Optimization of CO2 bio-mitigation by Chlorella vulgaris
•CO2 fixation rate by Chlorella vulgaris was optimized.•Growth parameters were affected by CO2 concentration and aeration rate.•Biochemical composition of algae did not change under different growth conditions. Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mit...
Saved in:
| Published in: | Bioresource technology Vol. 139; pp. 149 - 154 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
01.07.2013
Elsevier |
| Subjects: | |
| ISSN: | 0960-8524, 1873-2976, 1873-2976 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •CO2 fixation rate by Chlorella vulgaris was optimized.•Growth parameters were affected by CO2 concentration and aeration rate.•Biochemical composition of algae did not change under different growth conditions.
Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation (RCO2) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7vvm). Results showed that the maximum RCO2 (2.22gL−1d−1) was obtained by using 6.5% CO2 and 0.5vvm after 7days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris. |
|---|---|
| AbstractList | Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation ( [Formula: see text] ) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum [Formula: see text] (2.22 gL(-1)d(-1)) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris. •CO2 fixation rate by Chlorella vulgaris was optimized.•Growth parameters were affected by CO2 concentration and aeration rate.•Biochemical composition of algae did not change under different growth conditions. Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation (RCO2) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7vvm). Results showed that the maximum RCO2 (2.22gL−1d−1) was obtained by using 6.5% CO2 and 0.5vvm after 7days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris. Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation ( [Formula: see text] ) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum [Formula: see text] (2.22 gL(-1)d(-1)) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris.Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation ( [Formula: see text] ) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum [Formula: see text] (2.22 gL(-1)d(-1)) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris. Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation (RCO2RCO2) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum RCO2RCO2 (2.22 g L-1 d-1) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30 degree C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris. Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation (RCO2) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7vvm). Results showed that the maximum RCO2 (2.22gL−1d−1) was obtained by using 6.5% CO2 and 0.5vvm after 7days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris. |
| Author | Fernandes, Bruno D. Dragone, Giuliano Teixeira, José A. Vicente, António A. Anjos, Mariana |
| Author_xml | – sequence: 1 givenname: Mariana surname: Anjos fullname: Anjos, Mariana – sequence: 2 givenname: Bruno D. surname: Fernandes fullname: Fernandes, Bruno D. – sequence: 3 givenname: António A. surname: Vicente fullname: Vicente, António A. – sequence: 4 givenname: José A. surname: Teixeira fullname: Teixeira, José A. – sequence: 5 givenname: Giuliano surname: Dragone fullname: Dragone, Giuliano email: gdragone@deb.uminho.pt, giulianodragone@outlook.com |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27477903$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23648764$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0U-L1DAYBvAgK-7s6ldYehG8tL5vkiYNeFAG_8HCXPQc0jTZzdA2Y5JZWD-9HWdWwct4CoTf8xDyXJGLOc6OkBuEBgHF223Th5iKs_cNBWQN8AYYfUZW2ElWUyXFBVmBElB3LeWX5CrnLQAwlPQFuaRM8E4KviLdZlfCFH6aEuJcRV-tN7RaqusplHB3vO0fq_X9GJMbR1M97Mc7k0J-SZ57M2b36nRek--fPn5bf6lvN5-_rj_c1lYwUWoHoIzrlOmHTvaWc2M9l730xioKhhnvFfWUe6RS9sxjO6BjwrWt4S0Hzq7Jm2PvLsUfe5eLnkK2h6fMLu6zRsEpQ2SqO09bCqxD9T-UMxSoWqTnKROilZIjLPTmRPf95Aa9S2Ey6VE_ffcCXp-AydaMPpnZhvzXSS6lArY4cXQ2xZyT838Igj7sr7f6aX992F8D18v-S_DdP0Ebyu8VSzJhPB9_f4y7ZdGH4JLONrjZuiEkZ4seYjhX8QvlXs00 |
| CitedBy_id | crossref_primary_10_1016_j_biortech_2016_04_078 crossref_primary_10_1016_j_scitotenv_2018_11_120 crossref_primary_10_1007_s12010_015_1940_4 crossref_primary_10_1016_j_biortech_2019_122045 crossref_primary_10_1016_j_ecoleng_2016_02_035 crossref_primary_10_1061__ASCE_EE_1943_7870_0001535 crossref_primary_10_1007_s10811_020_02147_8 crossref_primary_10_1016_j_aquaculture_2025_742956 crossref_primary_10_1016_j_jcou_2017_09_004 crossref_primary_10_1016_j_jcou_2017_10_008 crossref_primary_10_1016_j_biortech_2014_11_026 crossref_primary_10_1016_j_biortech_2023_129094 crossref_primary_10_1007_s00248_017_1139_z crossref_primary_10_1016_j_biortech_2024_131105 crossref_primary_10_3390_fermentation8100497 crossref_primary_10_1111_wej_12646 crossref_primary_10_1007_s12649_022_01800_2 crossref_primary_10_1016_j_biortech_2017_08_022 crossref_primary_10_3390_su13169118 crossref_primary_10_1016_j_jbiotec_2022_03_015 crossref_primary_10_1016_j_jece_2020_104022 crossref_primary_10_1080_01490451_2022_2078445 crossref_primary_10_1089_ind_2024_0015 crossref_primary_10_1111_are_14668 crossref_primary_10_1016_j_jcou_2016_12_006 crossref_primary_10_1016_j_jbiotec_2021_08_010 crossref_primary_10_1016_j_biortech_2016_01_087 crossref_primary_10_1007_s10811_017_1156_9 crossref_primary_10_1016_j_jcou_2019_06_008 crossref_primary_10_3389_fceng_2022_998289 crossref_primary_10_1016_j_fuel_2024_132719 crossref_primary_10_1002_ep_13217 crossref_primary_10_1088_1755_1315_1281_1_012049 crossref_primary_10_3390_su12219158 crossref_primary_10_1016_j_jclepro_2018_01_125 crossref_primary_10_1016_j_biombioe_2020_105941 crossref_primary_10_1016_j_chemosphere_2023_137987 crossref_primary_10_3390_environments3030024 crossref_primary_10_1016_j_biortech_2016_07_063 crossref_primary_10_1002_jctb_6714 crossref_primary_10_1016_j_rser_2016_11_045 crossref_primary_10_1016_j_energy_2024_132321 crossref_primary_10_1039_D3RE00221G crossref_primary_10_48022_mbl_2008_08017 crossref_primary_10_12677_OJNS_2023_114066 crossref_primary_10_3390_atmos12081031 crossref_primary_10_1016_j_rser_2020_110306 crossref_primary_10_1016_j_aquaeng_2022_102269 crossref_primary_10_1016_j_biortech_2015_08_124 crossref_primary_10_3390_su13179882 crossref_primary_10_1007_s11356_016_7158_3 crossref_primary_10_1016_j_jwpe_2024_104937 crossref_primary_10_1016_j_bej_2020_107741 crossref_primary_10_1016_j_scs_2018_06_002 crossref_primary_10_1016_j_aqrep_2018_100178 crossref_primary_10_1016_j_renene_2017_04_001 crossref_primary_10_1007_s12155_023_10581_y crossref_primary_10_1088_1755_1315_268_1_012112 crossref_primary_10_3390_c9010035 crossref_primary_10_1002_ep_12420 crossref_primary_10_1007_s43153_021_00100_x crossref_primary_10_1002_cssc_201701611 crossref_primary_10_1016_j_eti_2022_102441 crossref_primary_10_1016_j_bej_2020_107899 crossref_primary_10_4236_cweee_2020_94012 crossref_primary_10_1016_j_jenvman_2016_08_054 crossref_primary_10_3390_su132313061 crossref_primary_10_1080_09670262_2021_1885065 crossref_primary_10_1016_j_bcab_2019_101032 crossref_primary_10_1016_j_enconman_2019_01_077 crossref_primary_10_1007_s11356_025_35958_8 crossref_primary_10_1016_j_biortech_2017_05_194 crossref_primary_10_1016_j_jclepro_2020_124448 crossref_primary_10_1016_j_bcab_2023_102655 crossref_primary_10_1007_s00253_016_7818_8 crossref_primary_10_1016_j_jcou_2019_11_023 crossref_primary_10_1002_ceat_201400790 crossref_primary_10_1002_ceat_201800330 crossref_primary_10_1007_s12649_019_00931_3 crossref_primary_10_1016_j_rser_2021_111396 crossref_primary_10_1007_s13399_019_00580_5 crossref_primary_10_1038_s41598_018_26141_w crossref_primary_10_3390_su13042267 crossref_primary_10_1016_j_biteb_2022_101116 crossref_primary_10_1016_j_procbio_2019_11_022 crossref_primary_10_1016_j_algal_2023_103113 crossref_primary_10_1016_j_egyr_2019_08_032 crossref_primary_10_1016_j_rser_2020_110579 crossref_primary_10_1016_j_energy_2016_03_033 crossref_primary_10_3390_pollutants4010007 crossref_primary_10_1016_j_jcou_2022_102030 crossref_primary_10_1002_cjce_23168 crossref_primary_10_1039_D1RA04845G crossref_primary_10_1016_j_biortech_2015_04_077 crossref_primary_10_1016_j_algal_2020_101799 crossref_primary_10_1016_j_jtice_2023_105012 crossref_primary_10_1080_07388551_2025_2498464 crossref_primary_10_3390_w16010079 crossref_primary_10_1016_j_electacta_2017_12_153 crossref_primary_10_1016_j_energy_2019_116136 crossref_primary_10_1016_j_scitotenv_2019_02_312 crossref_primary_10_1016_j_biortech_2013_06_122 crossref_primary_10_1007_s13399_022_02446_9 crossref_primary_10_1016_j_algal_2024_103506 crossref_primary_10_1016_j_fuel_2013_09_032 crossref_primary_10_1016_j_algal_2015_02_014 crossref_primary_10_1002_jctb_6896 crossref_primary_10_1007_s12010_018_2921_1 crossref_primary_10_1088_1755_1315_1151_1_012042 crossref_primary_10_3390_sym13060997 crossref_primary_10_1016_j_biortech_2025_132315 crossref_primary_10_1128_aem_00841_24 crossref_primary_10_1016_j_jenvman_2019_06_085 crossref_primary_10_1016_j_rser_2021_111620 crossref_primary_10_1016_j_biortech_2017_07_031 crossref_primary_10_1007_s11814_015_0023_0 crossref_primary_10_1016_j_biortech_2015_03_011 crossref_primary_10_1007_s12155_022_10413_5 crossref_primary_10_1007_s00449_020_02350_4 crossref_primary_10_1080_09670262_2016_1193902 crossref_primary_10_3390_su16209001 crossref_primary_10_1016_j_biortech_2021_125313 crossref_primary_10_1016_j_ces_2015_01_008 crossref_primary_10_1016_j_scitotenv_2023_165546 crossref_primary_10_1016_j_biombioe_2015_12_002 crossref_primary_10_1016_j_jcou_2017_01_025 crossref_primary_10_1016_j_biortech_2017_03_041 crossref_primary_10_1016_j_apenergy_2016_06_012 crossref_primary_10_1007_s12010_016_2330_2 crossref_primary_10_1016_j_biteb_2022_100982 crossref_primary_10_1016_j_jclepro_2021_125975 crossref_primary_10_1016_j_fbp_2020_09_010 crossref_primary_10_2166_wst_2022_270 crossref_primary_10_1002_ceat_201700210 crossref_primary_10_1016_j_rser_2018_03_093 crossref_primary_10_1016_j_bej_2017_09_015 crossref_primary_10_1016_j_actaastro_2025_07_033 crossref_primary_10_1016_j_cscee_2025_101239 crossref_primary_10_1016_j_bej_2021_108299 crossref_primary_10_1016_j_psep_2024_06_093 crossref_primary_10_1007_s12649_017_9987_9 crossref_primary_10_1016_j_apenergy_2019_114420 crossref_primary_10_1016_j_seppur_2022_120951 crossref_primary_10_3390_su13042216 crossref_primary_10_1016_j_jece_2020_103935 crossref_primary_10_1088_1742_6596_1378_2_022053 crossref_primary_10_3389_fmars_2025_1644390 crossref_primary_10_1016_j_cej_2021_130884 crossref_primary_10_1016_j_eti_2021_101596 crossref_primary_10_1016_j_algal_2022_102697 crossref_primary_10_1007_s43979_022_00004_w crossref_primary_10_1016_j_chemosphere_2019_125079 crossref_primary_10_1007_s00253_013_5322_y crossref_primary_10_1016_j_rser_2018_06_059 crossref_primary_10_1007_s11356_018_3037_4 crossref_primary_10_1016_j_biortech_2016_04_023 crossref_primary_10_1007_s40518_020_00149_1 crossref_primary_10_1016_j_biortech_2015_04_040 crossref_primary_10_1016_j_ecoenv_2019_109393 crossref_primary_10_1016_j_seppur_2022_122471 crossref_primary_10_1186_s12934_019_1228_4 crossref_primary_10_1016_j_bej_2024_109613 crossref_primary_10_1016_j_chemosphere_2020_129322 crossref_primary_10_1016_j_jenvman_2018_04_031 crossref_primary_10_1007_s40726_020_00151_7 crossref_primary_10_1016_j_biortech_2020_123063 crossref_primary_10_1088_1755_1315_463_1_012162 crossref_primary_10_1007_s10811_018_1676_y crossref_primary_10_1016_j_biombioe_2019_01_022 crossref_primary_10_1016_j_bcab_2025_103739 crossref_primary_10_1007_s11783_020_1343_9 crossref_primary_10_1016_j_algal_2020_102107 crossref_primary_10_3389_fbioe_2022_879476 crossref_primary_10_1016_j_biortech_2016_01_044 crossref_primary_10_1016_j_jclepro_2018_10_040 crossref_primary_10_1016_j_jphotobiol_2020_111822 crossref_primary_10_1016_j_scitotenv_2020_137594 crossref_primary_10_1016_j_jece_2020_103960 crossref_primary_10_1016_j_biortech_2017_06_147 crossref_primary_10_1007_s13369_024_09155_7 crossref_primary_10_1016_j_nexus_2021_100032 crossref_primary_10_1016_j_rser_2017_04_063 crossref_primary_10_1016_j_biortech_2016_08_119 crossref_primary_10_3390_fermentation8070301 crossref_primary_10_1016_j_algal_2018_04_006 crossref_primary_10_1016_j_biortech_2016_04_019 crossref_primary_10_1016_j_biortech_2019_01_035 crossref_primary_10_1016_j_hazadv_2025_100722 crossref_primary_10_1186_s12918_014_0096_0 crossref_primary_10_1002_ep_12835 crossref_primary_10_1016_j_biortech_2018_03_002 crossref_primary_10_1007_s43153_022_00245_3 crossref_primary_10_1016_j_cjche_2018_07_013 crossref_primary_10_1016_j_algal_2018_04_016 |
| Cites_doi | 10.1007/s00253-008-1811-9 10.1038/sj.jim.7000313 10.1007/s10811-005-8701-7 10.1016/j.nbt.2011.12.002 10.1016/j.biosystemseng.2006.09.010 10.1016/j.biortech.2005.02.037 10.1016/j.biortech.2010.02.088 10.1016/j.enconman.2008.09.024 10.1002/ceat.200700141 10.1016/j.biortech.2012.05.055 10.1016/j.biortech.2008.06.061 10.1007/s11157-010-9214-7 10.1007/s00253-008-1518-y 10.1016/j.biotechadv.2010.11.001 10.1007/s12010-009-8783-9 10.1016/j.jiec.2008.12.012 10.1002/bit.22033 10.1023/A:1026021021774 10.1016/j.apenergy.2011.03.012 10.1016/j.tibtech.2010.04.004 10.1016/0922-338X(96)85151-8 10.1007/s11120-011-9638-0 10.1007/s10811-011-9761-5 10.1016/j.biortech.2010.10.047 10.1016/j.biortech.2011.01.054 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7QO 8FD F1W FR3 H95 H98 L.G P64 7SU 7TB C1K KR7 |
| DOI | 10.1016/j.biortech.2013.04.032 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Biotechnology Research Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Biotechnology Research Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Civil Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Agriculture |
| EISSN | 1873-2976 |
| EndPage | 154 |
| ExternalDocumentID | 23648764 27477903 10_1016_j_biortech_2013_04_032 S0960852413006366 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV IQODW SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7QO 8FD F1W FR3 H95 H98 L.G P64 7SU 7TB C1K KR7 |
| ID | FETCH-LOGICAL-c636t-e009ae89abd87bc44acf47b7fac920a3aff92f24f1277b3f15d1e36e55a454043 |
| ISICitedReferencesCount | 214 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321163100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-8524 1873-2976 |
| IngestDate | Tue Oct 07 09:35:37 EDT 2025 Tue Oct 07 09:23:49 EDT 2025 Sun Sep 28 01:36:15 EDT 2025 Sun Sep 28 12:21:16 EDT 2025 Thu Apr 03 07:08:36 EDT 2025 Mon Jul 21 09:17:26 EDT 2025 Tue Nov 18 21:04:28 EST 2025 Sat Nov 29 07:08:03 EST 2025 Fri Feb 23 02:34:27 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Carbon dioxide sequestration Microalgae Aeration rate Biological mitigation Photobioreactors Algae Chlorella vulgaris Carbon dioxide CO2 sequestration Biology Chlorophyceae Optimization Aeration Chlorophyta Photobioreactor Mitigation measure Alga Microorganism |
| Language | English |
| License | CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c636t-e009ae89abd87bc44acf47b7fac920a3aff92f24f1277b3f15d1e36e55a454043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960852413006366 |
| PMID | 23648764 |
| PQID | 1366577410 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1642311398 proquest_miscellaneous_1520381998 proquest_miscellaneous_1431619512 proquest_miscellaneous_1366577410 pubmed_primary_23648764 pascalfrancis_primary_27477903 crossref_primary_10_1016_j_biortech_2013_04_032 crossref_citationtrail_10_1016_j_biortech_2013_04_032 elsevier_sciencedirect_doi_10_1016_j_biortech_2013_04_032 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-01 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington – name: England |
| PublicationTitle | Bioresource technology |
| PublicationTitleAlternate | Bioresour Technol |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Abreu, Fernandes, Vicente, Teixeira, Dragone (b0005) 2012; 118 Doucha, Straka, Lívanský (b0025) 2005; 17 Ryu, Oh, Kim (b0105) 2009; 15 Fan, Zhang, Cheng, Zhang, Tang, Chen (b0040) 2007; 30 Chiu, Kao, Tsai, Ong, Chen, Lin (b0020) 2009; 100 Keffer, Kleinheinz (b0065) 2002; 29 Hirata, Hayashitani, Taya, Tone (b0055) 1996; 81 Lee, Lee, Shin, Park, Kim (b0080) 2000; 10 Rodolfi, Zittelli, Bassi, Padovani, Biondi, Bonini, Tredici (b0100) 2009; 102 Wang, Li, Wu, Lan (b0130) 2008; 79 Milledge (b0090) 2011; 10 Douskova, Doucha, Livansky, Machat, Novak, Umysova, Zachleder, Vitova (b0030) 2009; 82 Yang, Gao (b0140) 2003; 15 Fernandes, Dragone, Abreu, Geada, Teixeira, Vicente (b0045) 2012; 24 Kumar, Dasgupta, Nayak, Lindblad, Das (b0075) 2011; 102 Fernandes, Dragone, Teixeira, Vicente (b0050) 2010; 161 Ho, Chen, Lee, Chang (b0060) 2011; 29 McGinn, Dickinson, Bhatti, Frigon, Guiot, O’Leary (b0085) 2011; 109 Tebbani, Lopes, Filali, Dumur, Pareau (b0125) 2013 Tang, Han, Li, Miao, Zhong (b0120) 2011; 102 Kumar, Ergas, Yuan, Sahu, Zhang, Dewulf, Malcata, van Langenhove (b0070) 2010; 28 Šoštarič, Klinar, Bricelj, Golob, Berovič, Likozar (b0110) 2012; 29 (b0135) 2012; 8 Chae, Hwang, Shin (b0015) 2006; 97 Dragone, Fernandes, Abreu, Vicente, Teixeira (b0035) 2011; 88 Sydney, Sturm, de Carvalho, Thomaz-Soccol, Larroche, Pandey, Soccol (b0115) 2010; 101 Ono, Cuello (b0095) 2007; 96 Bilanovic, Andargatchew, Kroeger, Shelef (b0010) 2009; 50 Šoštarič (10.1016/j.biortech.2013.04.032_b0110) 2012; 29 Rodolfi (10.1016/j.biortech.2013.04.032_b0100) 2009; 102 Keffer (10.1016/j.biortech.2013.04.032_b0065) 2002; 29 Yang (10.1016/j.biortech.2013.04.032_b0140) 2003; 15 Ho (10.1016/j.biortech.2013.04.032_b0060) 2011; 29 Kumar (10.1016/j.biortech.2013.04.032_b0070) 2010; 28 Ryu (10.1016/j.biortech.2013.04.032_b0105) 2009; 15 (10.1016/j.biortech.2013.04.032_b0135) 2012; 8 Lee (10.1016/j.biortech.2013.04.032_b0080) 2000; 10 Abreu (10.1016/j.biortech.2013.04.032_b0005) 2012; 118 McGinn (10.1016/j.biortech.2013.04.032_b0085) 2011; 109 Bilanovic (10.1016/j.biortech.2013.04.032_b0010) 2009; 50 Wang (10.1016/j.biortech.2013.04.032_b0130) 2008; 79 Chiu (10.1016/j.biortech.2013.04.032_b0020) 2009; 100 Milledge (10.1016/j.biortech.2013.04.032_b0090) 2011; 10 Kumar (10.1016/j.biortech.2013.04.032_b0075) 2011; 102 Doucha (10.1016/j.biortech.2013.04.032_b0025) 2005; 17 Fernandes (10.1016/j.biortech.2013.04.032_b0045) 2012; 24 Fernandes (10.1016/j.biortech.2013.04.032_b0050) 2010; 161 Chae (10.1016/j.biortech.2013.04.032_b0015) 2006; 97 Tang (10.1016/j.biortech.2013.04.032_b0120) 2011; 102 Ono (10.1016/j.biortech.2013.04.032_b0095) 2007; 96 Hirata (10.1016/j.biortech.2013.04.032_b0055) 1996; 81 Dragone (10.1016/j.biortech.2013.04.032_b0035) 2011; 88 Fan (10.1016/j.biortech.2013.04.032_b0040) 2007; 30 Sydney (10.1016/j.biortech.2013.04.032_b0115) 2010; 101 Douskova (10.1016/j.biortech.2013.04.032_b0030) 2009; 82 Tebbani (10.1016/j.biortech.2013.04.032_b0125) 2013 |
| References_xml | – volume: 118 start-page: 61 year: 2012 end-page: 66 ident: b0005 article-title: Mixotrophic cultivation of publication-title: Bioresour. Technol. – volume: 102 start-page: 100 year: 2009 end-page: 112 ident: b0100 article-title: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor publication-title: Biotechnol. Bioeng. – volume: 101 start-page: 5892 year: 2010 end-page: 5896 ident: b0115 article-title: Potential carbon dioxide fixation by industrially important microalgae publication-title: Bioresour. Technol. – volume: 29 start-page: 325 year: 2012 end-page: 331 ident: b0110 article-title: Growth, lipid extraction and thermal degradation of the microalga publication-title: New Biotechnol. – volume: 82 start-page: 179 year: 2009 end-page: 185 ident: b0030 article-title: Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs publication-title: Appl. Microbiol. Biotechnol. – volume: 79 start-page: 707 year: 2008 end-page: 718 ident: b0130 article-title: CO publication-title: Appl. Microbiol. Biotechnol. – volume: 102 start-page: 4945 year: 2011 end-page: 4953 ident: b0075 article-title: Development of suitable photobioreactors for CO publication-title: Bioresour. Technol. – volume: 96 start-page: 129 year: 2007 end-page: 134 ident: b0095 article-title: Carbon dioxide mitigation using thermophilic cyanobacteria publication-title: Biosyst. Eng. – volume: 15 start-page: 379 year: 2003 end-page: 389 ident: b0140 article-title: Effects of CO publication-title: J. Appl. Phycol. – volume: 29 start-page: 189 year: 2011 end-page: 198 ident: b0060 article-title: Perspectives on microalgal CO publication-title: Biotechnol. Adv. – volume: 15 start-page: 471 year: 2009 end-page: 475 ident: b0105 article-title: Optimization of the influential factors for the improvement of CO publication-title: J. Ind. Eng. Chem. – volume: 30 start-page: 1094 year: 2007 end-page: 1099 ident: b0040 article-title: Optimization of carbon dioxide fixation by publication-title: Chem. Eng. Technol. – volume: 10 start-page: 338 year: 2000 end-page: 343 ident: b0080 article-title: Effects of NO and SO publication-title: J. Microbiol. Biotechnol. – volume: 24 start-page: 1203 year: 2012 end-page: 1208 ident: b0045 article-title: Starch determination in publication-title: J. Appl. Phycol. – volume: 29 start-page: 275 year: 2002 end-page: 280 ident: b0065 article-title: Use of publication-title: J. Ind. Microbiol. Biotechnol. – volume: 102 start-page: 3071 year: 2011 end-page: 3076 ident: b0120 article-title: CO publication-title: Bioresour. Technol. – volume: 109 start-page: 231 year: 2011 end-page: 247 ident: b0085 article-title: Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations publication-title: Photosynth. Res. – start-page: 1 year: 2013 end-page: 15 ident: b0125 article-title: Nonlinear predictive control for maximization of CO publication-title: Bioprocess Biosyst. Eng. – volume: 10 start-page: 31 year: 2011 end-page: 41 ident: b0090 article-title: Commercial application of microalgae other than as biofuels: a brief review publication-title: Rev. Environ. Sci. Biotechnol. – volume: 28 start-page: 371 year: 2010 end-page: 380 ident: b0070 article-title: Enhanced CO publication-title: Trends Biotechnol. – volume: 17 start-page: 403 year: 2005 end-page: 412 ident: b0025 article-title: Utilization of flue gas for cultivation of microalgae ( publication-title: J. Appl. Phycol. – volume: 50 start-page: 262 year: 2009 end-page: 267 ident: b0010 article-title: Freshwater and marine microalgae sequestering of CO publication-title: Energy Convers. Manage. – volume: 97 start-page: 322 year: 2006 end-page: 329 ident: b0015 article-title: Single cell protein production of publication-title: Bioresour. Technol. – volume: 100 start-page: 833 year: 2009 end-page: 838 ident: b0020 article-title: Lipid accumulation and CO publication-title: Bioresour. Technol. – volume: 8 start-page: 1 year: 2012 end-page: 4 ident: b0135 article-title: The state of greenhouse gases in the atmosphere based on global observations through 2011 publication-title: WMO Annu. Greenhouse Gas Bull. – volume: 161 start-page: 218 year: 2010 end-page: 226 ident: b0050 article-title: Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content publication-title: Appl. Biochem. Biotechnol. – volume: 81 start-page: 470 year: 1996 end-page: 472 ident: b0055 article-title: Carbon dioxide fixation in batch culture of publication-title: J. Ferment. Bioeng. – volume: 88 start-page: 3331 year: 2011 end-page: 3335 ident: b0035 article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae publication-title: Appl. Energy – volume: 82 start-page: 179 year: 2009 ident: 10.1016/j.biortech.2013.04.032_b0030 article-title: Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1811-9 – volume: 29 start-page: 275 year: 2002 ident: 10.1016/j.biortech.2013.04.032_b0065 article-title: Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1038/sj.jim.7000313 – volume: 8 start-page: 1 year: 2012 ident: 10.1016/j.biortech.2013.04.032_b0135 article-title: The state of greenhouse gases in the atmosphere based on global observations through 2011 publication-title: WMO Annu. Greenhouse Gas Bull. – volume: 17 start-page: 403 year: 2005 ident: 10.1016/j.biortech.2013.04.032_b0025 article-title: Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor publication-title: J. Appl. Phycol. doi: 10.1007/s10811-005-8701-7 – volume: 29 start-page: 325 year: 2012 ident: 10.1016/j.biortech.2013.04.032_b0110 article-title: Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris publication-title: New Biotechnol. doi: 10.1016/j.nbt.2011.12.002 – volume: 96 start-page: 129 year: 2007 ident: 10.1016/j.biortech.2013.04.032_b0095 article-title: Carbon dioxide mitigation using thermophilic cyanobacteria publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2006.09.010 – volume: 97 start-page: 322 year: 2006 ident: 10.1016/j.biortech.2013.04.032_b0015 article-title: Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2005.02.037 – volume: 101 start-page: 5892 year: 2010 ident: 10.1016/j.biortech.2013.04.032_b0115 article-title: Potential carbon dioxide fixation by industrially important microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.02.088 – volume: 50 start-page: 262 year: 2009 ident: 10.1016/j.biortech.2013.04.032_b0010 article-title: Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – response surface methodology analysis publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2008.09.024 – volume: 30 start-page: 1094 year: 2007 ident: 10.1016/j.biortech.2013.04.032_b0040 article-title: Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.200700141 – volume: 118 start-page: 61 year: 2012 ident: 10.1016/j.biortech.2013.04.032_b0005 article-title: Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.05.055 – volume: 100 start-page: 833 year: 2009 ident: 10.1016/j.biortech.2013.04.032_b0020 article-title: Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.06.061 – volume: 10 start-page: 338 year: 2000 ident: 10.1016/j.biortech.2013.04.032_b0080 article-title: Effects of NO and SO2 on growth of highly-CO2-tolerant microalgae publication-title: J. Microbiol. Biotechnol. – volume: 10 start-page: 31 year: 2011 ident: 10.1016/j.biortech.2013.04.032_b0090 article-title: Commercial application of microalgae other than as biofuels: a brief review publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-010-9214-7 – volume: 79 start-page: 707 year: 2008 ident: 10.1016/j.biortech.2013.04.032_b0130 article-title: CO2 bio-mitigation using microalgae publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1518-y – volume: 29 start-page: 189 year: 2011 ident: 10.1016/j.biortech.2013.04.032_b0060 article-title: Perspectives on microalgal CO2-emission mitigation systems — a review publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2010.11.001 – volume: 161 start-page: 218 year: 2010 ident: 10.1016/j.biortech.2013.04.032_b0050 article-title: Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8783-9 – volume: 15 start-page: 471 year: 2009 ident: 10.1016/j.biortech.2013.04.032_b0105 article-title: Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2008.12.012 – volume: 102 start-page: 100 year: 2009 ident: 10.1016/j.biortech.2013.04.032_b0100 article-title: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22033 – volume: 15 start-page: 379 year: 2003 ident: 10.1016/j.biortech.2013.04.032_b0140 article-title: Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta) publication-title: J. Appl. Phycol. doi: 10.1023/A:1026021021774 – volume: 88 start-page: 3331 year: 2011 ident: 10.1016/j.biortech.2013.04.032_b0035 article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.03.012 – start-page: 1 year: 2013 ident: 10.1016/j.biortech.2013.04.032_b0125 article-title: Nonlinear predictive control for maximization of CO2 bio-fixation by microalgae in a photobioreactor publication-title: Bioprocess Biosyst. Eng. – volume: 28 start-page: 371 year: 2010 ident: 10.1016/j.biortech.2013.04.032_b0070 article-title: Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2010.04.004 – volume: 81 start-page: 470 year: 1996 ident: 10.1016/j.biortech.2013.04.032_b0055 article-title: Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-cellection device publication-title: J. Ferment. Bioeng. doi: 10.1016/0922-338X(96)85151-8 – volume: 109 start-page: 231 year: 2011 ident: 10.1016/j.biortech.2013.04.032_b0085 article-title: Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations publication-title: Photosynth. Res. doi: 10.1007/s11120-011-9638-0 – volume: 24 start-page: 1203 year: 2012 ident: 10.1016/j.biortech.2013.04.032_b0045 article-title: Starch determination in Chlorella vulgaris—a comparison between acid and enzymatic methods publication-title: J. Appl. Phycol. doi: 10.1007/s10811-011-9761-5 – volume: 102 start-page: 3071 year: 2011 ident: 10.1016/j.biortech.2013.04.032_b0120 article-title: CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.10.047 – volume: 102 start-page: 4945 year: 2011 ident: 10.1016/j.biortech.2013.04.032_b0075 article-title: Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.01.054 |
| SSID | ssj0003172 |
| Score | 2.5456257 |
| Snippet | •CO2 fixation rate by Chlorella vulgaris was optimized.•Growth parameters were affected by CO2 concentration and aeration rate.•Biochemical composition of... Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of... |
| SourceID | proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 149 |
| SubjectTerms | Aeration Aeration rate Aerobiosis Aerobiosis - drug effects Biochemistry Biodegradation, Environmental Biodegradation, Environmental - drug effects Biological and medical sciences Biological mitigation Biomass bioreactors bubbles Carbon Cycle Carbon Cycle - drug effects Carbon Dioxide Carbon Dioxide - metabolism Carbon Dioxide - pharmacology Carbon dioxide sequestration chemical composition Chlorella vulgaris Chlorella vulgaris - drug effects Chlorella vulgaris - growth & development Chlorella vulgaris - metabolism Cultivation drug effects Fundamental and applied biological sciences. Psychology growth & development Lipid Metabolism Lipid Metabolism - drug effects metabolism Microalgae microbiology Optimization pharmacology Photobioreactors Photobioreactors - microbiology Proteins Proteins - metabolism risk reduction Starch Starch - metabolism Strategy |
| Title | Optimization of CO2 bio-mitigation by Chlorella vulgaris |
| URI | https://dx.doi.org/10.1016/j.biortech.2013.04.032 https://www.ncbi.nlm.nih.gov/pubmed/23648764 https://www.proquest.com/docview/1366577410 https://www.proquest.com/docview/1431619512 https://www.proquest.com/docview/1520381998 https://www.proquest.com/docview/1642311398 |
| Volume | 139 |
| WOSCitedRecordID | wos000321163100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DgkQQjBu5VIFibcqI4njOH4MYwiQ2HgoqG-Rndgo1ZZUvam88dM5ru2sZaxjD7xElW9NfI7t43P5DkJvCBYklCWFJa4SX6e691MRxX5ChExgYYoyUOtkE_TkJB2N2NdO55eLhVme0bpOVys2-a-khjIgtg6dvQG520GhAH4D0eEJZIfnPxH-FDaBcxtduXa2OI0Gomr888rAaUCp0JDGcFHXnk-D5UJHc1SzLfNuBZVGrz-YX1K-Z_XYOOd9gX68bjd2p5OeWaapm8H7Q1f5vdJ-oNICFmj7_DtcV80ga1sMZbWS1ZRbw4Qx4bt6q5jQSSKoU0xYDWMS-CkxIdLtZmugi-x2GRq4UnvyhgZO-tKmbvQL40OYq6n-Zu2Qh9cAtVY1uoWi_cfp1vocOne2ce7GyfU4eRDnMM4e2o8oYWkX7Wefjkef29Mc5Ku1Jcp9zEaU-d_f6CoB596Ez2DZKZMv5eoLzVqwGT5A9-2NxMsMJz1EHVkfoLvZj6lFZZEH6PaRSwsINRsIlo9QusltXqM84DZvm9s88dNruc1z3PYYfftwPDz66NtkHH6R4GTuSxDGuUwZF2VKRRHHvFAxFVTxgkUBx1wpFqkoVmFEqcAqJGUocSIJ4RrkMcZPULduavkMeVQIhSmWDEsSq0THboPUD0dNxEoFzXuIuBnMC4tUrxOmnOW7adhDb9t-E4PVcm0P5giUW4nTSJI58N61fftbFG3_Uut5KAtwD712JM6BRtoQx2vZLGZ5iLW9E2T5YEcbjVERwv0n2tGGRNrQz1i6o00CF6YQlh20eWr47OJNcRKDNBQ_v_HEvUB3Lpb8S9SdTxfyFbpVLOfVbNpHe3SU9u1K-g1bZeZS |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+CO2+bio-mitigation+by+Chlorella+vulgaris&rft.jtitle=Bioresource+technology&rft.au=Anjos%2C+Mariana&rft.au=Fernandes%2C+Bruno+D.&rft.au=Vicente%2C+Ant%C3%B3nio+A.&rft.au=Teixeira%2C+Jos%C3%A9+A.&rft.date=2013-07-01&rft.issn=0960-8524&rft.volume=139&rft.spage=149&rft.epage=154&rft_id=info:doi/10.1016%2Fj.biortech.2013.04.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2013_04_032 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |