Tuning attention based long-short term memory neural networks for Parkinson’s disease detection using modified metaheuristics
Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and...
Uložené v:
| Vydané v: | Scientific Reports Ročník 14; číslo 1; s. 4309 - 12 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer Science and Business Media LLC
21.02.2024
Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and postural instability. Diagnosis relies mainly on clinical evaluation, lacking reliable diagnostic tests and being inherently imprecise and subjective. Early detection of PD is crucial for initiating treatments that, while unable to cure the chronic condition, can enhance the life quality of patients and alleviate symptoms. This study explores the potential of utilizing long-short term memory neural networks (LSTM) with attention mechanisms to detect Parkinson’s disease based on dual-task walking test data. Given that the performance of networks is significantly inductance by architecture and training parameter choices, a modified version of the recently introduced crayfish optimization algorithm (COA) is proposed, specifically tailored to the requirements of this investigation. The proposed optimizer is assessed on a publicly accessible real-world clinical gait in Parkinson’s disease dataset, and the results demonstrate its promise, achieving an accuracy of 87.4187 % for the best-constructed models. |
|---|---|
| AbstractList | Parkinson's disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and postural instability. Diagnosis relies mainly on clinical evaluation, lacking reliable diagnostic tests and being inherently imprecise and subjective. Early detection of PD is crucial for initiating treatments that, while unable to cure the chronic condition, can enhance the life quality of patients and alleviate symptoms. This study explores the potential of utilizing long-short term memory neural networks (LSTM) with attention mechanisms to detect Parkinson's disease based on dual-task walking test data. Given that the performance of networks is significantly inductance by architecture and training parameter choices, a modified version of the recently introduced crayfish optimization algorithm (COA) is proposed, specifically tailored to the requirements of this investigation. The proposed optimizer is assessed on a publicly accessible real-world clinical gait in Parkinson's disease dataset, and the results demonstrate its promise, achieving an accuracy of 87.4187 % for the best-constructed models.Parkinson's disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and postural instability. Diagnosis relies mainly on clinical evaluation, lacking reliable diagnostic tests and being inherently imprecise and subjective. Early detection of PD is crucial for initiating treatments that, while unable to cure the chronic condition, can enhance the life quality of patients and alleviate symptoms. This study explores the potential of utilizing long-short term memory neural networks (LSTM) with attention mechanisms to detect Parkinson's disease based on dual-task walking test data. Given that the performance of networks is significantly inductance by architecture and training parameter choices, a modified version of the recently introduced crayfish optimization algorithm (COA) is proposed, specifically tailored to the requirements of this investigation. The proposed optimizer is assessed on a publicly accessible real-world clinical gait in Parkinson's disease dataset, and the results demonstrate its promise, achieving an accuracy of 87.4187 % for the best-constructed models. Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and postural instability. Diagnosis relies mainly on clinical evaluation, lacking reliable diagnostic tests and being inherently imprecise and subjective. Early detection of PD is crucial for initiating treatments that, while unable to cure the chronic condition, can enhance the life quality of patients and alleviate symptoms. This study explores the potential of utilizing long-short term memory neural networks (LSTM) with attention mechanisms to detect Parkinson’s disease based on dual-task walking test data. Given that the performance of networks is significantly inductance by architecture and training parameter choices, a modified version of the recently introduced crayfish optimization algorithm (COA) is proposed, specifically tailored to the requirements of this investigation. The proposed optimizer is assessed on a publicly accessible real-world clinical gait in Parkinson’s disease dataset, and the results demonstrate its promise, achieving an accuracy of 87.4187 % for the best-constructed models. Abstract Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and postural instability. Diagnosis relies mainly on clinical evaluation, lacking reliable diagnostic tests and being inherently imprecise and subjective. Early detection of PD is crucial for initiating treatments that, while unable to cure the chronic condition, can enhance the life quality of patients and alleviate symptoms. This study explores the potential of utilizing long-short term memory neural networks (LSTM) with attention mechanisms to detect Parkinson’s disease based on dual-task walking test data. Given that the performance of networks is significantly inductance by architecture and training parameter choices, a modified version of the recently introduced crayfish optimization algorithm (COA) is proposed, specifically tailored to the requirements of this investigation. The proposed optimizer is assessed on a publicly accessible real-world clinical gait in Parkinson’s disease dataset, and the results demonstrate its promise, achieving an accuracy of 87.4187 % for the best-constructed models. |
| ArticleNumber | 4309 |
| Author | Aleksa Cuk Milos Stankovic Nebojsa Bacanin Vladimir Simic Timea Bezdan Milos Antonijevic Luka Jovanovic Miodrag Zivkovic |
| Author_xml | – sequence: 1 givenname: Aleksa surname: Cuk fullname: Cuk, Aleksa organization: Singidunum University – sequence: 2 givenname: Timea surname: Bezdan fullname: Bezdan, Timea organization: Singidunum University – sequence: 3 givenname: Luka surname: Jovanovic fullname: Jovanovic, Luka organization: Singidunum University – sequence: 4 givenname: Milos surname: Antonijevic fullname: Antonijevic, Milos organization: Singidunum University – sequence: 5 givenname: Milos surname: Stankovic fullname: Stankovic, Milos organization: Singidunum University – sequence: 6 givenname: Vladimir surname: Simic fullname: Simic, Vladimir organization: Faculty of Transport and Traffic Engineering, University of Belgrade, College of Engineering, Department of Industrial Engineering and Management, Yuan Ze University, College of Informatics, Korea University – sequence: 7 givenname: Miodrag surname: Zivkovic fullname: Zivkovic, Miodrag organization: Singidunum University – sequence: 8 givenname: Nebojsa surname: Bacanin fullname: Bacanin, Nebojsa email: nbacanin@singidunum.ac.rs organization: Singidunum University, MEU Research Unit, Middle East University, Faculty of Data Science and Information Technology, INTI International University |
| BackLink | https://cir.nii.ac.jp/crid/1873118015866360832$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/38383690$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1TAQhSNUREvpC7BAkWDBJuCfxHFWqKr4qVQJFmVt2cn4XreJXWwHdFfwGrweT8LcmxbaLqpIsSc558vJeJ4Wez54KIrnlLyhhMu3qaZNJyvC6qqphSTV5lFxwEjdVIwztndrv18cpeQMlpx2RJInxT6XeImOHBQ_z2fv_KrUOYPPLvjS6ARDOQa_qtI6xFxmiFM5wRTipvQwRz3ikn-EeJlKG2L5RcdL51Pwf379TuXgEiChHCBDvwPOafuBKQzOOiRPkPUaMS5l16dnxWOrxwRH1-th8fXD-_OTT9XZ54-nJ8dnVS-4yFWjNWcGCGlrTo0YBq1haLkQsrNdY4kE01qLddNxywAko9oK2g9W1Nb0nB8Wpwt3CPpCXUU36bhRQTu1exDiSumIgUZQhIBpTNsPUMuaWmqA2m5XayMaapD1bmFdzWaCocfGYVPuQO--8W6tVuG7okRK2ohtmtfXhBi-zZCymlzqYRy1hzAnxTpO6pY3vEPpy3vSizBHj71CFeooFS1D1Yvbkf5luTloFMhF0MeQUgSrepf19nwwoRsxmtqOlVrGSuFYqd1YqQ1a2T3rDf1BE19MCcV-BfF_7AddrxaXdw4Dbu9UtviPktBGChwFIjnjfwFK1e_H |
| CitedBy_id | crossref_primary_10_1007_s00521_024_09850_4 crossref_primary_10_1016_j_suscom_2025_101174 crossref_primary_10_1016_j_scitotenv_2024_172195 crossref_primary_10_3233_HIS_240004 crossref_primary_10_3233_HIS_240006 crossref_primary_10_1038_s41531_025_01025_9 crossref_primary_10_1007_s40747_025_01831_x crossref_primary_10_1515_cppm_2025_0010 crossref_primary_10_1016_j_engappai_2025_110342 crossref_primary_10_1038_s41598_024_73932_5 crossref_primary_10_1155_int_5054424 crossref_primary_10_1038_s41598_025_12636_w crossref_primary_10_1111_exsy_13790 crossref_primary_10_1007_s11069_025_07520_9 crossref_primary_10_1038_s41598_025_06951_5 crossref_primary_10_3390_math13111785 crossref_primary_10_1007_s11042_024_19328_z crossref_primary_10_1371_journal_pone_0318021 crossref_primary_10_1007_s40747_024_01592_z crossref_primary_10_3390_axioms13050335 crossref_primary_10_1016_j_asej_2025_103696 |
| Cites_doi | 10.1161/01.CIR.101.23.e215 10.1016/j.advengsoft.2013.12.007 10.1038/s41591-018-0177-5 10.1162/neco.1997.9.8.1735 10.1007/s00362-012-0443-4 10.1007/s11042-019-7469-8 10.1080/01621459.1972.10481232 10.1038/s41591-018-0268-3 10.1007/s00500-020-04834-7 10.1201/b21885-10 10.3390/bioengineering10040413 10.3390/math9161929 10.31181/taci1120231 10.1364/boe.8.003440 10.1016/j.swevo.2021.100973 10.1007/978-3-319-93025-1_4 10.1176/jnp.14.2.223 10.1007/s10898-007-9149-x 10.3390/math10132272 10.1016/j.jns.2020.117003 10.1038/s41598-021-03563-7 10.1038/s41591-019-0447-x 10.1109/4235.585893 10.1016/j.swevo.2011.02.002 10.1007/s10462-023-10567-4 10.1001/jama.2016.17216 10.1016/j.eswa.2022.119162 10.1016/j.ins.2023.119122 10.1016/j.ins.2017.07.015 10.3233/THC-174548 10.1111/exsy.13293 10.3390/diagnostics12010166 10.3390/s23198158 10.1109/CEC48606.2020.9185583 10.1007/978-981-99-3485-0_31 10.1109/ICNN.1995.488968 10.1007/978-981-19-3035-5_56 10.1007/978-3-642-21515-5_36 10.1109/ICECAA55415.2022.9936116 10.1109/ISBI.2017.7950647 10.1109/TELFOR52709.2021.9653282 10.1007/978-3-030-51156-2_111 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RYH C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-54680-y |
| DatabaseName | CiNii Complete Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 2045-2322 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_00eb5b7cde4841f1be1f9b7cdeab651b PMC10881563 38383690 10_1038_s41598_024_54680_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Science Fund of the Republic of Serbia grantid: 7502; 7502; 7373 funderid: http://dx.doi.org/10.13039/501100016047 – fundername: Science Fund of the Republic of Serbia grantid: 7502 – fundername: Science Fund of the Republic of Serbia grantid: 7373 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM RYH SNYQT UKHRP 3V. 88A ACSMW AJTQC ALIPV M0L AAYXX CITATION CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c636t-5aa32be007431b6ddaaed736689f95f08eb7ff366593f2ee821af61cdf64fbc33 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001174275600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:46 EDT 2025 Tue Nov 04 02:06:00 EST 2025 Fri Sep 05 10:36:39 EDT 2025 Tue Oct 07 07:46:58 EDT 2025 Mon Jul 21 05:46:05 EDT 2025 Tue Nov 18 22:30:36 EST 2025 Sat Nov 29 01:58:00 EST 2025 Fri Feb 21 02:39:51 EST 2025 Mon Nov 10 09:17:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Medical diagnosis Long-short term memory neural networks Crayfish optimization algorithm Parkinson’s disease Optimization |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c636t-5aa32be007431b6ddaaed736689f95f08eb7ff366593f2ee821af61cdf64fbc33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2062-924x 0000-0001-9064-7059 |
| OpenAccessLink | https://www.proquest.com/docview/2929311672?pq-origsite=%requestingapplication% |
| PMID | 38383690 |
| PQID | 2929311672 |
| PQPubID | 2041939 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_00eb5b7cde4841f1be1f9b7cdeab651b pubmedcentral_primary_oai_pubmedcentral_nih_gov_10881563 proquest_miscellaneous_2930473539 proquest_journals_2929311672 pubmed_primary_38383690 crossref_citationtrail_10_1038_s41598_024_54680_y crossref_primary_10_1038_s41598_024_54680_y springer_journals_10_1038_s41598_024_54680_y nii_cinii_1873118015866360832 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-21 |
| PublicationDateYYYYMMDD | 2024-02-21 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific Reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Springer Science and Business Media LLC Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Springer Science and Business Media LLC – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Karaboga, Basturk (CR31) 2007; 39 Goldberger (CR33) 2000; 101 Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros, Kim, Raman, Nelson, Mega, Webster (CR6) 2016; 316 Derrac, García, Molina, Herrera (CR40) 2011; 1 Kıymaç, Kaya (CR9) 2023; 213 Shapiro, Francia (CR43) 1972; 67 Mani, Shaker, Jovanovic (CR29) 2023; 1 CR39 CR38 Jia, Rao, Wen, Mirjalili (CR4) 2023; 56 Bacanin, Jovanovic, Zivkovic, Kandasamy, Antonijevic, Deveci, Strumberger (CR28) 2023; 642 Mirjalili, Mirjalili, Lewis (CR37) 2014; 69 CR35 CR11 Parkinson (CR2) 2002; 14 Khan, Ahmad, Yaakob, Shahrior, Rashid, Higa (CR12) 2023; 10 Ardila, Kiraly, Bharadwaj, Choi, Reicher, Peng, Tse, Etemadi, Ye, Corrado, Naidich, Shetty (CR5) 2019; 25 Akram, Li, Ben-Joseph, Budu, Gallagher, Bestwick, Schrag, Noyce, Simonet (CR13) 2022 Williams, Zhao, Hafeez, Wong, Relton, Fang, Alty (CR14) 2020; 416 Hochreiter, Schmidhuber (CR19) 1997; 9 Jovanovic, Antonijevic, Stankovic, Zivkovic, Tanaskovic, Bacanin (CR25) 2022; 10 Mirjalili, Mirjalili (CR34) 2019 Lee, Tyring, Deruyter, Wu, Rokem, Lee (CR10) 2017; 8 Wolpert, Macready (CR30) 1997; 1 Fan, Chen, Xia (CR32) 2020; 24 LaTorre, Molina, Osaba, Poyatos, Del Ser, Herrera (CR42) 2021; 67 Sivaranjini, Sujatha (CR16) 2020; 79 CR26 Eftimov, Korošec, Seljak (CR41) 2017; 417 CR24 Jovanovic, Bacanin, Zivkovic, Antonijevic, Jovanovic, Sretenovic, Strumberger (CR27) 2023; 41 Taheri, Hesamian (CR44) 2013; 54 Paul, Maindarkar, Saxena, Saba, Turk, Kalra, Krishnan, Suri (CR1) 2022; 12 Lei, Zhao, Wen, Luo, Cai, Liu, Lei (CR15) 2018; 26 CR23 CR22 Yang, Slowik (CR36) 2020 Peppes, Panagiotis, Emmanouil, Theodoros, Evgenia, Konstantinos (CR18) 2023; 23 CR20 Bezdan, Stoean, Naamany, Bacanin, Rashid, Zivkovic, Venkatachalam (CR21) 2021; 9 Hannun, Rajpurkar, Haghpanahi, Tison, Bourn, Turakhia, Ng (CR8) 2019; 25 Malatras, Andrea, Ignacio, Laurent, Thierry, Yannis (CR17) 2017 Levine, Fahrbach, Siderowf, Estok, Ludensky, Ross (CR3) 2003; 57 Coudray, Ocampo, Sakellaropoulos, Narula, Snuderl, Fenyö, Moreira, Razavian, Tsirigos (CR7) 2018; 24 AY Hannun (54680_CR8) 2019; 25 S Paul (54680_CR1) 2022; 12 AL Goldberger (54680_CR33) 2000; 101 54680_CR22 H Jia (54680_CR4) 2023; 56 54680_CR20 D Jovanovic (54680_CR25) 2022; 10 V Gulshan (54680_CR6) 2016; 316 L Jovanovic (54680_CR27) 2023; 41 S Williams (54680_CR14) 2020; 416 CS Lee (54680_CR10) 2017; 8 Q Fan (54680_CR32) 2020; 24 D Karaboga (54680_CR31) 2007; 39 A Malatras (54680_CR17) 2017 J Parkinson (54680_CR2) 2002; 14 CB Levine (54680_CR3) 2003; 57 54680_CR35 H Lei (54680_CR15) 2018; 26 X-S Yang (54680_CR36) 2020 S Hochreiter (54680_CR19) 1997; 9 DH Wolpert (54680_CR30) 1997; 1 54680_CR38 54680_CR39 D Ardila (54680_CR5) 2019; 25 54680_CR11 MB Khan (54680_CR12) 2023; 10 T Eftimov (54680_CR41) 2017; 417 J Mani (54680_CR29) 2023; 1 S Mirjalili (54680_CR37) 2014; 69 S Sivaranjini (54680_CR16) 2020; 79 E Kıymaç (54680_CR9) 2023; 213 N Peppes (54680_CR18) 2023; 23 T Bezdan (54680_CR21) 2021; 9 S Mirjalili (54680_CR34) 2019 S Taheri (54680_CR44) 2013; 54 A LaTorre (54680_CR42) 2021; 67 N Akram (54680_CR13) 2022 SS Shapiro (54680_CR43) 1972; 67 N Coudray (54680_CR7) 2018; 24 54680_CR26 54680_CR23 54680_CR24 N Bacanin (54680_CR28) 2023; 642 J Derrac (54680_CR40) 2011; 1 |
| References_xml | – ident: CR22 – volume: 101 start-page: 215 issue: 23 year: 2000 end-page: 220 ident: CR33 article-title: Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: CR39 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR37 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 24 start-page: 1559 issue: 10 year: 2018 end-page: 1567 ident: CR7 article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR19 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 54 start-page: 457 issue: 2 year: 2013 ident: CR44 article-title: A generalization of the Wilcoxon signed-rank test and its applications publication-title: Stat. Pap. doi: 10.1007/s00362-012-0443-4 – volume: 79 start-page: 15467 year: 2020 end-page: 15479 ident: CR16 article-title: Deep learning based diagnosis of Parkinson’s disease using convolutional neural network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-7469-8 – volume: 67 start-page: 215 issue: 337 year: 1972 end-page: 216 ident: CR43 article-title: An approximate analysis of variance test for normality publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1972.10481232 – volume: 25 start-page: 65 issue: 1 year: 2019 end-page: 69 ident: CR8 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – volume: 24 start-page: 14825 year: 2020 end-page: 14843 ident: CR32 article-title: A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems publication-title: Soft. Comput. doi: 10.1007/s00500-020-04834-7 – ident: CR35 – start-page: 237 year: 2017 end-page: 284 ident: CR17 article-title: Analysis of mobile botnets using a hybrid experimental platform publication-title: Intrusion Detection and Prevention for Mobile Ecosystems doi: 10.1201/b21885-10 – volume: 10 start-page: 413 issue: 4 year: 2023 ident: CR12 article-title: Automated diagnosis of diabetic retinopathy using deep learning: On the search of segmented retinal blood vessel images for better performance publication-title: Bioengineering doi: 10.3390/bioengineering10040413 – volume: 9 start-page: 1929 issue: 16 year: 2021 ident: CR21 article-title: Hybrid fruit-fly optimization algorithm with k-means for text document clustering publication-title: Mathematics doi: 10.3390/math9161929 – volume: 1 start-page: 15 issue: 1 year: 2023 end-page: 26 ident: CR29 article-title: Sunspot occurrence forecasting with metaheuristic optimized recurrent neural networks publication-title: Theor. Appl. Comput. Intell. doi: 10.31181/taci1120231 – volume: 8 start-page: 3440 issue: 7 year: 2017 ident: CR10 article-title: Deep-learning based, automated segmentation of macular edema in optical coherence tomography publication-title: Biomed. Opt. Express doi: 10.1364/boe.8.003440 – volume: 67 year: 2021 ident: CR42 article-title: A prescription of methodological guidelines for comparing bio-inspired optimization algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100973 – ident: CR23 – start-page: 43 year: 2019 end-page: 55 ident: CR34 article-title: Genetic Algorithm publication-title: Evolutionary Algorithms and Neural Networks: Theory and Applications doi: 10.1007/978-3-319-93025-1_4 – volume: 14 start-page: 223 issue: 2 year: 2002 end-page: 236 ident: CR2 article-title: An essay on the shaking palsy publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/jnp.14.2.223 – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: CR31 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – volume: 10 start-page: 2272 issue: 13 year: 2022 ident: CR25 article-title: Tuning machine learning models using a group search firefly algorithm for credit card fraud detection publication-title: Mathematics doi: 10.3390/math10132272 – volume: 57 start-page: 1 year: 2003 end-page: 4 ident: CR3 article-title: Diagnosis and treatment of Parkinson’s disease: A systematic review of the literature publication-title: Evid. Rep. Technol. Assess. (Summ.) – volume: 416 year: 2020 ident: CR14 article-title: The discerning eye of computer vision: Can it measure Parkinson’s finger tap bradykinesia? publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2020.117003 – year: 2022 ident: CR13 article-title: Developing and assessing a new web-based tapping test for measuring distal movement in Parkinson’s disease: A distal finger tapping test publication-title: Sci. Rep. doi: 10.1038/s41598-021-03563-7 – start-page: 163 year: 2020 end-page: 174 ident: CR36 publication-title: Firefly Algorithm – ident: CR38 – volume: 25 start-page: 954 issue: 6 year: 2019 end-page: 961 ident: CR5 article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography publication-title: Nat. Med. doi: 10.1038/s41591-019-0447-x – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 ident: CR30 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 1 start-page: 3 issue: 1 year: 2011 end-page: 18 ident: CR40 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 56 start-page: 1919 year: 2023 end-page: 1979 ident: CR4 article-title: Crayfish optimization algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10567-4 – ident: CR11 – volume: 316 start-page: 2402 issue: 22 year: 2016 ident: CR6 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 213 year: 2023 ident: CR9 article-title: A novel automated CNN arrhythmia classifier with memory-enhanced artificial hummingbird algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119162 – volume: 642 year: 2023 ident: CR28 article-title: Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119122 – volume: 417 start-page: 186 year: 2017 end-page: 215 ident: CR41 article-title: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.07.015 – ident: CR26 – ident: CR24 – volume: 26 start-page: 193 issue: S1 year: 2018 end-page: 203 ident: CR15 article-title: Sparse feature learning for multi-class Parkinson’s disease classification publication-title: Technol. Health Care doi: 10.3233/THC-174548 – ident: CR20 – volume: 41 start-page: 13293 year: 2023 ident: CR27 article-title: Machine learning tuning by diversity oriented firefly metaheuristics for industry 4.0 publication-title: Expert Syst. doi: 10.1111/exsy.13293 – volume: 12 start-page: 166 issue: 1 year: 2022 ident: CR1 article-title: Bias investigation in artificial intelligence systems for early detection of Parkinson’s disease: A narrative review publication-title: Diagnostics doi: 10.3390/diagnostics12010166 – volume: 23 start-page: 8158 issue: 19 year: 2023 ident: CR18 article-title: FoGGAN: Generating realistic Parkinson’s disease freezing of gait data using GANs publication-title: Sensors doi: 10.3390/s23198158 – year: 2022 ident: 54680_CR13 publication-title: Sci. Rep. doi: 10.1038/s41598-021-03563-7 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 54680_CR30 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 56 start-page: 1919 year: 2023 ident: 54680_CR4 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10567-4 – volume: 25 start-page: 954 issue: 6 year: 2019 ident: 54680_CR5 publication-title: Nat. Med. doi: 10.1038/s41591-019-0447-x – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 54680_CR19 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 213 year: 2023 ident: 54680_CR9 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119162 – volume: 10 start-page: 2272 issue: 13 year: 2022 ident: 54680_CR25 publication-title: Mathematics doi: 10.3390/math10132272 – ident: 54680_CR39 doi: 10.1109/CEC48606.2020.9185583 – volume: 10 start-page: 413 issue: 4 year: 2023 ident: 54680_CR12 publication-title: Bioengineering doi: 10.3390/bioengineering10040413 – start-page: 237 volume-title: Intrusion Detection and Prevention for Mobile Ecosystems year: 2017 ident: 54680_CR17 doi: 10.1201/b21885-10 – ident: 54680_CR22 doi: 10.1007/978-981-99-3485-0_31 – volume: 642 year: 2023 ident: 54680_CR28 publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119122 – volume: 26 start-page: 193 issue: S1 year: 2018 ident: 54680_CR15 publication-title: Technol. Health Care doi: 10.3233/THC-174548 – volume: 1 start-page: 15 issue: 1 year: 2023 ident: 54680_CR29 publication-title: Theor. Appl. Comput. Intell. doi: 10.31181/taci1120231 – ident: 54680_CR35 doi: 10.1109/ICNN.1995.488968 – ident: 54680_CR26 doi: 10.1007/978-981-19-3035-5_56 – volume: 416 year: 2020 ident: 54680_CR14 publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2020.117003 – volume: 54 start-page: 457 issue: 2 year: 2013 ident: 54680_CR44 publication-title: Stat. Pap. doi: 10.1007/s00362-012-0443-4 – volume: 12 start-page: 166 issue: 1 year: 2022 ident: 54680_CR1 publication-title: Diagnostics doi: 10.3390/diagnostics12010166 – volume: 39 start-page: 459 year: 2007 ident: 54680_CR31 publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – volume: 41 start-page: 13293 year: 2023 ident: 54680_CR27 publication-title: Expert Syst. doi: 10.1111/exsy.13293 – volume: 101 start-page: 215 issue: 23 year: 2000 ident: 54680_CR33 publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 69 start-page: 46 year: 2014 ident: 54680_CR37 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – start-page: 163 volume-title: Firefly Algorithm year: 2020 ident: 54680_CR36 – volume: 23 start-page: 8158 issue: 19 year: 2023 ident: 54680_CR18 publication-title: Sensors doi: 10.3390/s23198158 – volume: 14 start-page: 223 issue: 2 year: 2002 ident: 54680_CR2 publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/jnp.14.2.223 – volume: 67 start-page: 215 issue: 337 year: 1972 ident: 54680_CR43 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1972.10481232 – ident: 54680_CR38 doi: 10.1007/978-3-642-21515-5_36 – volume: 24 start-page: 1559 issue: 10 year: 2018 ident: 54680_CR7 publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 – ident: 54680_CR24 doi: 10.1109/ICECAA55415.2022.9936116 – volume: 8 start-page: 3440 issue: 7 year: 2017 ident: 54680_CR10 publication-title: Biomed. Opt. Express doi: 10.1364/boe.8.003440 – ident: 54680_CR11 doi: 10.1109/ISBI.2017.7950647 – volume: 316 start-page: 2402 issue: 22 year: 2016 ident: 54680_CR6 publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 24 start-page: 14825 year: 2020 ident: 54680_CR32 publication-title: Soft. Comput. doi: 10.1007/s00500-020-04834-7 – volume: 417 start-page: 186 year: 2017 ident: 54680_CR41 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.07.015 – volume: 57 start-page: 1 year: 2003 ident: 54680_CR3 publication-title: Evid. Rep. Technol. Assess. (Summ.) – ident: 54680_CR20 doi: 10.1109/TELFOR52709.2021.9653282 – volume: 9 start-page: 1929 issue: 16 year: 2021 ident: 54680_CR21 publication-title: Mathematics doi: 10.3390/math9161929 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 54680_CR40 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 25 start-page: 65 issue: 1 year: 2019 ident: 54680_CR8 publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – volume: 79 start-page: 15467 year: 2020 ident: 54680_CR16 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-7469-8 – start-page: 43 volume-title: Evolutionary Algorithms and Neural Networks: Theory and Applications year: 2019 ident: 54680_CR34 doi: 10.1007/978-3-319-93025-1_4 – ident: 54680_CR23 doi: 10.1007/978-3-030-51156-2_111 – volume: 67 year: 2021 ident: 54680_CR42 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100973 |
| SSID | ssib045319080 ssib045319113 ssib045318930 ssib045319110 ssib045318929 ssib045318928 ssj0000529419 ssib045319075 |
| Score | 2.5636783 |
| Snippet | Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia,... Parkinson's disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia,... Abstract Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer nii |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4309 |
| SubjectTerms | 631/114/1305 631/114/2164 631/114/2397 631/114/2398 Basal Ganglia Crayfish optimization algorithm Disease detection Dopamine receptors Gait Humanities and Social Sciences Humans Long-short term memory neural networks Medical diagnosis Medicine Movement disorders multidisciplinary Neural networks Neural Networks, Computer Neurodegenerative diseases Optimization Parkinson Disease - diagnosis Parkinson's disease Q Quality of life R Rigidity Science Science (multidisciplinary) Short term memory |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAi4zEDaLGzzhHQFScKg5F6i3ysxupzaImi7Qn-Bv8PX4JM0526fK8oEiRHDuWMx57xpmZbwh5LlUVddKuBGnWlFLVojROq5LxuhZSCZ-0z8km6uNjc3ravL-S6gt9wiZ44Ilwh1UVnXK1D1EayRJzkaUmly30yRzuvlXdXDlMTajevJGsmaNkKmEOB5BUGE3GZamkNlW53pFEGbAf5Evfdb_TNX91mfzJbprF0dFtcmvWI-mrafx3yLXY3yU3psyS63vk88kKf3hQRM_M_owUxVWg58v-rBwWoHNT3JPpBTrarimiWkJv_eQTPlDQZCnGQ-fQsG9fvg50NuTQEMfsvNVT9Jg_oxfL0CVQY6Gn0S7iagZ-vk8-HL09efOunHMtlF4LPZbKWsFdnDQKp0OwNoZaaG2a1KhUmejqlKCsGpF4jIYzmzTzIWmZnBfiAdnrl318RKi21kuto4eTlAxVslwJ6MTx2iYeuC8I29C99TMQOebDOG-zQVyYdpqrFuaqzXPVrgvyYvvOxwmG46-tX-N0blsihHZ-AIzVzozV_ouxCnIAzAAjxDsztUCwPKaMRoQ12AcLsr9hk3Ze90PLQdsUaNqC6mfbalixaIaxfVyusA2aOgUQpSAPJ67ajlQYuHRTFcTs8NvOp-zW9N0io4IzkBdwGBcFeblhzR_j-jOtHv8PWj0hNzmuLAz1Z_tkb7xcxQNy3X8au-HyaV6a3wFwyD_D priority: 102 providerName: Directory of Open Access Journals |
| Title | Tuning attention based long-short term memory neural networks for Parkinson’s disease detection using modified metaheuristics |
| URI | https://cir.nii.ac.jp/crid/1873118015866360832 https://link.springer.com/article/10.1038/s41598-024-54680-y https://www.ncbi.nlm.nih.gov/pubmed/38383690 https://www.proquest.com/docview/2929311672 https://www.proquest.com/docview/2930473539 https://pubmed.ncbi.nlm.nih.gov/PMC10881563 https://doaj.org/article/00eb5b7cde4841f1be1f9b7cdeab651b |
| Volume | 14 |
| WOSCitedRecordID | wos001174275600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELdgBYkX_g8C22Qk3iBabCeO84QY2gQPqyo0pPIU2Y7dVtqS0bRIfYKvwdfjk3DnpJ3Kn72gSpaSuJYd_-y73J1_R8jLNEuc9NLEIM2KOM1yESsjs5jxPBdpJqyXNiSbyIdDNR4Xo97g1vZhles9MWzUVWPRRn7IQY4LdBrwN5dfYswahd7VPoXGTTLAtNmI83ycb2ws6MVKWdGflUmEOmxBXuGZMp7GWSpVEq-25FGg7QcpU89mf9M4_wyc_M17GoTSyb3_Hc59crdXR-nbDj8PyA1XPyS3uwSVq0fk29kS7SYUSThDWCRFqVfR86aexO0UVHeKWzu9wHjdFUVyTGit7kLLWwoKMcVj1eGE2c_vP1ra-4No5RYhBqymGHg_oRdNNfOgDUNLCz11y54_-jH5dHJ89u593KdsiK0UchFnWgtuXKeYGFlVWrsqF1KqwheZT5QzufdwnRXCc-cUZ9pLZisvU2-sELtkp25q95RQqbVNpXQWPsjSKvGaZwIaMTzXnlfcRoStJ660PZ85ptU4L4NfXaiym-wSJrsMk12uIvJq85_Ljs3j2tpHiIdNTWTiDjea-aTsF3aZJM5kJreVS1XKPDOOQSfxWgPmmYnIPqAJeoglYhQ591imJBK1wXYakb01QMp--2jLK3RE5MXmMSx89Obo2jVLrIMeUwEvJSJPOlhueioU_GSRRERtAXZrKNtP6tk0kIszEDvwTS8i8nqN7at-_ftdPbt-GM_JHY6LDrkA2B7ZWcyXbp_csl8Xs3Z-EFZtKNUBGRwdD0cfD4JxBMpTPsIyh3Iw-nA6-vwLfFNS7g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqFgQX3o-FFowEJ1h1ba-93gNCvKpGbaMcglROW--unURqd0s2AeUEf4M_wY_ilzCzj1Th0VsPKFKkfcSynZn5bM_MN4Q8DWVglVOpD2gW-6GMhK9TJX3Go0iEUmROZXWxiajf14eH8WCN_OhyYTCssrOJtaHOywzPyLc54LhApwF_dfrJx6pR6F3tSmg0YrFnF19gy1a97L2D__cZ5zvvh293_baqgJ8poWa-NEbw1DbYmao8N8bmkVBKxy6WLtA2jZyDaxkLx63VnBmnWJY7Fbo0wwNQMPkbIQh7sE42Br2DwcflqQ76zUIWt9k5gdDbFSAkZrHx0Jeh0oG_WEHAulAA4FoxmfxtjftnqOZv_toaBneu_28TeINcaxfc9HWjITfJmi1ukctNCc7FbfJ1OMeTIYo0o3XgJ0Vcz-lxWYz8agybE4rgRU8wInlBkf4TWiua4PmKwpKfYuJ4nUP389v3irYeL5rbWR3lVlBMLRjRkzKfOFjvQ0szM7bzliH7DvlwIaO_S9aLsrD3CVXGZKFSNoMtZ5gHznApoJGUR8bxnGceYZ2gJFnL2I6FQ46TOnJA6KQRrgSEK6mFK1l45PnyN6cNX8m5b79B-Vu-iVzj9Y1yOkpa05UEgU1lGmW5DXXIHEstg07itQGtZqlHtkB6oYf4zXQkkFWQSa2Qig4AwyObnUAmrYGskjNp9MiT5WMwbeivMoUt5_gO-oQFTIpH7jVqsOyp0PBRceARvaIgK0NZfVJMxjV9OgNgZVIJj7zodOmsX_-eqwfnD-MxubI7PNhP9nv9vYfkKkeFR-YDtknWZ9O53SKXss-zSTV91NoMSo4uWst-AWYorHQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLSAuvB-BFowEJ4g2tmPHOSBEaVdURasVKlJvIXHs3ZXapGx2QXuCv8Ff4efwS5jJY6vl0VsPKFKkJI5lOzPzZTwvQp6GMrDKqcwHNIv9UEbC15mSPuNRJEIpjFOmLjYRDYf66CgebZAfXSwMulV2MrEW1HlpcI-8zwHHBRoNeN-1bhGj3cGr008-VpBCS2tXTqMhkQO7_ALqW_Vyfxe-9TPOB3uHb976bYUB3yih5r5MU8Ez2-BopvI8TW0eCaV07GLpAm2zyDm4lrFw3FrNWeoUM7lTocsMboaC-N-MBCg9PbK5szccvV_t8KANLWRxG6kTCN2vAC0xoo2HvgyVDvzlGhrWRQMA44rp9G__u3-6bf5mu60hcXD9f17MG-Ra-yNOXzecc5Ns2OIWudyU5lzeJl8PF7hjRDH9aO0QShHvc3pcFmO_moDSQhHU6Al6Ki8ppgWF3orGqb6ioApQDCivY-t-fvte0dYSRnM7r73fCoohB2N6UuZTB3oA9DRPJ3bRZs6-Qz5cyOzvkl5RFvY-oSpNTaiUNaCKhnngUi4FdJLxKHU858YjrCOaxLSZ3LGgyHFSexQInTSElgChJTWhJUuPPF-9c9rkMTm39Q7S4qol5iCvb5SzcdKKtCQIbCazyOQ21CFzLLMMBonXKXA7yzyyDZQMI8Qz05HAbINMaoUp6gBIPLLVEWfSCs4qOaNMjzxZPQaRh3astLDlAtugrVjAonjkXsMSq5EKDYeKA4_oNWZZm8r6k2I6qdOqMwBcJpXwyIuOr87G9e-1enD-NB6TK8Baybv94cFDcpUj72NCBLZFevPZwm6TS-bzfFrNHrXig5KPF81kvwDglLUO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+attention+based+long-short+term+memory+neural+networks+for+Parkinson%E2%80%99s+disease+detection+using+modified+metaheuristics&rft.jtitle=Scientific+reports&rft.au=Cuk%2C+Aleksa&rft.au=Bezdan%2C+Timea&rft.au=Jovanovic%2C+Luka&rft.au=Antonijevic%2C+Milos&rft.date=2024-02-21&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=4309&rft_id=info:doi/10.1038%2Fs41598-024-54680-y&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |