Optimization of CO2 bio-mitigation by Chlorella vulgaris

•CO2 fixation rate by Chlorella vulgaris was optimized.•Growth parameters were affected by CO2 concentration and aeration rate.•Biochemical composition of algae did not change under different growth conditions. Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mit...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology Vol. 139; pp. 149 - 154
Main Authors: Anjos, Mariana, Fernandes, Bruno D., Vicente, António A., Teixeira, José A., Dragone, Giuliano
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.07.2013
Elsevier
Subjects:
ISSN:0960-8524, 1873-2976, 1873-2976
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •CO2 fixation rate by Chlorella vulgaris was optimized.•Growth parameters were affected by CO2 concentration and aeration rate.•Biochemical composition of algae did not change under different growth conditions. Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation (RCO2) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7vvm). Results showed that the maximum RCO2 (2.22gL−1d−1) was obtained by using 6.5% CO2 and 0.5vvm after 7days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris.
AbstractList Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation ( [Formula: see text] ) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum [Formula: see text] (2.22 gL(-1)d(-1)) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris.
•CO2 fixation rate by Chlorella vulgaris was optimized.•Growth parameters were affected by CO2 concentration and aeration rate.•Biochemical composition of algae did not change under different growth conditions. Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation (RCO2) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7vvm). Results showed that the maximum RCO2 (2.22gL−1d−1) was obtained by using 6.5% CO2 and 0.5vvm after 7days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris.
Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation ( [Formula: see text] ) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum [Formula: see text] (2.22 gL(-1)d(-1)) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris.Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation ( [Formula: see text] ) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum [Formula: see text] (2.22 gL(-1)d(-1)) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris.
Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation (RCO2RCO2) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum RCO2RCO2 (2.22 g L-1 d-1) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30 degree C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris.
Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation (RCO2) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7vvm). Results showed that the maximum RCO2 (2.22gL−1d−1) was obtained by using 6.5% CO2 and 0.5vvm after 7days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris.
Author Fernandes, Bruno D.
Dragone, Giuliano
Teixeira, José A.
Vicente, António A.
Anjos, Mariana
Author_xml – sequence: 1
  givenname: Mariana
  surname: Anjos
  fullname: Anjos, Mariana
– sequence: 2
  givenname: Bruno D.
  surname: Fernandes
  fullname: Fernandes, Bruno D.
– sequence: 3
  givenname: António A.
  surname: Vicente
  fullname: Vicente, António A.
– sequence: 4
  givenname: José A.
  surname: Teixeira
  fullname: Teixeira, José A.
– sequence: 5
  givenname: Giuliano
  surname: Dragone
  fullname: Dragone, Giuliano
  email: gdragone@deb.uminho.pt, giulianodragone@outlook.com
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27477903$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23648764$$D View this record in MEDLINE/PubMed
BookMark eNqN0U-L1DAYBvAgK-7s6ldYehG8tL5vkiYNeFAG_8HCXPQc0jTZzdA2Y5JZWD-9HWdWwct4CoTf8xDyXJGLOc6OkBuEBgHF223Th5iKs_cNBWQN8AYYfUZW2ElWUyXFBVmBElB3LeWX5CrnLQAwlPQFuaRM8E4KviLdZlfCFH6aEuJcRV-tN7RaqusplHB3vO0fq_X9GJMbR1M97Mc7k0J-SZ57M2b36nRek--fPn5bf6lvN5-_rj_c1lYwUWoHoIzrlOmHTvaWc2M9l730xioKhhnvFfWUe6RS9sxjO6BjwrWt4S0Hzq7Jm2PvLsUfe5eLnkK2h6fMLu6zRsEpQ2SqO09bCqxD9T-UMxSoWqTnKROilZIjLPTmRPf95Aa9S2Ey6VE_ffcCXp-AydaMPpnZhvzXSS6lArY4cXQ2xZyT838Igj7sr7f6aX992F8D18v-S_DdP0Ebyu8VSzJhPB9_f4y7ZdGH4JLONrjZuiEkZ4seYjhX8QvlXs00
CitedBy_id crossref_primary_10_1016_j_biortech_2016_04_078
crossref_primary_10_1016_j_scitotenv_2018_11_120
crossref_primary_10_1007_s12010_015_1940_4
crossref_primary_10_1016_j_biortech_2019_122045
crossref_primary_10_1016_j_ecoleng_2016_02_035
crossref_primary_10_1061__ASCE_EE_1943_7870_0001535
crossref_primary_10_1007_s10811_020_02147_8
crossref_primary_10_1016_j_aquaculture_2025_742956
crossref_primary_10_1016_j_jcou_2017_09_004
crossref_primary_10_1016_j_jcou_2017_10_008
crossref_primary_10_1016_j_biortech_2014_11_026
crossref_primary_10_1016_j_biortech_2023_129094
crossref_primary_10_1007_s00248_017_1139_z
crossref_primary_10_1016_j_biortech_2024_131105
crossref_primary_10_3390_fermentation8100497
crossref_primary_10_1111_wej_12646
crossref_primary_10_1007_s12649_022_01800_2
crossref_primary_10_1016_j_biortech_2017_08_022
crossref_primary_10_3390_su13169118
crossref_primary_10_1016_j_jbiotec_2022_03_015
crossref_primary_10_1016_j_jece_2020_104022
crossref_primary_10_1080_01490451_2022_2078445
crossref_primary_10_1089_ind_2024_0015
crossref_primary_10_1111_are_14668
crossref_primary_10_1016_j_jcou_2016_12_006
crossref_primary_10_1016_j_jbiotec_2021_08_010
crossref_primary_10_1016_j_biortech_2016_01_087
crossref_primary_10_1007_s10811_017_1156_9
crossref_primary_10_1016_j_jcou_2019_06_008
crossref_primary_10_3389_fceng_2022_998289
crossref_primary_10_1016_j_fuel_2024_132719
crossref_primary_10_1002_ep_13217
crossref_primary_10_1088_1755_1315_1281_1_012049
crossref_primary_10_3390_su12219158
crossref_primary_10_1016_j_jclepro_2018_01_125
crossref_primary_10_1016_j_biombioe_2020_105941
crossref_primary_10_1016_j_chemosphere_2023_137987
crossref_primary_10_3390_environments3030024
crossref_primary_10_1016_j_biortech_2016_07_063
crossref_primary_10_1002_jctb_6714
crossref_primary_10_1016_j_rser_2016_11_045
crossref_primary_10_1016_j_energy_2024_132321
crossref_primary_10_1039_D3RE00221G
crossref_primary_10_48022_mbl_2008_08017
crossref_primary_10_12677_OJNS_2023_114066
crossref_primary_10_3390_atmos12081031
crossref_primary_10_1016_j_rser_2020_110306
crossref_primary_10_1016_j_aquaeng_2022_102269
crossref_primary_10_1016_j_biortech_2015_08_124
crossref_primary_10_3390_su13179882
crossref_primary_10_1007_s11356_016_7158_3
crossref_primary_10_1016_j_jwpe_2024_104937
crossref_primary_10_1016_j_bej_2020_107741
crossref_primary_10_1016_j_scs_2018_06_002
crossref_primary_10_1016_j_aqrep_2018_100178
crossref_primary_10_1016_j_renene_2017_04_001
crossref_primary_10_1007_s12155_023_10581_y
crossref_primary_10_1088_1755_1315_268_1_012112
crossref_primary_10_3390_c9010035
crossref_primary_10_1002_ep_12420
crossref_primary_10_1007_s43153_021_00100_x
crossref_primary_10_1002_cssc_201701611
crossref_primary_10_1016_j_eti_2022_102441
crossref_primary_10_1016_j_bej_2020_107899
crossref_primary_10_4236_cweee_2020_94012
crossref_primary_10_1016_j_jenvman_2016_08_054
crossref_primary_10_3390_su132313061
crossref_primary_10_1080_09670262_2021_1885065
crossref_primary_10_1016_j_bcab_2019_101032
crossref_primary_10_1016_j_enconman_2019_01_077
crossref_primary_10_1007_s11356_025_35958_8
crossref_primary_10_1016_j_biortech_2017_05_194
crossref_primary_10_1016_j_jclepro_2020_124448
crossref_primary_10_1016_j_bcab_2023_102655
crossref_primary_10_1007_s00253_016_7818_8
crossref_primary_10_1016_j_jcou_2019_11_023
crossref_primary_10_1002_ceat_201400790
crossref_primary_10_1002_ceat_201800330
crossref_primary_10_1007_s12649_019_00931_3
crossref_primary_10_1016_j_rser_2021_111396
crossref_primary_10_1007_s13399_019_00580_5
crossref_primary_10_1038_s41598_018_26141_w
crossref_primary_10_3390_su13042267
crossref_primary_10_1016_j_biteb_2022_101116
crossref_primary_10_1016_j_procbio_2019_11_022
crossref_primary_10_1016_j_algal_2023_103113
crossref_primary_10_1016_j_egyr_2019_08_032
crossref_primary_10_1016_j_rser_2020_110579
crossref_primary_10_1016_j_energy_2016_03_033
crossref_primary_10_3390_pollutants4010007
crossref_primary_10_1016_j_jcou_2022_102030
crossref_primary_10_1002_cjce_23168
crossref_primary_10_1039_D1RA04845G
crossref_primary_10_1016_j_biortech_2015_04_077
crossref_primary_10_1016_j_algal_2020_101799
crossref_primary_10_1016_j_jtice_2023_105012
crossref_primary_10_1080_07388551_2025_2498464
crossref_primary_10_3390_w16010079
crossref_primary_10_1016_j_electacta_2017_12_153
crossref_primary_10_1016_j_energy_2019_116136
crossref_primary_10_1016_j_scitotenv_2019_02_312
crossref_primary_10_1016_j_biortech_2013_06_122
crossref_primary_10_1007_s13399_022_02446_9
crossref_primary_10_1016_j_algal_2024_103506
crossref_primary_10_1016_j_fuel_2013_09_032
crossref_primary_10_1016_j_algal_2015_02_014
crossref_primary_10_1002_jctb_6896
crossref_primary_10_1007_s12010_018_2921_1
crossref_primary_10_1088_1755_1315_1151_1_012042
crossref_primary_10_3390_sym13060997
crossref_primary_10_1016_j_biortech_2025_132315
crossref_primary_10_1128_aem_00841_24
crossref_primary_10_1016_j_jenvman_2019_06_085
crossref_primary_10_1016_j_rser_2021_111620
crossref_primary_10_1016_j_biortech_2017_07_031
crossref_primary_10_1007_s11814_015_0023_0
crossref_primary_10_1016_j_biortech_2015_03_011
crossref_primary_10_1007_s12155_022_10413_5
crossref_primary_10_1007_s00449_020_02350_4
crossref_primary_10_1080_09670262_2016_1193902
crossref_primary_10_3390_su16209001
crossref_primary_10_1016_j_biortech_2021_125313
crossref_primary_10_1016_j_ces_2015_01_008
crossref_primary_10_1016_j_scitotenv_2023_165546
crossref_primary_10_1016_j_biombioe_2015_12_002
crossref_primary_10_1016_j_jcou_2017_01_025
crossref_primary_10_1016_j_biortech_2017_03_041
crossref_primary_10_1016_j_apenergy_2016_06_012
crossref_primary_10_1007_s12010_016_2330_2
crossref_primary_10_1016_j_biteb_2022_100982
crossref_primary_10_1016_j_jclepro_2021_125975
crossref_primary_10_1016_j_fbp_2020_09_010
crossref_primary_10_2166_wst_2022_270
crossref_primary_10_1002_ceat_201700210
crossref_primary_10_1016_j_rser_2018_03_093
crossref_primary_10_1016_j_bej_2017_09_015
crossref_primary_10_1016_j_actaastro_2025_07_033
crossref_primary_10_1016_j_cscee_2025_101239
crossref_primary_10_1016_j_bej_2021_108299
crossref_primary_10_1016_j_psep_2024_06_093
crossref_primary_10_1007_s12649_017_9987_9
crossref_primary_10_1016_j_apenergy_2019_114420
crossref_primary_10_1016_j_seppur_2022_120951
crossref_primary_10_3390_su13042216
crossref_primary_10_1016_j_jece_2020_103935
crossref_primary_10_1088_1742_6596_1378_2_022053
crossref_primary_10_3389_fmars_2025_1644390
crossref_primary_10_1016_j_cej_2021_130884
crossref_primary_10_1016_j_eti_2021_101596
crossref_primary_10_1016_j_algal_2022_102697
crossref_primary_10_1007_s43979_022_00004_w
crossref_primary_10_1016_j_chemosphere_2019_125079
crossref_primary_10_1007_s00253_013_5322_y
crossref_primary_10_1016_j_rser_2018_06_059
crossref_primary_10_1007_s11356_018_3037_4
crossref_primary_10_1016_j_biortech_2016_04_023
crossref_primary_10_1007_s40518_020_00149_1
crossref_primary_10_1016_j_biortech_2015_04_040
crossref_primary_10_1016_j_ecoenv_2019_109393
crossref_primary_10_1016_j_seppur_2022_122471
crossref_primary_10_1186_s12934_019_1228_4
crossref_primary_10_1016_j_bej_2024_109613
crossref_primary_10_1016_j_chemosphere_2020_129322
crossref_primary_10_1016_j_jenvman_2018_04_031
crossref_primary_10_1007_s40726_020_00151_7
crossref_primary_10_1016_j_biortech_2020_123063
crossref_primary_10_1088_1755_1315_463_1_012162
crossref_primary_10_1007_s10811_018_1676_y
crossref_primary_10_1016_j_biombioe_2019_01_022
crossref_primary_10_1016_j_bcab_2025_103739
crossref_primary_10_1007_s11783_020_1343_9
crossref_primary_10_1016_j_algal_2020_102107
crossref_primary_10_3389_fbioe_2022_879476
crossref_primary_10_1016_j_biortech_2016_01_044
crossref_primary_10_1016_j_jclepro_2018_10_040
crossref_primary_10_1016_j_jphotobiol_2020_111822
crossref_primary_10_1016_j_scitotenv_2020_137594
crossref_primary_10_1016_j_jece_2020_103960
crossref_primary_10_1016_j_biortech_2017_06_147
crossref_primary_10_1007_s13369_024_09155_7
crossref_primary_10_1016_j_nexus_2021_100032
crossref_primary_10_1016_j_rser_2017_04_063
crossref_primary_10_1016_j_biortech_2016_08_119
crossref_primary_10_3390_fermentation8070301
crossref_primary_10_1016_j_algal_2018_04_006
crossref_primary_10_1016_j_biortech_2016_04_019
crossref_primary_10_1016_j_biortech_2019_01_035
crossref_primary_10_1016_j_hazadv_2025_100722
crossref_primary_10_1186_s12918_014_0096_0
crossref_primary_10_1002_ep_12835
crossref_primary_10_1016_j_biortech_2018_03_002
crossref_primary_10_1007_s43153_022_00245_3
crossref_primary_10_1016_j_cjche_2018_07_013
crossref_primary_10_1016_j_algal_2018_04_016
Cites_doi 10.1007/s00253-008-1811-9
10.1038/sj.jim.7000313
10.1007/s10811-005-8701-7
10.1016/j.nbt.2011.12.002
10.1016/j.biosystemseng.2006.09.010
10.1016/j.biortech.2005.02.037
10.1016/j.biortech.2010.02.088
10.1016/j.enconman.2008.09.024
10.1002/ceat.200700141
10.1016/j.biortech.2012.05.055
10.1016/j.biortech.2008.06.061
10.1007/s11157-010-9214-7
10.1007/s00253-008-1518-y
10.1016/j.biotechadv.2010.11.001
10.1007/s12010-009-8783-9
10.1016/j.jiec.2008.12.012
10.1002/bit.22033
10.1023/A:1026021021774
10.1016/j.apenergy.2011.03.012
10.1016/j.tibtech.2010.04.004
10.1016/0922-338X(96)85151-8
10.1007/s11120-011-9638-0
10.1007/s10811-011-9761-5
10.1016/j.biortech.2010.10.047
10.1016/j.biortech.2011.01.054
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7QO
8FD
F1W
FR3
H95
H98
L.G
P64
7SU
7TB
C1K
KR7
DOI 10.1016/j.biortech.2013.04.032
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Biotechnology Research Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Biotechnology Research Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Civil Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE

MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 154
ExternalDocumentID 23648764
27477903
10_1016_j_biortech_2013_04_032
S0960852413006366
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7QO
8FD
F1W
FR3
H95
H98
L.G
P64
7SU
7TB
C1K
KR7
ID FETCH-LOGICAL-c636t-e009ae89abd87bc44acf47b7fac920a3aff92f24f1277b3f15d1e36e55a454043
ISICitedReferencesCount 214
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321163100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-8524
1873-2976
IngestDate Tue Oct 07 09:35:37 EDT 2025
Tue Oct 07 09:23:49 EDT 2025
Sun Sep 28 01:36:15 EDT 2025
Sun Sep 28 12:21:16 EDT 2025
Thu Apr 03 07:08:36 EDT 2025
Mon Jul 21 09:17:26 EDT 2025
Tue Nov 18 21:04:28 EST 2025
Sat Nov 29 07:08:03 EST 2025
Fri Feb 23 02:34:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Carbon dioxide sequestration
Microalgae
Aeration rate
Biological mitigation
Photobioreactors
Algae
Chlorella vulgaris
Carbon dioxide
CO2 sequestration
Biology
Chlorophyceae
Optimization
Aeration
Chlorophyta
Photobioreactor
Mitigation measure
Alga
Microorganism
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c636t-e009ae89abd87bc44acf47b7fac920a3aff92f24f1277b3f15d1e36e55a454043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0960852413006366
PMID 23648764
PQID 1366577410
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1642311398
proquest_miscellaneous_1520381998
proquest_miscellaneous_1431619512
proquest_miscellaneous_1366577410
pubmed_primary_23648764
pascalfrancis_primary_27477903
crossref_primary_10_1016_j_biortech_2013_04_032
crossref_citationtrail_10_1016_j_biortech_2013_04_032
elsevier_sciencedirect_doi_10_1016_j_biortech_2013_04_032
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Abreu, Fernandes, Vicente, Teixeira, Dragone (b0005) 2012; 118
Doucha, Straka, Lívanský (b0025) 2005; 17
Ryu, Oh, Kim (b0105) 2009; 15
Fan, Zhang, Cheng, Zhang, Tang, Chen (b0040) 2007; 30
Chiu, Kao, Tsai, Ong, Chen, Lin (b0020) 2009; 100
Keffer, Kleinheinz (b0065) 2002; 29
Hirata, Hayashitani, Taya, Tone (b0055) 1996; 81
Lee, Lee, Shin, Park, Kim (b0080) 2000; 10
Rodolfi, Zittelli, Bassi, Padovani, Biondi, Bonini, Tredici (b0100) 2009; 102
Wang, Li, Wu, Lan (b0130) 2008; 79
Milledge (b0090) 2011; 10
Douskova, Doucha, Livansky, Machat, Novak, Umysova, Zachleder, Vitova (b0030) 2009; 82
Yang, Gao (b0140) 2003; 15
Fernandes, Dragone, Abreu, Geada, Teixeira, Vicente (b0045) 2012; 24
Kumar, Dasgupta, Nayak, Lindblad, Das (b0075) 2011; 102
Fernandes, Dragone, Teixeira, Vicente (b0050) 2010; 161
Ho, Chen, Lee, Chang (b0060) 2011; 29
McGinn, Dickinson, Bhatti, Frigon, Guiot, O’Leary (b0085) 2011; 109
Tebbani, Lopes, Filali, Dumur, Pareau (b0125) 2013
Tang, Han, Li, Miao, Zhong (b0120) 2011; 102
Kumar, Ergas, Yuan, Sahu, Zhang, Dewulf, Malcata, van Langenhove (b0070) 2010; 28
Šoštarič, Klinar, Bricelj, Golob, Berovič, Likozar (b0110) 2012; 29
(b0135) 2012; 8
Chae, Hwang, Shin (b0015) 2006; 97
Dragone, Fernandes, Abreu, Vicente, Teixeira (b0035) 2011; 88
Sydney, Sturm, de Carvalho, Thomaz-Soccol, Larroche, Pandey, Soccol (b0115) 2010; 101
Ono, Cuello (b0095) 2007; 96
Bilanovic, Andargatchew, Kroeger, Shelef (b0010) 2009; 50
Šoštarič (10.1016/j.biortech.2013.04.032_b0110) 2012; 29
Rodolfi (10.1016/j.biortech.2013.04.032_b0100) 2009; 102
Keffer (10.1016/j.biortech.2013.04.032_b0065) 2002; 29
Yang (10.1016/j.biortech.2013.04.032_b0140) 2003; 15
Ho (10.1016/j.biortech.2013.04.032_b0060) 2011; 29
Kumar (10.1016/j.biortech.2013.04.032_b0070) 2010; 28
Ryu (10.1016/j.biortech.2013.04.032_b0105) 2009; 15
(10.1016/j.biortech.2013.04.032_b0135) 2012; 8
Lee (10.1016/j.biortech.2013.04.032_b0080) 2000; 10
Abreu (10.1016/j.biortech.2013.04.032_b0005) 2012; 118
McGinn (10.1016/j.biortech.2013.04.032_b0085) 2011; 109
Bilanovic (10.1016/j.biortech.2013.04.032_b0010) 2009; 50
Wang (10.1016/j.biortech.2013.04.032_b0130) 2008; 79
Chiu (10.1016/j.biortech.2013.04.032_b0020) 2009; 100
Milledge (10.1016/j.biortech.2013.04.032_b0090) 2011; 10
Kumar (10.1016/j.biortech.2013.04.032_b0075) 2011; 102
Doucha (10.1016/j.biortech.2013.04.032_b0025) 2005; 17
Fernandes (10.1016/j.biortech.2013.04.032_b0045) 2012; 24
Fernandes (10.1016/j.biortech.2013.04.032_b0050) 2010; 161
Chae (10.1016/j.biortech.2013.04.032_b0015) 2006; 97
Tang (10.1016/j.biortech.2013.04.032_b0120) 2011; 102
Ono (10.1016/j.biortech.2013.04.032_b0095) 2007; 96
Hirata (10.1016/j.biortech.2013.04.032_b0055) 1996; 81
Dragone (10.1016/j.biortech.2013.04.032_b0035) 2011; 88
Fan (10.1016/j.biortech.2013.04.032_b0040) 2007; 30
Sydney (10.1016/j.biortech.2013.04.032_b0115) 2010; 101
Douskova (10.1016/j.biortech.2013.04.032_b0030) 2009; 82
Tebbani (10.1016/j.biortech.2013.04.032_b0125) 2013
References_xml – volume: 118
  start-page: 61
  year: 2012
  end-page: 66
  ident: b0005
  article-title: Mixotrophic cultivation of
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 100
  year: 2009
  end-page: 112
  ident: b0100
  article-title: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor
  publication-title: Biotechnol. Bioeng.
– volume: 101
  start-page: 5892
  year: 2010
  end-page: 5896
  ident: b0115
  article-title: Potential carbon dioxide fixation by industrially important microalgae
  publication-title: Bioresour. Technol.
– volume: 29
  start-page: 325
  year: 2012
  end-page: 331
  ident: b0110
  article-title: Growth, lipid extraction and thermal degradation of the microalga
  publication-title: New Biotechnol.
– volume: 82
  start-page: 179
  year: 2009
  end-page: 185
  ident: b0030
  article-title: Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 79
  start-page: 707
  year: 2008
  end-page: 718
  ident: b0130
  article-title: CO
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 102
  start-page: 4945
  year: 2011
  end-page: 4953
  ident: b0075
  article-title: Development of suitable photobioreactors for CO
  publication-title: Bioresour. Technol.
– volume: 96
  start-page: 129
  year: 2007
  end-page: 134
  ident: b0095
  article-title: Carbon dioxide mitigation using thermophilic cyanobacteria
  publication-title: Biosyst. Eng.
– volume: 15
  start-page: 379
  year: 2003
  end-page: 389
  ident: b0140
  article-title: Effects of CO
  publication-title: J. Appl. Phycol.
– volume: 29
  start-page: 189
  year: 2011
  end-page: 198
  ident: b0060
  article-title: Perspectives on microalgal CO
  publication-title: Biotechnol. Adv.
– volume: 15
  start-page: 471
  year: 2009
  end-page: 475
  ident: b0105
  article-title: Optimization of the influential factors for the improvement of CO
  publication-title: J. Ind. Eng. Chem.
– volume: 30
  start-page: 1094
  year: 2007
  end-page: 1099
  ident: b0040
  article-title: Optimization of carbon dioxide fixation by
  publication-title: Chem. Eng. Technol.
– volume: 10
  start-page: 338
  year: 2000
  end-page: 343
  ident: b0080
  article-title: Effects of NO and SO
  publication-title: J. Microbiol. Biotechnol.
– volume: 24
  start-page: 1203
  year: 2012
  end-page: 1208
  ident: b0045
  article-title: Starch determination in
  publication-title: J. Appl. Phycol.
– volume: 29
  start-page: 275
  year: 2002
  end-page: 280
  ident: b0065
  article-title: Use of
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 102
  start-page: 3071
  year: 2011
  end-page: 3076
  ident: b0120
  article-title: CO
  publication-title: Bioresour. Technol.
– volume: 109
  start-page: 231
  year: 2011
  end-page: 247
  ident: b0085
  article-title: Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations
  publication-title: Photosynth. Res.
– start-page: 1
  year: 2013
  end-page: 15
  ident: b0125
  article-title: Nonlinear predictive control for maximization of CO
  publication-title: Bioprocess Biosyst. Eng.
– volume: 10
  start-page: 31
  year: 2011
  end-page: 41
  ident: b0090
  article-title: Commercial application of microalgae other than as biofuels: a brief review
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 28
  start-page: 371
  year: 2010
  end-page: 380
  ident: b0070
  article-title: Enhanced CO
  publication-title: Trends Biotechnol.
– volume: 17
  start-page: 403
  year: 2005
  end-page: 412
  ident: b0025
  article-title: Utilization of flue gas for cultivation of microalgae (
  publication-title: J. Appl. Phycol.
– volume: 50
  start-page: 262
  year: 2009
  end-page: 267
  ident: b0010
  article-title: Freshwater and marine microalgae sequestering of CO
  publication-title: Energy Convers. Manage.
– volume: 97
  start-page: 322
  year: 2006
  end-page: 329
  ident: b0015
  article-title: Single cell protein production of
  publication-title: Bioresour. Technol.
– volume: 100
  start-page: 833
  year: 2009
  end-page: 838
  ident: b0020
  article-title: Lipid accumulation and CO
  publication-title: Bioresour. Technol.
– volume: 8
  start-page: 1
  year: 2012
  end-page: 4
  ident: b0135
  article-title: The state of greenhouse gases in the atmosphere based on global observations through 2011
  publication-title: WMO Annu. Greenhouse Gas Bull.
– volume: 161
  start-page: 218
  year: 2010
  end-page: 226
  ident: b0050
  article-title: Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content
  publication-title: Appl. Biochem. Biotechnol.
– volume: 81
  start-page: 470
  year: 1996
  end-page: 472
  ident: b0055
  article-title: Carbon dioxide fixation in batch culture of
  publication-title: J. Ferment. Bioeng.
– volume: 88
  start-page: 3331
  year: 2011
  end-page: 3335
  ident: b0035
  article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae
  publication-title: Appl. Energy
– volume: 82
  start-page: 179
  year: 2009
  ident: 10.1016/j.biortech.2013.04.032_b0030
  article-title: Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1811-9
– volume: 29
  start-page: 275
  year: 2002
  ident: 10.1016/j.biortech.2013.04.032_b0065
  article-title: Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1038/sj.jim.7000313
– volume: 8
  start-page: 1
  year: 2012
  ident: 10.1016/j.biortech.2013.04.032_b0135
  article-title: The state of greenhouse gases in the atmosphere based on global observations through 2011
  publication-title: WMO Annu. Greenhouse Gas Bull.
– volume: 17
  start-page: 403
  year: 2005
  ident: 10.1016/j.biortech.2013.04.032_b0025
  article-title: Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-005-8701-7
– volume: 29
  start-page: 325
  year: 2012
  ident: 10.1016/j.biortech.2013.04.032_b0110
  article-title: Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2011.12.002
– volume: 96
  start-page: 129
  year: 2007
  ident: 10.1016/j.biortech.2013.04.032_b0095
  article-title: Carbon dioxide mitigation using thermophilic cyanobacteria
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2006.09.010
– volume: 97
  start-page: 322
  year: 2006
  ident: 10.1016/j.biortech.2013.04.032_b0015
  article-title: Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2005.02.037
– volume: 101
  start-page: 5892
  year: 2010
  ident: 10.1016/j.biortech.2013.04.032_b0115
  article-title: Potential carbon dioxide fixation by industrially important microalgae
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.02.088
– volume: 50
  start-page: 262
  year: 2009
  ident: 10.1016/j.biortech.2013.04.032_b0010
  article-title: Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – response surface methodology analysis
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2008.09.024
– volume: 30
  start-page: 1094
  year: 2007
  ident: 10.1016/j.biortech.2013.04.032_b0040
  article-title: Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.200700141
– volume: 118
  start-page: 61
  year: 2012
  ident: 10.1016/j.biortech.2013.04.032_b0005
  article-title: Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.05.055
– volume: 100
  start-page: 833
  year: 2009
  ident: 10.1016/j.biortech.2013.04.032_b0020
  article-title: Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.06.061
– volume: 10
  start-page: 338
  year: 2000
  ident: 10.1016/j.biortech.2013.04.032_b0080
  article-title: Effects of NO and SO2 on growth of highly-CO2-tolerant microalgae
  publication-title: J. Microbiol. Biotechnol.
– volume: 10
  start-page: 31
  year: 2011
  ident: 10.1016/j.biortech.2013.04.032_b0090
  article-title: Commercial application of microalgae other than as biofuels: a brief review
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-010-9214-7
– volume: 79
  start-page: 707
  year: 2008
  ident: 10.1016/j.biortech.2013.04.032_b0130
  article-title: CO2 bio-mitigation using microalgae
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1518-y
– volume: 29
  start-page: 189
  year: 2011
  ident: 10.1016/j.biortech.2013.04.032_b0060
  article-title: Perspectives on microalgal CO2-emission mitigation systems — a review
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2010.11.001
– volume: 161
  start-page: 218
  year: 2010
  ident: 10.1016/j.biortech.2013.04.032_b0050
  article-title: Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-009-8783-9
– volume: 15
  start-page: 471
  year: 2009
  ident: 10.1016/j.biortech.2013.04.032_b0105
  article-title: Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2008.12.012
– volume: 102
  start-page: 100
  year: 2009
  ident: 10.1016/j.biortech.2013.04.032_b0100
  article-title: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22033
– volume: 15
  start-page: 379
  year: 2003
  ident: 10.1016/j.biortech.2013.04.032_b0140
  article-title: Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta)
  publication-title: J. Appl. Phycol.
  doi: 10.1023/A:1026021021774
– volume: 88
  start-page: 3331
  year: 2011
  ident: 10.1016/j.biortech.2013.04.032_b0035
  article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.03.012
– start-page: 1
  year: 2013
  ident: 10.1016/j.biortech.2013.04.032_b0125
  article-title: Nonlinear predictive control for maximization of CO2 bio-fixation by microalgae in a photobioreactor
  publication-title: Bioprocess Biosyst. Eng.
– volume: 28
  start-page: 371
  year: 2010
  ident: 10.1016/j.biortech.2013.04.032_b0070
  article-title: Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2010.04.004
– volume: 81
  start-page: 470
  year: 1996
  ident: 10.1016/j.biortech.2013.04.032_b0055
  article-title: Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-cellection device
  publication-title: J. Ferment. Bioeng.
  doi: 10.1016/0922-338X(96)85151-8
– volume: 109
  start-page: 231
  year: 2011
  ident: 10.1016/j.biortech.2013.04.032_b0085
  article-title: Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-011-9638-0
– volume: 24
  start-page: 1203
  year: 2012
  ident: 10.1016/j.biortech.2013.04.032_b0045
  article-title: Starch determination in Chlorella vulgaris—a comparison between acid and enzymatic methods
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-011-9761-5
– volume: 102
  start-page: 3071
  year: 2011
  ident: 10.1016/j.biortech.2013.04.032_b0120
  article-title: CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.10.047
– volume: 102
  start-page: 4945
  year: 2011
  ident: 10.1016/j.biortech.2013.04.032_b0075
  article-title: Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.01.054
SSID ssj0003172
Score 2.5456257
Snippet •CO2 fixation rate by Chlorella vulgaris was optimized.•Growth parameters were affected by CO2 concentration and aeration rate.•Biochemical composition of...
Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 149
SubjectTerms Aeration
Aeration rate
Aerobiosis
Aerobiosis - drug effects
Biochemistry
Biodegradation, Environmental
Biodegradation, Environmental - drug effects
Biological and medical sciences
Biological mitigation
Biomass
bioreactors
bubbles
Carbon Cycle
Carbon Cycle - drug effects
Carbon Dioxide
Carbon Dioxide - metabolism
Carbon Dioxide - pharmacology
Carbon dioxide sequestration
chemical composition
Chlorella vulgaris
Chlorella vulgaris - drug effects
Chlorella vulgaris - growth & development
Chlorella vulgaris - metabolism
Cultivation
drug effects
Fundamental and applied biological sciences. Psychology
growth & development
Lipid Metabolism
Lipid Metabolism - drug effects
metabolism
Microalgae
microbiology
Optimization
pharmacology
Photobioreactors
Photobioreactors - microbiology
Proteins
Proteins - metabolism
risk reduction
Starch
Starch - metabolism
Strategy
Title Optimization of CO2 bio-mitigation by Chlorella vulgaris
URI https://dx.doi.org/10.1016/j.biortech.2013.04.032
https://www.ncbi.nlm.nih.gov/pubmed/23648764
https://www.proquest.com/docview/1366577410
https://www.proquest.com/docview/1431619512
https://www.proquest.com/docview/1520381998
https://www.proquest.com/docview/1642311398
Volume 139
WOSCitedRecordID wos000321163100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DgkQQjBu5VIFibcqI4njOH4MYwiQ2HgoqG-Rndgo1ZZUvam88dM5ru2sZaxjD7xElW9NfI7t43P5DkJvCBYklCWFJa4SX6e691MRxX5ChExgYYoyUOtkE_TkJB2N2NdO55eLhVme0bpOVys2-a-khjIgtg6dvQG520GhAH4D0eEJZIfnPxH-FDaBcxtduXa2OI0Gomr888rAaUCp0JDGcFHXnk-D5UJHc1SzLfNuBZVGrz-YX1K-Z_XYOOd9gX68bjd2p5OeWaapm8H7Q1f5vdJ-oNICFmj7_DtcV80ga1sMZbWS1ZRbw4Qx4bt6q5jQSSKoU0xYDWMS-CkxIdLtZmugi-x2GRq4UnvyhgZO-tKmbvQL40OYq6n-Zu2Qh9cAtVY1uoWi_cfp1vocOne2ce7GyfU4eRDnMM4e2o8oYWkX7Wefjkef29Mc5Ku1Jcp9zEaU-d_f6CoB596Ez2DZKZMv5eoLzVqwGT5A9-2NxMsMJz1EHVkfoLvZj6lFZZEH6PaRSwsINRsIlo9QusltXqM84DZvm9s88dNruc1z3PYYfftwPDz66NtkHH6R4GTuSxDGuUwZF2VKRRHHvFAxFVTxgkUBx1wpFqkoVmFEqcAqJGUocSIJ4RrkMcZPULduavkMeVQIhSmWDEsSq0THboPUD0dNxEoFzXuIuBnMC4tUrxOmnOW7adhDb9t-E4PVcm0P5giUW4nTSJI58N61fftbFG3_Uut5KAtwD712JM6BRtoQx2vZLGZ5iLW9E2T5YEcbjVERwv0n2tGGRNrQz1i6o00CF6YQlh20eWr47OJNcRKDNBQ_v_HEvUB3Lpb8S9SdTxfyFbpVLOfVbNpHe3SU9u1K-g1bZeZS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+CO2+bio-mitigation+by+Chlorella+vulgaris&rft.jtitle=Bioresource+technology&rft.au=Anjos%2C+Mariana&rft.au=Fernandes%2C+Bruno+D.&rft.au=Vicente%2C+Ant%C3%B3nio+A.&rft.au=Teixeira%2C+Jos%C3%A9+A.&rft.date=2013-07-01&rft.issn=0960-8524&rft.volume=139&rft.spage=149&rft.epage=154&rft_id=info:doi/10.1016%2Fj.biortech.2013.04.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2013_04_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon