A (fire)cloud-based DNA methylation data preprocessing and quality control platform

Background Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these data, including making comparisons with existing data, remains challenging due to the scale of the data and differences in preprocessing met...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 20; číslo 1; s. 160 - 5
Hlavní autori: Kangeyan, Divy, Dunford, Andrew, Iyer, Sowmya, Stewart, Chip, Hanna, Megan, Getz, Gad, Aryee, Martin J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 29.03.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these data, including making comparisons with existing data, remains challenging due to the scale of the data and differences in preprocessing methods between published datasets. Results We present a set of preprocessing pipelines for bisulfite sequencing DNA methylation data that include a new R/Bioconductor package, scmeth , for a series of efficient QC analyses of large datasets. The pipelines go from raw data to CpG-level methylation estimates and can be run, with identical results, either on a single computer, in an HPC cluster or on Google Cloud Compute resources. These pipelines are designed to allow users to 1) ensure reproducibility of analyses, 2) achieve scalability to large whole genome datasets with 100 GB+ of raw data per sample and to single-cell datasets with thousands of cells, 3) enable integration and comparison between user-provided data and publicly available data, as all samples can be processed through the same pipeline, and 4) access to best-practice analysis pipelines. Pipelines are provided for whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS) and hybrid selection (capture) bisulfite sequencing (HSBS). Conclusions The workflows produce data quality metrics, visualization tracks, and aggregated output for further downstream analysis. Optional use of cloud computing resources facilitates analysis of large datasets, and integration with existing methylome profiles. The workflow design principles are applicable to other genomic data types.
AbstractList Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these data, including making comparisons with existing data, remains challenging due to the scale of the data and differences in preprocessing methods between published datasets. We present a set of preprocessing pipelines for bisulfite sequencing DNA methylation data that include a new R/Bioconductor package, scmeth, for a series of efficient QC analyses of large datasets. The pipelines go from raw data to CpG-level methylation estimates and can be run, with identical results, either on a single computer, in an HPC cluster or on Google Cloud Compute resources. These pipelines are designed to allow users to 1) ensure reproducibility of analyses, 2) achieve scalability to large whole genome datasets with 100 GB+ of raw data per sample and to single-cell datasets with thousands of cells, 3) enable integration and comparison between user-provided data and publicly available data, as all samples can be processed through the same pipeline, and 4) access to best-practice analysis pipelines. Pipelines are provided for whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS) and hybrid selection (capture) bisulfite sequencing (HSBS). The workflows produce data quality metrics, visualization tracks, and aggregated output for further downstream analysis. Optional use of cloud computing resources facilitates analysis of large datasets, and integration with existing methylome profiles. The workflow design principles are applicable to other genomic data types.
Abstract Background Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these data, including making comparisons with existing data, remains challenging due to the scale of the data and differences in preprocessing methods between published datasets. Results We present a set of preprocessing pipelines for bisulfite sequencing DNA methylation data that include a new R/Bioconductor package, scmeth, for a series of efficient QC analyses of large datasets. The pipelines go from raw data to CpG-level methylation estimates and can be run, with identical results, either on a single computer, in an HPC cluster or on Google Cloud Compute resources. These pipelines are designed to allow users to 1) ensure reproducibility of analyses, 2) achieve scalability to large whole genome datasets with 100 GB+ of raw data per sample and to single-cell datasets with thousands of cells, 3) enable integration and comparison between user-provided data and publicly available data, as all samples can be processed through the same pipeline, and 4) access to best-practice analysis pipelines. Pipelines are provided for whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS) and hybrid selection (capture) bisulfite sequencing (HSBS). Conclusions The workflows produce data quality metrics, visualization tracks, and aggregated output for further downstream analysis. Optional use of cloud computing resources facilitates analysis of large datasets, and integration with existing methylome profiles. The workflow design principles are applicable to other genomic data types.
Background Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these data, including making comparisons with existing data, remains challenging due to the scale of the data and differences in preprocessing methods between published datasets. Results We present a set of preprocessing pipelines for bisulfite sequencing DNA methylation data that include a new R/Bioconductor package, scmeth, for a series of efficient QC analyses of large datasets. The pipelines go from raw data to CpG-level methylation estimates and can be run, with identical results, either on a single computer, in an HPC cluster or on Google Cloud Compute resources. These pipelines are designed to allow users to 1) ensure reproducibility of analyses, 2) achieve scalability to large whole genome datasets with 100 GB+ of raw data per sample and to single-cell datasets with thousands of cells, 3) enable integration and comparison between user-provided data and publicly available data, as all samples can be processed through the same pipeline, and 4) access to best-practice analysis pipelines. Pipelines are provided for whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS) and hybrid selection (capture) bisulfite sequencing (HSBS). Conclusions The workflows produce data quality metrics, visualization tracks, and aggregated output for further downstream analysis. Optional use of cloud computing resources facilitates analysis of large datasets, and integration with existing methylome profiles. The workflow design principles are applicable to other genomic data types. Keywords: DNA methylation, Cloud computing, Bioinformatics workflows, Quality control analysis
Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these data, including making comparisons with existing data, remains challenging due to the scale of the data and differences in preprocessing methods between published datasets. We present a set of preprocessing pipelines for bisulfite sequencing DNA methylation data that include a new R/Bioconductor package, scmeth, for a series of efficient QC analyses of large datasets. The pipelines go from raw data to CpG-level methylation estimates and can be run, with identical results, either on a single computer, in an HPC cluster or on Google Cloud Compute resources. These pipelines are designed to allow users to 1) ensure reproducibility of analyses, 2) achieve scalability to large whole genome datasets with 100 GB+ of raw data per sample and to single-cell datasets with thousands of cells, 3) enable integration and comparison between user-provided data and publicly available data, as all samples can be processed through the same pipeline, and 4) access to best-practice analysis pipelines. Pipelines are provided for whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS) and hybrid selection (capture) bisulfite sequencing (HSBS). The workflows produce data quality metrics, visualization tracks, and aggregated output for further downstream analysis. Optional use of cloud computing resources facilitates analysis of large datasets, and integration with existing methylome profiles. The workflow design principles are applicable to other genomic data types.
Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these data, including making comparisons with existing data, remains challenging due to the scale of the data and differences in preprocessing methods between published datasets.BACKGROUNDBisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these data, including making comparisons with existing data, remains challenging due to the scale of the data and differences in preprocessing methods between published datasets.We present a set of preprocessing pipelines for bisulfite sequencing DNA methylation data that include a new R/Bioconductor package, scmeth, for a series of efficient QC analyses of large datasets. The pipelines go from raw data to CpG-level methylation estimates and can be run, with identical results, either on a single computer, in an HPC cluster or on Google Cloud Compute resources. These pipelines are designed to allow users to 1) ensure reproducibility of analyses, 2) achieve scalability to large whole genome datasets with 100 GB+ of raw data per sample and to single-cell datasets with thousands of cells, 3) enable integration and comparison between user-provided data and publicly available data, as all samples can be processed through the same pipeline, and 4) access to best-practice analysis pipelines. Pipelines are provided for whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS) and hybrid selection (capture) bisulfite sequencing (HSBS).RESULTSWe present a set of preprocessing pipelines for bisulfite sequencing DNA methylation data that include a new R/Bioconductor package, scmeth, for a series of efficient QC analyses of large datasets. The pipelines go from raw data to CpG-level methylation estimates and can be run, with identical results, either on a single computer, in an HPC cluster or on Google Cloud Compute resources. These pipelines are designed to allow users to 1) ensure reproducibility of analyses, 2) achieve scalability to large whole genome datasets with 100 GB+ of raw data per sample and to single-cell datasets with thousands of cells, 3) enable integration and comparison between user-provided data and publicly available data, as all samples can be processed through the same pipeline, and 4) access to best-practice analysis pipelines. Pipelines are provided for whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS) and hybrid selection (capture) bisulfite sequencing (HSBS).The workflows produce data quality metrics, visualization tracks, and aggregated output for further downstream analysis. Optional use of cloud computing resources facilitates analysis of large datasets, and integration with existing methylome profiles. The workflow design principles are applicable to other genomic data types.CONCLUSIONSThe workflows produce data quality metrics, visualization tracks, and aggregated output for further downstream analysis. Optional use of cloud computing resources facilitates analysis of large datasets, and integration with existing methylome profiles. The workflow design principles are applicable to other genomic data types.
Background Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these data, including making comparisons with existing data, remains challenging due to the scale of the data and differences in preprocessing methods between published datasets. Results We present a set of preprocessing pipelines for bisulfite sequencing DNA methylation data that include a new R/Bioconductor package, scmeth, for a series of efficient QC analyses of large datasets. The pipelines go from raw data to CpG-level methylation estimates and can be run, with identical results, either on a single computer, in an HPC cluster or on Google Cloud Compute resources. These pipelines are designed to allow users to 1) ensure reproducibility of analyses, 2) achieve scalability to large whole genome datasets with 100 GB+ of raw data per sample and to single-cell datasets with thousands of cells, 3) enable integration and comparison between user-provided data and publicly available data, as all samples can be processed through the same pipeline, and 4) access to best-practice analysis pipelines. Pipelines are provided for whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS) and hybrid selection (capture) bisulfite sequencing (HSBS). Conclusions The workflows produce data quality metrics, visualization tracks, and aggregated output for further downstream analysis. Optional use of cloud computing resources facilitates analysis of large datasets, and integration with existing methylome profiles. The workflow design principles are applicable to other genomic data types.
Background Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these data, including making comparisons with existing data, remains challenging due to the scale of the data and differences in preprocessing methods between published datasets. Results We present a set of preprocessing pipelines for bisulfite sequencing DNA methylation data that include a new R/Bioconductor package, scmeth , for a series of efficient QC analyses of large datasets. The pipelines go from raw data to CpG-level methylation estimates and can be run, with identical results, either on a single computer, in an HPC cluster or on Google Cloud Compute resources. These pipelines are designed to allow users to 1) ensure reproducibility of analyses, 2) achieve scalability to large whole genome datasets with 100 GB+ of raw data per sample and to single-cell datasets with thousands of cells, 3) enable integration and comparison between user-provided data and publicly available data, as all samples can be processed through the same pipeline, and 4) access to best-practice analysis pipelines. Pipelines are provided for whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS) and hybrid selection (capture) bisulfite sequencing (HSBS). Conclusions The workflows produce data quality metrics, visualization tracks, and aggregated output for further downstream analysis. Optional use of cloud computing resources facilitates analysis of large datasets, and integration with existing methylome profiles. The workflow design principles are applicable to other genomic data types.
ArticleNumber 160
Audience Academic
Author Hanna, Megan
Stewart, Chip
Aryee, Martin J.
Getz, Gad
Kangeyan, Divy
Iyer, Sowmya
Dunford, Andrew
Author_xml – sequence: 1
  givenname: Divy
  surname: Kangeyan
  fullname: Kangeyan, Divy
  organization: Department of Biostatistics, Harvard T. H. Chan School of Public Health, Broad Institute of MIT & Harvard
– sequence: 2
  givenname: Andrew
  surname: Dunford
  fullname: Dunford, Andrew
  organization: Broad Institute of MIT & Harvard
– sequence: 3
  givenname: Sowmya
  surname: Iyer
  fullname: Iyer, Sowmya
  organization: Department of Pathology, Massachusetts General Hospital
– sequence: 4
  givenname: Chip
  surname: Stewart
  fullname: Stewart, Chip
  organization: Broad Institute of MIT & Harvard
– sequence: 5
  givenname: Megan
  surname: Hanna
  fullname: Hanna, Megan
  organization: Broad Institute of MIT & Harvard
– sequence: 6
  givenname: Gad
  surname: Getz
  fullname: Getz, Gad
  organization: Broad Institute of MIT & Harvard, Department of Pathology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Cancer Center, Massachusetts General Hospital
– sequence: 7
  givenname: Martin J.
  orcidid: 0000-0002-6848-1344
  surname: Aryee
  fullname: Aryee, Martin J.
  email: aryee.martin@mgh.harvard.edu
  organization: Department of Biostatistics, Harvard T. H. Chan School of Public Health, Broad Institute of MIT & Harvard, Department of Pathology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Cancer Center, Massachusetts General Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30922215$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAYhSNURC_wAGxQJDbtIsXXxNkgjQotI1UgUVhbTvw79Sixp3ZSMW-P02lppwKUhRP7O8fx8TnM9px3kGVvMTrFWJQfIiaC1wXCdUEqjgr2IjvArMIFwYjvPXnfzw5jXCGEK4H4q2yfopoQgvlBdrXIj40NcNL2ftJFoyLo_NPXRT7AeL3p1Wi9y7UaVb4OsA6-hRit63LldH4zqd6Om7z1bgy-z9cJNz4Mr7OXRvUR3tyPR9nP888_zr4Ul98ulmeLy6ItaTUWhFDTqKqkWpMKKGpoIxqNmCg5Z4YQXeP0kdhaCaQbVrNKUc0N1IzypgF6lC23vtqrlVwHO6iwkV5ZeTfhQydVGG3bg8SNqUVZl4gCMBCNUKVRglODBcOCz14ft17rqRlAt5COpPod090VZ69l529lyRhKCSeD43uD4G8miKMcbGyh75UDP0VJCEKVKEtCE_r-GbryU3ApqkRhTKoSi_qR6lQ6gHXGp33b2VQuuMCUIUTnbU__QqVHw2DTxYCxaX5HcLIjmC8Pfo2dmmKUy6vvu-y7p6H8SeOhPgmotkAbfIwBjGzteNeZ9Be2lxjJuahyW1SZiirnokqWlPiZ8sH8fxqy1cTEug7CY27_Fv0G7NL2mg
CitedBy_id crossref_primary_10_1016_j_health_2023_100190
crossref_primary_10_1016_j_meegid_2020_104198
crossref_primary_10_3389_fcell_2021_671302
crossref_primary_10_1038_s41596_021_00571_9
crossref_primary_10_1165_rcmb_2019_0150TR
Cites_doi 10.1007/978-1-4842-3012-1_2
10.1186/gb-2012-13-10-r83
10.1038/nrc3130
10.1101/209494
10.1038/nmeth.3152
10.7490/f1000research.1114631.1
10.1073/pnas.89.5.1827
10.1038/nrg2341
10.1038/ng.2764
10.1186/s13072-016-0105-1
10.1016/B978-0-12-801899-6.00020-6
10.1016/S0092-8674(00)81656-6
10.1093/nar/gki901
10.1038/nmeth.3035
10.1101/gad.234294.113
10.1093/bioinformatics/btr167
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-019-2750-4
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



PubMed
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 5
ExternalDocumentID oai_doaj_org_article_1bf9869603ee4e8b8a6fa853f184185e
PMC6440105
A581340035
30922215
10_1186_s12859_019_2750_4
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Cancer Institute
  grantid: T32 CA 009337-37; Broad NCI Cloud Pilot Project
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: Broad Institute of MIT & Harvard
  grantid: SPARC Grant; Merkin Institute Fellowship
– fundername: Broad Institute of MIT & Harvard
  grantid: Merkin Institute Fellowship
– fundername: National Cancer Institute
  grantid: T32 CA 009337-37
– fundername: Broad Institute of MIT & Harvard
  grantid: SPARC Grant
– fundername: National Cancer Institute
  grantid: Broad NCI Cloud Pilot Project
– fundername: NCI NIH HHS
  grantid: T32 CA009337
– fundername: ;
  grantid: T32 CA 009337-37; Broad NCI Cloud Pilot Project
– fundername: ;
  grantid: SPARC Grant; Merkin Institute Fellowship
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c637t-223fba763dd27e30b3b8bd0486554f22d91048c639a80db4947a3d5fe9435bbe3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463274800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:40:21 EDT 2025
Tue Nov 04 02:01:02 EST 2025
Fri Sep 05 11:36:33 EDT 2025
Mon Oct 06 18:39:54 EDT 2025
Tue Nov 11 10:07:46 EST 2025
Tue Nov 04 17:18:54 EST 2025
Thu Nov 13 15:10:38 EST 2025
Thu Apr 03 07:05:43 EDT 2025
Tue Nov 18 21:48:01 EST 2025
Sat Nov 29 05:40:03 EST 2025
Sat Sep 06 07:27:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DNA methylation
Cloud computing
Bioinformatics workflows
Quality control analysis
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-223fba763dd27e30b3b8bd0486554f22d91048c639a80db4947a3d5fe9435bbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6848-1344
OpenAccessLink https://link.springer.com/10.1186/s12859-019-2750-4
PMID 30922215
PQID 2211276189
PQPubID 44065
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_1bf9869603ee4e8b8a6fa853f184185e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6440105
proquest_miscellaneous_2200786623
proquest_journals_2211276189
gale_infotracmisc_A581340035
gale_infotracacademiconefile_A581340035
gale_incontextgauss_ISR_A581340035
pubmed_primary_30922215
crossref_citationtrail_10_1186_s12859_019_2750_4
crossref_primary_10_1186_s12859_019_2750_4
springer_journals_10_1186_s12859_019_2750_4
PublicationCentury 2000
PublicationDate 2019-03-29
PublicationDateYYYYMMDD 2019-03-29
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References F Krueger (2750_CR16) 2011; 27
MJ Ziller (2750_CR7) 2015; 12
2750_CR12
M Frommer (2750_CR6) 1992; 89
2750_CR20
SA Smallwood (2750_CR10) 2014; 11
SB Baylin (2750_CR4) 2011; 11
K Voss (2750_CR11) 2017; 6
MM Suzuki (2750_CR1) 2008; 9
DM Messerschmidt (2750_CR3) 2014; 28
S Al-Mahdawi (2750_CR5) 2016
JN Weinstein (2750_CR19) 2013; 45
2750_CR2
2750_CR15
2750_CR14
A Meissner (2750_CR8) 2005; 33
2750_CR13
KD Hansen (2750_CR17) 2012; 13
2750_CR18
MJ Ziller (2750_CR9) 2016; 9
References_xml – ident: 2750_CR13
  doi: 10.1007/978-1-4842-3012-1_2
– volume: 13
  start-page: R83
  issue: 10
  year: 2012
  ident: 2750_CR17
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-10-r83
– volume: 11
  start-page: 726
  issue: 10
  year: 2011
  ident: 2750_CR4
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3130
– ident: 2750_CR15
  doi: 10.1101/209494
– ident: 2750_CR14
– volume: 12
  start-page: 230
  issue: 3
  year: 2015
  ident: 2750_CR7
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3152
– volume: 6
  start-page: 1379 (poster)
  issue: ISCB Comm J
  year: 2017
  ident: 2750_CR11
  publication-title: F1000Research
  doi: 10.7490/f1000research.1114631.1
– ident: 2750_CR12
– volume: 89
  start-page: 1827
  issue: 5
  year: 1992
  ident: 2750_CR6
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.89.5.1827
– ident: 2750_CR18
– volume: 9
  start-page: 465
  year: 2008
  ident: 2750_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2341
– volume: 45
  start-page: 1113
  issue: 10
  year: 2013
  ident: 2750_CR19
  publication-title: Nat Genet
  doi: 10.1038/ng.2764
– volume: 9
  start-page: 55
  issue: 1
  year: 2016
  ident: 2750_CR9
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-016-0105-1
– ident: 2750_CR20
– start-page: 401
  volume-title: Epigenetic biomarkers and diagnostics
  year: 2016
  ident: 2750_CR5
  doi: 10.1016/B978-0-12-801899-6.00020-6
– ident: 2750_CR2
  doi: 10.1016/S0092-8674(00)81656-6
– volume: 33
  start-page: 5868
  issue: 18
  year: 2005
  ident: 2750_CR8
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki901
– volume: 11
  start-page: 817
  issue: 8
  year: 2014
  ident: 2750_CR10
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3035
– volume: 28
  start-page: 812
  issue: 8
  year: 2014
  ident: 2750_CR3
  publication-title: Genes Dev
  doi: 10.1101/gad.234294.113
– volume: 27
  start-page: 1571
  issue: 11
  year: 2011
  ident: 2750_CR16
  publication-title: bioinformatics
  doi: 10.1093/bioinformatics/btr167
SSID ssj0017805
Score 2.3160021
Snippet Background Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these...
Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these data,...
Background Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells. Analyzing these...
Abstract Background Bisulfite sequencing allows base-pair resolution profiling of DNA methylation and has recently been adapted for use in single-cells....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 160
SubjectTerms Algorithms
Analysis and modelling of complex systems
Base sequence
Bioinformatics
Bioinformatics workflows
Biomedical and Life Sciences
Bisulfite
Cancer
Cloud computing
Computational biology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Containers
CpG islands
Criminal investigation
Data processing
Datasets
Deoxyribonucleic acid
DNA
DNA fingerprinting
DNA methylation
DNA sequencing
Epigenetics
Gene expression
Genetic research
Genomes
Genomics
Integration
Life Sciences
Methods
Methylation
Microarrays
Pipelines
Pipelining (computers)
Preprocessing
Quality control
Quality control analysis
Reproducibility
Software
Sulfites
Visualization (Computer)
Workflow
Workflow software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SFHyR-r22ShTBL5ZmN7lN8nh-FAU5xKr0LeSzFsre0b0T7r93Zjd3divqi6-Xyd7uZJL5DTP5DSFPmbNSh5RKNWGiFCFVpRPel5qLJkkOg33G9NtHOZup42P96UKrL6wJG-iBB8UdVC5p1QDO5jGKqJyyTbLgYxKEJuBrIp6-gHo2wVTOHyBTf85hVqo56CrkaYOwWZfIZ16KkRfqyfp_P5Iv-KTL9ZKXkqa9LzrcJTcyiKTT4eVvkiuxvUWuDW0l17fJ0ZQ-T3CUvfBn81Uo0VEF-nY2pdguej0Uv1EsDaUL5LTsbwrA_1DbBjpcslzTXMJOFyCOuPYO-Xr47sub92VunlD6hstlCW4_wTo0PIRaRs4cd8oFJNgDAJHqOgBOEApktVUsOKGFtDxg6RkAKOciv0t22nkb7xMKCI_VoQZkWzNhubdMOyX9xHIOM5wsCNso0_jMLI4NLs5MH2Goxgz6N6B_g_o3oiAvt1MWA63G34Rf4wptBZERu_8B7MRkOzH_spOCPMH1Nch50WJRzYlddZ35cPTZTCeq4gJzqgV5loXSHL7A23xHAfSANFkjyf2RJGxKPx7emJHJh0Jnagi2a9lUShfk8XYYZ2KhWxvnK5RB0NYAKC3IvcHqtt_NmQY0V8HD5cgeR4oZj7Sn33vKcEC92Aq1IK82lvvrtf6o9wf_Q-975HqN-45hy8B9srM8X8WH5Kr_sTztzh_1u_YnHcVBzw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELaggNQX7iNQkEFIXLKaxN7YeULLUYFAK0QB9c3yEbeVqmTZ7CLtv2cm8aakiL7wGo-j2DO2v8mMvyHkaWqNLH0ITE1SwYQPGbPCOVZyUQTJobGLmP74LGczdXBQfok_3NqYVrnZE7uN2jcO_5Hv5uCp5OBzq_L1_CfDqlEYXY0lNC6SSxkIoJ1_kmyIIiBff4xkZqrYbTNkawPnuWTIas7E6CzqKPv_3pj_OJnOZk2eCZ12J9Letf8dy3VyNWJROu2N5wa5UNU3yZW-OuX6Ftmf0ucBdsQX7qRZeYbnnafvZlOKVafXfQ4dxQxTOkdqzO7CAXwoNbWn_V3NNY2Z8HQO4giPb5Pve--_vf3AYg0G5goulwzQQwB1Ftz7XFY8tdwq65GnD3BIyHMPcEMokC2NSr0VpZCGe8xgAxxmbcXvkK26qat7hAJQTHOfA0DOU2G4M2lplXQTwzn0sDIh6UYb2kWCcqyTcaI7R0UVulegBgVqVKAWCXk5dJn37BznCb9BFQ-CSKzdPWgWhzquU53ZUKoC3DpeVaJSVpkiGIA0ATxhgDZVQp6ggWikzqgxN-fQrNpWf9z_qqcTlXGBodmEPItCoYEROBOvOsA8INvWSHJnJAlr242bNwak497S6lPrScjjoRl7Yr5cXTUrlEHsVwC2Tcjd3myHcfO0BFCYwcvlyKBHEzNuqY-POuZxAM9YUTUhrzamf_pZ_5z3--cP4gHZznFJplhTcIdsLRer6iG57H4tj9vFo25B_wa43U-o
  priority: 102
  providerName: ProQuest
Title A (fire)cloud-based DNA methylation data preprocessing and quality control platform
URI https://link.springer.com/article/10.1186/s12859-019-2750-4
https://www.ncbi.nlm.nih.gov/pubmed/30922215
https://www.proquest.com/docview/2211276189
https://www.proquest.com/docview/2200786623
https://pubmed.ncbi.nlm.nih.gov/PMC6440105
https://doaj.org/article/1bf9869603ee4e8b8a6fa853f184185e
Volume 20
WOSCitedRecordID wos000463274800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYBhIvfDMCozIIiS9ZS2I3dh472MQEVFELU8eLFcfxmDSlVdMi9b_nzkkLGR8SvPihPifx-Wz_3Dv_jpBnocllap1jqh8KJqyLmBFFwVIuEic5VHqP6ckHORyqySTN2nvc9Trafe2S9Cu1n9Yq2a8j5FqDo2_KkJOciS2yA7udwtk4Gp9sXAdI0t-6L3_brLMBeZ7-X1fjn7ajy6GSl_ylfhs6uvlfHbhFbrSokw4aM7lNrpTVHXKtyUO5ukvGA_rCwdr3sriYLi3Dnc3St8MBxfzSqyZajmIsKZ0hCaa_WgBvpnllaXMrc0XbmHc6A3EEwvfI56PDT2_esTbbAisSLhcMcIKDgUu4tbEseWi4UcYiIx8gDhfHFoCFUCCb5iq0RqRC5txirBogLmNKfp9sV9OqfEAoQMIwtjFA4TgUOS_yMDVKFv2cc2hhZEDC9RDooqUix4wYF9ofSVSiG11p0JVGXWkRkFebJrOGh-Nvwgc4rhtBpND2P0znZ7qdkToyLlUJHOB4WYpSGZUnLgfw4uDMCyCmDMhTtAqNJBkVRuGc5cu61sfjkR70VcQFOmED8rwVclPoQZG3lxpAD8ir1ZHc60jCLC661Wvj0-0qUusYTuexTCKVBuTJphpbYmRcVU6XKIMoLwEUG5DdxlY3_eZhCvAvgofLjhV3FNOtqc6_eo5xgMmYOzUgr9e2_OOz_qj3h_8k_Yhcj3EyhJhMcI9sL-bL8jG5WnxbnNfzHtmSE-lL1SM7B4fDbNTzf5hA-V6yHgbpZlBm_S9Qnx1_zE57fiH4Do0zTm4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAoIL74ehwIJAUJBV27ux1weEAqVq1BChtlS5Ld5du1Sq7BAnoPwpfiMzfqS4iN564JqdtbzjeX2Z2RmA555OothmmSt7nnCFzXxXC2PcmIswizguVhnTg2E0GsnxOP68Ar_auzBUVtnaxMpQ28LQf-QbASKVADG3jN9Nvrs0NYqyq-0IjVosdtLFT4Rs5dvBJn7fF0Gw9XH_w7bbTBVwTcijmYv-MMMXDLm1QZRyT3MttaXOc-hZsyCw6ECFRNo4kZ7VIhZRwi3VZGFkoXXK8bkX4CLa8YhKyKLxEuD5NB-gyZz6MtwofeoOh2A9dqmLuis6vq8aEfC3I_jDE56u0jyVqq084Nb1_413N-BaE2uzfq0cN2ElzW_B5Xr65uI27PXZqwwt_ro5LubWJX9u2eaoz2iq9qKuEWRUQcsm1PqzulCBjGFJbll9F3XBmkp_NkFyCv_vwJdzOdFdWM2LPL0PDANhL7ABAoDAEwk3iRdrGZlewjnu0JEDXvv1lWkasNMckGNVATEZqlpgFAqMIoFRwoHXyy2TuvvIWcTvSaSWhNQ4vPqhmB6qxg4pX2exDBG28jQVqdQyCbMEQ7YMkT6GbqkDz0ggFbUGyan26DCZl6Ua7O2qfk_6XFDq2YGXDVFW4AlM0lzlQD5QN7EO5VqHEm2X6S63Aqsa21mqE2l14OlymXZSPWCeFnOiodg2xNjdgXu1mizPzb0Yg14fHx51FKjDmO5KfvSt6qyO4IAmxjrwplW1k9f6J98fnH2IJ3Ble__TUA0Ho52HcDUgc-DR_MQ1WJ1N5-kjuGR-zI7K6ePKmDD4et4a-Bs0wav9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED_BeIgvvB-BAQYhMUDRkthNnI-FUTExVROFad8sP-IxaUqqpkXqf89dkgYyHhLia32u4vOd_Tvd-XcALyKjs9x5H8pRJELhfBwaYW2Yc5H6jONgkzE9OsimU3l8nB92fU7rTbX7JiXZvmkglqZyuTt3vnVxme7WMfGuYRich8RPHoqLcElQzyAK12dHfRqBCPu7VOZvpw0uo4az_9eT-aer6XzZ5LncaXMlTW7892JuwvUOjbJxaz634EJR3oYrbX_K9R2YjdmOxzPxlT2rVi6kG8-xvemYUd_pdVtFx6jGlM2JHLN5coBfwXTpWPtac826Wng2R3ECyHfhy-T953cfwq4LQ2hTni1DxA8eNzTlziVZwSPDjTSOmPoQifgkcQg4hETZXMvIGZGLTHNHNWyIxIwp-D3YKquyeAAMoWKUuAQhchIJza2OciMzO9Kc4wyTBRBttkPZjqKcOmWcqSZUkalqdaVQV4p0pUQAr_sp85af42_Cb2mPe0Gi1m5-qBYnqvNUFRufyxQDO14UopBG6tRrBDUeY2EEN0UAz8lCFJFnlFSdc6JXda32Z5_UeCRjLig5G8DLTshXuAKru8cOqAfi2xpIbg8k0bvtcHhjiKo7XWqVYNSeZGks8wCe9cM0kyrmyqJakQyhvxTRbQD3W7vt182jHGFhjH-eDSx6oJjhSHn6teEeR_hMPVUDeLOx6x-f9Ue9P_wn6adw9XBvog72px8fwbWE_CKifoPbsLVcrIrHcNl-W57WiyeNr38HKF1RYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+%28fire%29cloud-based+DNA+methylation+data+preprocessing+and+quality+control+platform&rft.jtitle=BMC+bioinformatics&rft.au=Kangeyan%2C+Divy&rft.au=Dunford%2C+Andrew&rft.au=Iyer%2C+Sowmya&rft.au=Stewart%2C+Chip&rft.date=2019-03-29&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft.spage=160&rft_id=info:doi/10.1186%2Fs12859-019-2750-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon