropper: a system for GWAS peak detection

Background Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 20; číslo 1; s. 22 - 8
Hlavní autori: Haller, Toomas, Tasa, Tõnis, Metspalu, Andres
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 11.01.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study. Results We developed Manhattan Harvester, a tool designed for “peak extraction” from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester. Conclusions We conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available.
AbstractList Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study. We developed Manhattan Harvester, a tool designed for "peak extraction" from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester. We conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available.
Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study. We developed Manhattan Harvester, a tool designed for "peak extraction" from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester. We conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available.
Abstract Background Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study. Results We developed Manhattan Harvester, a tool designed for “peak extraction” from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester. Conclusions We conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available.
Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study.BACKGROUNDSelection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study.We developed Manhattan Harvester, a tool designed for "peak extraction" from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester.RESULTSWe developed Manhattan Harvester, a tool designed for "peak extraction" from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester.We conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available.CONCLUSIONSWe conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available.
Background Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study. Results We developed Manhattan Harvester, a tool designed for “peak extraction” from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester. Conclusions We conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available.
Background Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study. Results We developed Manhattan Harvester, a tool designed for “peak extraction” from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester. Conclusions We conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available.
Background Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study. Results We developed Manhattan Harvester, a tool designed for "peak extraction" from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester. Conclusions We conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available. Keywords: GWAS, Manhattan plots, Peak detection, Peak quality score, Software
ArticleNumber 22
Audience Academic
Author Tasa, Tõnis
Haller, Toomas
Metspalu, Andres
Author_xml – sequence: 1
  givenname: Toomas
  orcidid: 0000-0002-5069-6523
  surname: Haller
  fullname: Haller, Toomas
  email: Toomas.Haller@ut.ee
  organization: Estonian Genome Center, Institute of Genomics, University of Tartu
– sequence: 2
  givenname: Tõnis
  surname: Tasa
  fullname: Tasa, Tõnis
  organization: Institute of Computer Science, University of Tartu
– sequence: 3
  givenname: Andres
  surname: Metspalu
  fullname: Metspalu, Andres
  organization: Estonian Genome Center, Institute of Genomics, University of Tartu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30634901$$D View this record in MEDLINE/PubMed
BookMark eNp9kl9v0zAUxSM0xP7AB-AFReIFHjLutR3H4QGpqthWaQiJgXi03MTuXFK72O7Evv0cOrZ1AuSHWCe_c2xfncNiz3mni-IlwjGi4O8iElG3FWBbEQ5QsSfFAbIGK4JQ7z3Y7xeHMS4BsBFQPyv2KXDKWsCDYvJJuUuVknLlmQpXOiYdSuX6chr8eq3D-1KV8Tqrq9L4UJ5-n1yUa61-lL1OukvWu-fFU6OGqF_cfo-Kbycfv07PqvPPp7Pp5LzqOG1SRQRomOcL9TwLirQUDOu5wJZQPgdjgAlAaFpTc02RGKHNCCGylmJn6FEx2-b2Xi3lOtiVCtfSKyt_Cz4spArJdoOWFJjBnjAAUjNiWsEwK4wR3hA0Ysz6sM1ab-Yr3XfapaCGndDdP85eyoW_kpxSoC3NAW9uA4L_uclTkysbOz0Mymm_iZJg01JWAxvR14_Qpd8El0eVKS5YTbCGe2qh8gOsMz6f242hclILZMAY1pk6_guVV69XtsvlMDbrO4a3O4bMJP0rLdQmRjm7-LLLvno4lLtp_ClLBnALdMHHGLS5QxDkWEi5LaTMhZRjISXLnuaRp7NJjb3JN7fDf51k64z5FLfQ4X5u_zbdAHwh7QM
CitedBy_id crossref_primary_10_1038_s41467_025_58465_3
crossref_primary_10_1038_s41588_024_01964_8
crossref_primary_10_1534_g3_119_400452
crossref_primary_10_3390_pathogens10121604
crossref_primary_10_1186_s13059_022_02742_7
crossref_primary_10_1016_j_indcrop_2025_120873
Cites_doi 10.1371/journal.pbio.2005485
10.1038/nn.4404
10.1016/j.ajhg.2017.06.005
10.1038/ncomms11122
10.1007/s10742-016-0145-9
10.1093/bib/bbt066
10.1186/1471-2105-11-288
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-019-2600-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 8
ExternalDocumentID oai_doaj_org_article_304f1d24002542f984104f4426721f8f
PMC6330393
A581404415
30634901
10_1186_s12859_019_2600_4
Genre Journal Article
GeographicLocations Estonia
GeographicLocations_xml – name: Estonia
GrantInformation_xml – fundername: US National Institute of Health
  grantid: R01DK075787
– fundername: EU H2020 grant
  grantid: 633589
– fundername: EU H2020 grant ePerMed
  grantid: 692145
– fundername: Estonian Government
  grantid: IUT20-60
– fundername: Estonian Center of Genomics/Roadmap II
  grantid: 2014-2020.4.01.16-0125
– fundername: European Regional Development Fund
  grantid: 2014-2020.4.01.15-0012
– fundername: ;
  grantid: IUT20-60
– fundername: ;
  grantid: 692145
– fundername: ;
  grantid: 2014-2020.4.01.15-0012
– fundername: ;
  grantid: 633589
– fundername: ;
  grantid: 2014-2020.4.01.16-0125
– fundername: ;
  grantid: R01DK075787
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c637t-280e0b471d6c63a2930f4d6819236b0ff04801079f56e312f8ef2930114931cf3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455456600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:50:53 EDT 2025
Tue Nov 04 01:57:50 EST 2025
Sun Nov 09 10:07:51 EST 2025
Mon Oct 06 18:39:29 EDT 2025
Tue Nov 11 10:57:49 EST 2025
Tue Nov 04 18:15:29 EST 2025
Thu Nov 13 16:37:25 EST 2025
Thu Apr 03 07:12:13 EDT 2025
Sat Nov 29 05:40:03 EST 2025
Tue Nov 18 21:15:46 EST 2025
Sat Sep 06 07:27:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Peak detection
Software
GWAS
Peak quality score
Manhattan plots
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-280e0b471d6c63a2930f4d6819236b0ff04801079f56e312f8ef2930114931cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5069-6523
OpenAccessLink https://doaj.org/article/304f1d24002542f984104f4426721f8f
PMID 30634901
PQID 2168452150
PQPubID 44065
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_304f1d24002542f984104f4426721f8f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6330393
proquest_miscellaneous_2179345043
proquest_journals_2168452150
gale_infotracmisc_A581404415
gale_infotracacademiconefile_A581404415
gale_incontextgauss_ISR_A581404415
pubmed_primary_30634901
crossref_primary_10_1186_s12859_019_2600_4
crossref_citationtrail_10_1186_s12859_019_2600_4
springer_journals_10_1186_s12859_019_2600_4
PublicationCentury 2000
PublicationDate 2019-01-11
PublicationDateYYYYMMDD 2019-01-11
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-11
  day: 11
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 2600_CR12
D Hedeker (2600_CR11) 2016; 16
2600_CR6
PM Visscher (2600_CR2) 2017; 101
A Ganna (2600_CR3) 2016; 19
2600_CR7
R Mägi (2600_CR10) 2010; 11
G Gibson (2600_CR1) 2018; 16
2600_CR9
J Kettunen (2600_CR8) 2016; 7
2600_CR4
T Haller (2600_CR5) 2015; 16
References_xml – volume: 16
  start-page: e2005485
  issue: 3
  year: 2018
  ident: 2600_CR1
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2005485
– ident: 2600_CR6
– volume: 19
  start-page: 1563
  issue: 12
  year: 2016
  ident: 2600_CR3
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4404
– volume: 101
  start-page: 5
  issue: 1
  year: 2017
  ident: 2600_CR2
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2017.06.005
– ident: 2600_CR7
– ident: 2600_CR4
– volume: 7
  start-page: 11122
  year: 2016
  ident: 2600_CR8
  publication-title: Nat Commun
  doi: 10.1038/ncomms11122
– volume: 16
  start-page: 117
  issue: 3
  year: 2016
  ident: 2600_CR11
  publication-title: Health Serv Outcomes Res Methodol
  doi: 10.1007/s10742-016-0145-9
– volume: 16
  start-page: 39
  issue: 1
  year: 2015
  ident: 2600_CR5
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbt066
– volume: 11
  start-page: 288
  year: 2010
  ident: 2600_CR10
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-288
– ident: 2600_CR9
– ident: 2600_CR12
SSID ssj0017805
Score 2.3142354
Snippet Background Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no...
Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer...
Background Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no...
Abstract Background Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer programs
Genome-wide association studies
Genomes
GWAS
Harvesters
Harvesting
Inspection
Life Sciences
Manhattan plots
Microarrays
Parameters
Peak detection
Peak quality score
Phenotypes
Regression analysis
Researchers
Results and data
Science
Software
Technology application
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFA86FXzxW1edEkUQlLCkyU1TX-Q6nIo4xCnuLbRpsg1He73tFfzvPafN7ezEvfjSh-QUmuSX85Gc_g4hT_PSKaczyTSvcqY096zUOTxkJbNZ6aRRQ7GJbG_PHBzkn-KBWxvTKtc6sVfUVePwjHw7FdoosDUz_mrxg2HVKLxdjSU0LpJLIk0F4vxDxsZbBOTrjzeZwujtViBbGwTPOUNadqYmtqin7P9bMf9hmc5mTZ65Ou0t0u71_x3LDXIt-qJ0PoDnJrng61vkylCd8tdtMv9Y1EdFB94jxQpCPaUCLeqK7iybxcIvX9KCDkTQFDxf-vbbfJ8ufPGdVr7rE7zqO-Tr7psvO-9YrLjAnJZZx1LDPS_BXlUaGgpwBXhQlUbSNKlLHkLPNsOzPMy0lyINxgcUgqAql8IFeZds1E3tNwktdQmRoMmMLMELyEQpncpNxVPvg5alTwhfz711kY4cq2Kc2D4sMdoOy2VhuSwul1UJeT6-shi4OM4Tfo0LOgoijXbf0CwPbdyVVnIVRIVptBAnpyEHYEKLAq8FAuNgQkKeIBwsEmXUmIlzWKza1r7f_2znM-QKw2g0Ic-iUGhgBK6IPzbAPCC31kRyayIJO9lNu9dwsVGTtPYUKwl5PHbjm5gdV_tmhTKgZRVy0SXk3gDScdwQEkoFTl9Csgl8JxMz7amPj3qecS0l_rmdkBdroJ9-1j_n_f75g3hArqa4AblgQmyRjW658g_JZfezO26Xj_rt-xu26UYI
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BAYkX7iNQkEFISKAIJ_Y6Dm9LRYEHKtTl6JuVw26rVskqySLx75lxDkg5JHjZB3ssrSdzasbfADxJ80IWKhGh4mUaSsVtmKsUf0QpkkVeCC37YRPJ3p4-OEg_DO-427HbfSxJekvt1VqrF21EWGuY-qYhgaqH8jxcQG-nSRv3V5-n0gGB9A_ly98emzkgj9P_qzX-yR2dbZU8Uy_1bmj36n9d4BpcGaJOtuzF5Dqcs9UNuNTPofx2E5bvs-oo6zBOZDQryIMnsKwq2U5Tr9e2ecky1kM-M4xx2ZsvyxVb2-yElbbzrVzVLfi0-_rjzttwmK0QFkokXRhrbnmOnqlUuJCh0-dOlorg0YTKuXMeV4YnqVsoK6LYaeuICNOnVESFE7dhq6orexdYrnLM-XSiRY7-PolyUchUlzy21imR2wD4yHBTDMDjNP_i1PgERCvTc8YgZwxxxsgAnk1H1j3qxt-IX9FXnAgJMNsv1M2hGfTPCC5dVFLDLGbEsUtRBHFFYnyCKbDTLoDHJAOGIDEq6rk5zDZta96t9s1yQahglHcG8HQgcjXeoMiGJwzIB0LRmlFuzyhRZ4v59ihqZrAZrYkjpSVGUwsewKNpm05SH1xl6w3RoD2VhDoXwJ1eMqd7Y_InJIZ3ASQzmZ0xZr5THR95RHElBL3RDuD5KLk__tYf-X7vn6jvw-WYRJ9HYRRtw1bXbOwDuFh87Y7b5qFX4e8GKzv2
  priority: 102
  providerName: Springer Nature
Title Manhattan Harvester and Cropper: a system for GWAS peak detection
URI https://link.springer.com/article/10.1186/s12859-019-2600-4
https://www.ncbi.nlm.nih.gov/pubmed/30634901
https://www.proquest.com/docview/2168452150
https://www.proquest.com/docview/2179345043
https://pubmed.ncbi.nlm.nih.gov/PMC6330393
https://doaj.org/article/304f1d24002542f984104f4426721f8f
Volume 20
WOSCitedRecordID wos000455456600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0VPBF_LZ6LlEEQSmXNtkk9W3vuNNDbim7fqy-hH4k3qF0l-2u4H_vTNtdryfqiy-BJhNoppPM_Mj0NwDPkryQhdIiVLxMQqm4C3OVYCNKoYd5IYxsi03o8djMZkl6rtQX5YS19MCt4vYQbvuopExHhDKxT3Au9kh0LIhdvPF0-mLUswFT3f0BMfV3d5iRUXt1RDxtCJuTkAjZQ9nzQg1Z_-9H8jmfdDFf8sKlaeOLjm7CjS6IZKP25W_BJVfdhmttWckfd2B0klWn2QrDPkalfxouBJZVJTtYzhcLt3zFMtYyODMMWdnrj6MpW7jsKyvdqsnMqu7C-6PDdwdvwq5UQlgooVdhbLjjOTqaUmFHhj6ce1kqYjsTKufeNzQxXCd-qJyIYm-cJyFEQ4mICi_uwU41r9wDYLnKEcIZbUSO7ltHuShkYkoeO-eVyF0AfKM6W3Q84lTO4ptt8IRRttW2RW1b0raVAbzYTlm0JBp_E96n77EVJP7rpgOtwnZWYf9lFQE8pa9pieGiohSaL9m6ru3xdGJHQyL5IhgZwPNOyM9xBUXW_ZGAeiBSrJ7kbk8St2DRH94Yje2OgNrGkTISg6MhD-DJdphmUlpb5eZrksHjURKJXAD3WxvbrhuxnJAYrQWge9bXU0x_pDo7bQjClRD0y3UALzd2-uu1_qj3h_9D74_geky7jEdhFO3Czmq5do_havF9dVYvB3BZz3TTmgFc2T8cp5NBs2-xfavDASXeptimw884nh6fpJ_waTL98BNg9D8W
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggEEgJFBUJ_Y6DhJCS6F0te0KtUX0ZvKw2wqUXTa7oP4pfiMzeWxJEb31wCUHexzF9jzj8TcAT-M0k5mKhK94HvtSceunKsaHyEXUSzOhZV1sIhqN9N5e_HEJfrV3YSitstWJlaLOxxn9I18NA6Ul2poefzP57lPVKDpdbUto1GwxtEc_MWQrXw_e4f4-C8P197trG35TVcDPlIhmfqi55Snq5FxhQ4LmjjuZKwIGEyrlzlWIKjyKXU9ZEYROW0dEGDjEIsicwPeeg_NS6Iiw-oeRvzi1oPoAzclpoNVqGRA6HAbrsU8w8L7s2L6qRMDfhuAPS3gyS_PEUW1lAdev_m9rdw2uNL4269fCcR2WbHEDLtbVN49uQn8rKQ6SGXrHjCokVZARLClytjYdTyZ2-oolrAa6ZujZsw-f-ztsYpOvLLezKoGtuAWfzuT7b8NyMS7sXWCpSjHS1ZEWKXo5UZCKTMY656G1TonUesDbvTZZA7dOVT--mSrs0srU7GGQPQyxh5EevFgMmdRYI6cRvyUGWhASTHjVMJ7um0brGMGlC3JKEw57MnQxCh62SPTKMPB32nnwhNjPEBBIQZlG-8m8LM1gZ9v0e4SFRtG2B88bIjfGGWRJc3ED14GwwzqUKx1K1FRZt7tlT9NoytIc86YHjxfdNJKy_wo7nhMNWhFJWHse3KmFYjFvDHmFRKfWg6gjLp2F6fYUhwcVjroSgm6me_CyFazjz_rnut87fRKP4NLG7tam2RyMhvfhckjCzwM_CFZgeTad2wdwIfsxOyynDyvVweDLWcvbbwXanrY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BOcQLZwuBAgYhIYGiOrHXcXhbCgsVsKpYCn2zcthtBUpWmywS_56ZXJBySIiXfbDH0noyY8-nGX8D8ChOM5mpSPiK57EvFbd-qmL8EbmIJmkmtGybTUTzuT48jPe7PqdVX-3epyTbNw3E0lTUO8vctS6u1U4VEO8awuDYJ4J1X56Fc5J6BhFcX3wc0ghE2N-lMn-7bHQZNZz9v57MP11Np8smT-VOmytpduW_N3MVLnfRKJu25nMNztjiOlxo-1N-uwHTd0lxnNQYPzLqIdSQKrCkyNnuqlwu7eoZS1hLBc0w9mWvPk0XbGmTzyy3dVPiVWzCwezlh93Xftdzwc-UiGo_1NzyFG-sXOFAgsEAdzJXRJsmVMqda_hmeBS7ibIiCJ22joQQVsUiyJzYgo2iLOwtYKlKEQvqSIsU44AoSEUmY53z0FqnRGo94L3yTdYRklNfjC-mASZamVYzBjVjSDNGevBkWLJs2Tj-JvycvuggSETazUC5OjKdXxrBpQtyKqRFpBy6GE0TRyTGLQiNnXYePCR7MESVUVAtzlGyriqzt3hvphNiCyM86sHjTsiVuIMs6Z42oB6IXWskuT2SRF_OxtO92ZnuLKlMGCgtMcqacA8eDNO0kurjCluuSQbPWUlsdB7cbK102DeCQiEx7PMgGtnvSDHjmeLkuGEaV0LQ220PnvZW_ONv_VHvt_9J-j5c3H8xM2_35m_uwKWQvIAHfhBsw0a9Wtu7cD77Wp9Uq3uNZ38Hg1NHvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manhattan+Harvester+and+Cropper%3A+a+system+for+GWAS+peak+detection&rft.jtitle=BMC+bioinformatics&rft.au=Toomas+Haller&rft.au=T%C3%B5nis+Tasa&rft.au=Andres+Metspalu&rft.date=2019-01-11&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1186%2Fs12859-019-2600-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_304f1d24002542f984104f4426721f8f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon