Discrete elements for 3D microfluidics

Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 111; číslo 42; s. 15013
Hlavní autoři: Bhargava, Krisna C, Thompson, Bryant, Malmstadt, Noah
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 21.10.2014
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.
AbstractList Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.
Author Thompson, Bryant
Bhargava, Krisna C
Malmstadt, Noah
Author_xml – sequence: 1
  givenname: Krisna C
  surname: Bhargava
  fullname: Bhargava, Krisna C
  organization: Mork Family Department of Chemical Engineering and Materials Science and
– sequence: 2
  givenname: Bryant
  surname: Thompson
  fullname: Thompson, Bryant
  organization: Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089
– sequence: 3
  givenname: Noah
  surname: Malmstadt
  fullname: Malmstadt, Noah
  email: malmstad@usc.edu
  organization: Mork Family Department of Chemical Engineering and Materials Science and malmstad@usc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25246553$$D View this record in MEDLINE/PubMed
BookMark eNpNjztLxEAUhQdZcR9a20kqsck6dzKPTCm7vmDBRuswmbkXInmsM0nhvzfgClbnKz4O56zZoh96ZOwa-Ba4Ke6PvUtbkCCNlgBwxlbALeRaWr74x0u2TumTc25VyS_YUightVLFit3um-Qjjphhix32Y8poiFmxz7rGx4HaqQmNT5fsnFyb8OqUG_bx9Pi-e8kPb8-vu4dD7nWhxpw0kXVaIidnNdlQWueNDcS9mVmaEkpSnpuZXLC-lkEQqOCwlDVaEBt299t7jMPXhGmsunkftq3rcZhSBRqUkVqAntWbkzrVHYbqGJvOxe_q75v4Aem6Uf0
CitedBy_id crossref_primary_10_3390_mi10080544
crossref_primary_10_3390_s20185088
crossref_primary_10_1007_s40472_016_0085_x
crossref_primary_10_1007_s00170_025_15860_w
crossref_primary_10_1039_C6AN01055E
crossref_primary_10_1063_1_5124303
crossref_primary_10_3390_mi8050137
crossref_primary_10_1002_advs_202411459
crossref_primary_10_1063_1_4927379
crossref_primary_10_1007_s13206_021_00032_1
crossref_primary_10_1016_j_snb_2018_01_174
crossref_primary_10_1371_journal_pone_0192752
crossref_primary_10_1021_acs_jchemed_0c01115
crossref_primary_10_1002_adhm_201800104
crossref_primary_10_1002_cjoc_70045
crossref_primary_10_1177_25165984241237357
crossref_primary_10_1038_s41378_020_0136_4
crossref_primary_10_1007_s10404_016_1740_3
crossref_primary_10_1002_adbi_202000024
crossref_primary_10_1007_s10404_020_02371_1
crossref_primary_10_1063_1_5096030
crossref_primary_10_1146_annurev_bioeng_092618_020341
crossref_primary_10_1088_1758_5090_8_2_025019
crossref_primary_10_1016_j_foodres_2022_111699
crossref_primary_10_1007_s40684_020_00277_5
crossref_primary_10_3390_mi15030337
crossref_primary_10_1002_elan_201600043
crossref_primary_10_1039_D4LC00970C
crossref_primary_10_1016_j_jcis_2023_06_010
crossref_primary_10_1371_journal_pone_0143636
crossref_primary_10_3390_s17061336
crossref_primary_10_1146_annurev_anchem_091619_102649
crossref_primary_10_1016_j_snb_2017_03_054
crossref_primary_10_1146_annurev_bioeng_082219_033358
crossref_primary_10_1038_s41587_025_02709_6
crossref_primary_10_1038_s41586_019_1701_6
crossref_primary_10_3390_mi11020224
crossref_primary_10_1007_s10404_021_02478_z
crossref_primary_10_1016_j_mtnano_2021_100136
crossref_primary_10_1007_s11814_016_0041_6
crossref_primary_10_1016_j_jcrysgro_2017_01_026
crossref_primary_10_1038_s41467_020_14434_6
crossref_primary_10_1002_admt_201900960
crossref_primary_10_1007_s00604_024_06512_z
crossref_primary_10_3390_mi9090469
crossref_primary_10_1007_s00216_017_0398_3
crossref_primary_10_1134_S106377101704008X
crossref_primary_10_1002_admt_202401254
crossref_primary_10_1002_smll_201702831
crossref_primary_10_1007_s42242_020_00112_5
crossref_primary_10_1002_adem_202100738
crossref_primary_10_3390_mi13111946
crossref_primary_10_1007_s10404_016_1715_4
crossref_primary_10_1371_journal_pone_0160624
crossref_primary_10_1088_1361_6439_aa53ed
crossref_primary_10_3390_mi9020071
crossref_primary_10_1002_adem_201901109
crossref_primary_10_1016_j_trac_2022_116864
crossref_primary_10_1016_j_ces_2019_07_036
crossref_primary_10_1039_C9PY00211A
crossref_primary_10_3390_mi12121467
crossref_primary_10_1016_j_nbt_2017_09_001
crossref_primary_10_1021_acsbiomaterials_9b00953
crossref_primary_10_3390_molecules26092817
crossref_primary_10_1088_1758_5090_aaadd3
crossref_primary_10_1002_admt_201900275
crossref_primary_10_1002_smll_201802769
crossref_primary_10_1109_ACCESS_2023_3302327
crossref_primary_10_1016_j_aca_2016_01_057
crossref_primary_10_1063_1_4958909
crossref_primary_10_1007_s10404_023_02693_w
crossref_primary_10_1016_j_jiec_2018_02_040
crossref_primary_10_1371_journal_pone_0137631
crossref_primary_10_1038_s41378_020_00229_8
crossref_primary_10_1016_j_chempr_2017_01_009
crossref_primary_10_1088_1361_6439_aa6152
crossref_primary_10_1016_j_ces_2018_08_057
crossref_primary_10_1016_j_jmbbm_2023_106352
crossref_primary_10_1016_j_matpr_2023_05_683
crossref_primary_10_1016_j_chroma_2020_461506
crossref_primary_10_1371_journal_pone_0224492
crossref_primary_10_1016_j_snb_2016_04_046
crossref_primary_10_3390_mi10110754
crossref_primary_10_1088_0960_1317_25_8_085013
crossref_primary_10_1016_j_ces_2018_07_021
crossref_primary_10_1371_journal_pone_0158706
crossref_primary_10_1016_j_snb_2018_04_005
crossref_primary_10_1038_srep15609
crossref_primary_10_1016_j_sna_2021_113330
crossref_primary_10_1070_RCR4980
crossref_primary_10_1186_s12929_017_0384_2
crossref_primary_10_7868_S0320791917040098
crossref_primary_10_1002_ange_201504382
crossref_primary_10_1038_s41598_018_36727_z
crossref_primary_10_3390_ma10050520
crossref_primary_10_1371_journal_pone_0152023
crossref_primary_10_3390_mi14081521
crossref_primary_10_1002_adma_201606111
crossref_primary_10_1103_PhysRevResearch_6_023234
crossref_primary_10_1002_admt_201800515
crossref_primary_10_1039_D4RA07234K
crossref_primary_10_1016_j_colsurfb_2019_01_008
crossref_primary_10_1021_acs_analchem_4c00464
crossref_primary_10_1002_adhm_201901773
crossref_primary_10_3390_mi15070843
crossref_primary_10_1016_j_tibtech_2019_03_009
crossref_primary_10_1073_pnas_1712195114
crossref_primary_10_1002_smll_202504750
crossref_primary_10_1186_s12951_023_01846_x
crossref_primary_10_1016_j_cad_2017_12_004
crossref_primary_10_3390_mi9100502
crossref_primary_10_1016_j_trac_2018_06_013
crossref_primary_10_1016_j_mee_2019_111046
crossref_primary_10_1016_j_cclet_2021_05_073
crossref_primary_10_1038_s41378_020_0152_4
crossref_primary_10_1002_advs_201700187
crossref_primary_10_1038_micronano_2016_63
crossref_primary_10_1063_1_4935593
crossref_primary_10_1039_C7CC09649F
crossref_primary_10_1002_elps_202000050
crossref_primary_10_1016_j_sna_2017_10_044
crossref_primary_10_1063_1_4939031
crossref_primary_10_1016_j_trac_2016_09_008
crossref_primary_10_1073_pnas_1612906114
crossref_primary_10_1007_s10404_016_1806_2
crossref_primary_10_1007_s10544_015_9989_y
crossref_primary_10_3390_mi9040196
crossref_primary_10_1038_s41598_022_13165_6
crossref_primary_10_1016_j_cej_2020_126098
crossref_primary_10_1021_acsbiomaterials_7b00401
crossref_primary_10_1371_journal_pone_0139587
crossref_primary_10_1088_1361_6439_ab0e64
crossref_primary_10_1063_1_4905840
crossref_primary_10_1088_0957_4484_27_28_284002
crossref_primary_10_1016_j_mee_2017_12_010
crossref_primary_10_1080_05704928_2017_1287082
crossref_primary_10_1038_s41598_018_26072_6
crossref_primary_10_1038_s41378_023_00585_1
crossref_primary_10_1109_LRA_2020_2976306
crossref_primary_10_3390_s24227282
crossref_primary_10_1002_adfm_202410349
crossref_primary_10_1002_anie_201504382
crossref_primary_10_1016_j_colsurfa_2025_136625
crossref_primary_10_1002_adma_201802739
crossref_primary_10_1002_admt_201900457
crossref_primary_10_1039_C4AN02220C
crossref_primary_10_1016_j_biotechadv_2018_05_001
crossref_primary_10_3390_mi13020188
crossref_primary_10_1063_5_0074156
crossref_primary_10_1088_1361_6439_abec1c
crossref_primary_10_3390_mi10120873
crossref_primary_10_3390_en13112800
crossref_primary_10_1007_s42242_022_00215_1
crossref_primary_10_3390_inventions3030060
crossref_primary_10_3390_en16207120
crossref_primary_10_3390_mi7010011
crossref_primary_10_3390_bios13010026
crossref_primary_10_1007_s11696_021_01782_w
crossref_primary_10_1088_1361_6439_adc313
crossref_primary_10_1016_j_sna_2017_11_056
crossref_primary_10_1002_smtd_201700277
crossref_primary_10_1016_j_addlet_2025_100277
crossref_primary_10_3390_mi13081363
crossref_primary_10_3390_mi6111448
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1414764111
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 25246553
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: 1R01GM093279
– fundername: NIGMS NIH HHS
  grantid: R01 GM093279
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c635t-f6ff9a64e0fa96f9d89ac79df0c7d8947818f5c07478ad9cb4d2f15dae84be912
IEDL.DBID 7X8
ISICitedReferencesCount 265
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343302600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Oct 02 07:37:51 EDT 2025
Thu Apr 03 07:03:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Keywords 3D-printed microfluidics
modular microfluidics
microfluidic circuit design
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c635t-f6ff9a64e0fa96f9d89ac79df0c7d8947818f5c07478ad9cb4d2f15dae84be912
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4210303
PMID 25246553
PQID 1615746216
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1615746216
pubmed_primary_25246553
PublicationCentury 2000
PublicationDate 2014-10-21
PublicationDateYYYYMMDD 2014-10-21
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
References 21850298 - Lab Chip. 2011 Sep 21;11(18):3049-52
24722827 - Lab Chip. 2014 Jun 7;14(11):1834-41
22179505 - Lab Chip. 2012 Feb 7;12(3):515-45
24510161 - Lab Chip. 2014 Apr 7;14(7):1294-301
16871203 - Nature. 2006 Jul 27;442(7101):368-73
18818810 - Lab Chip. 2008 Sep;8(9):1536-43
22875258 - Lab Chip. 2012 Sep 21;12(18):3267-71
18651081 - Lab Chip. 2008 Aug;8(8):1374-8
24622198 - Nature. 2014 Mar 13;507(7491):181-9
15985549 - Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9745-50
21412522 - Lab Chip. 2011 May 7;11(9):1679-87
18651080 - Lab Chip. 2008 Aug;8(8):1365-73
18231657 - Lab Chip. 2008 Feb;8(2):198-220
20877656 - Biomicrofluidics. 2010 Aug 31;4(3):null
References_xml – reference: 24722827 - Lab Chip. 2014 Jun 7;14(11):1834-41
– reference: 16871203 - Nature. 2006 Jul 27;442(7101):368-73
– reference: 21412522 - Lab Chip. 2011 May 7;11(9):1679-87
– reference: 18818810 - Lab Chip. 2008 Sep;8(9):1536-43
– reference: 18651081 - Lab Chip. 2008 Aug;8(8):1374-8
– reference: 24622198 - Nature. 2014 Mar 13;507(7491):181-9
– reference: 18651080 - Lab Chip. 2008 Aug;8(8):1365-73
– reference: 20877656 - Biomicrofluidics. 2010 Aug 31;4(3):null
– reference: 15985549 - Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9745-50
– reference: 24510161 - Lab Chip. 2014 Apr 7;14(7):1294-301
– reference: 22179505 - Lab Chip. 2012 Feb 7;12(3):515-45
– reference: 21850298 - Lab Chip. 2011 Sep 21;11(18):3049-52
– reference: 22875258 - Lab Chip. 2012 Sep 21;12(18):3267-71
– reference: 18231657 - Lab Chip. 2008 Feb;8(2):198-220
SSID ssj0009580
Score 2.5802455
Snippet Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 15013
SubjectTerms Electric Impedance
Electronics
Equipment Design
Fluorocarbons - chemistry
Ketones - chemistry
Materials Testing
Microfluidic Analytical Techniques
Microfluidics - methods
Polyethylene Glycols - chemistry
Title Discrete elements for 3D microfluidics
URI https://www.ncbi.nlm.nih.gov/pubmed/25246553
https://www.proquest.com/docview/1615746216
Volume 111
WOSCitedRecordID wos000343302600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEMeDWg9e1PqsL1YQ0UNwk83mcRKxFi-WHhR6W_KEgm6r2_r5nexu0YsgeAm5BMIkM_mRTP6D0EWWC2uUS7HjGcPMpAabIANWlFiplU-NlnWxCTEcyvFYjdoLt6pNq1zGxDpQu6mNd-Q3kUwE45Tw29k7jlWj4utqW0JjFXUyQJmY0iXG8oformzUCBTBnKl0Ke0jsptZqSuIEoQJzgghv_Nlfc4Mtv47w2202RJmctdsiS5a8eUO6rY-XCVXrdD09S667E8gaAA1J75JIq8SQNgk6ydvMU0vvC4mbmKrPfQyeHi-f8Rt3QRsAR_mOPAQlObMp0ErHpSTSluhXEitgH78XCpDbmvpfO2UNczRQHKnvWTGK0L30Vo5Lf0hSpwQnuYePD84Bu5rbLDKGAOUBuSnsx46X9qigH0ZHxt06aeLqvi2Rg8dNAYtZo2ARkFzGmXbsqM_jD5GG8AoLB4XlJygTgCv9Kdo3X7OJ9XHWb3g0A5HT1-qmrTR
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+elements+for+3D+microfluidics&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bhargava%2C+Krisna+C&rft.au=Thompson%2C+Bryant&rft.au=Malmstadt%2C+Noah&rft.date=2014-10-21&rft.eissn=1091-6490&rft.volume=111&rft.issue=42&rft.spage=15013&rft_id=info:doi/10.1073%2Fpnas.1414764111&rft_id=info%3Apmid%2F25246553&rft_id=info%3Apmid%2F25246553&rft.externalDocID=25246553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon