Discrete elements for 3D microfluidics
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. The...
Uloženo v:
| Vydáno v: | Proceedings of the National Academy of Sciences - PNAS Ročník 111; číslo 42; s. 15013 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
21.10.2014
|
| Témata: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry. |
|---|---|
| AbstractList | Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry. Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry. |
| Author | Thompson, Bryant Bhargava, Krisna C Malmstadt, Noah |
| Author_xml | – sequence: 1 givenname: Krisna C surname: Bhargava fullname: Bhargava, Krisna C organization: Mork Family Department of Chemical Engineering and Materials Science and – sequence: 2 givenname: Bryant surname: Thompson fullname: Thompson, Bryant organization: Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 – sequence: 3 givenname: Noah surname: Malmstadt fullname: Malmstadt, Noah email: malmstad@usc.edu organization: Mork Family Department of Chemical Engineering and Materials Science and malmstad@usc.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25246553$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNjztLxEAUhQdZcR9a20kqsck6dzKPTCm7vmDBRuswmbkXInmsM0nhvzfgClbnKz4O56zZoh96ZOwa-Ba4Ke6PvUtbkCCNlgBwxlbALeRaWr74x0u2TumTc25VyS_YUightVLFit3um-Qjjphhix32Y8poiFmxz7rGx4HaqQmNT5fsnFyb8OqUG_bx9Pi-e8kPb8-vu4dD7nWhxpw0kXVaIidnNdlQWueNDcS9mVmaEkpSnpuZXLC-lkEQqOCwlDVaEBt299t7jMPXhGmsunkftq3rcZhSBRqUkVqAntWbkzrVHYbqGJvOxe_q75v4Aem6Uf0 |
| CitedBy_id | crossref_primary_10_3390_mi10080544 crossref_primary_10_3390_s20185088 crossref_primary_10_1007_s40472_016_0085_x crossref_primary_10_1007_s00170_025_15860_w crossref_primary_10_1039_C6AN01055E crossref_primary_10_1063_1_5124303 crossref_primary_10_3390_mi8050137 crossref_primary_10_1002_advs_202411459 crossref_primary_10_1063_1_4927379 crossref_primary_10_1007_s13206_021_00032_1 crossref_primary_10_1016_j_snb_2018_01_174 crossref_primary_10_1371_journal_pone_0192752 crossref_primary_10_1021_acs_jchemed_0c01115 crossref_primary_10_1002_adhm_201800104 crossref_primary_10_1002_cjoc_70045 crossref_primary_10_1177_25165984241237357 crossref_primary_10_1038_s41378_020_0136_4 crossref_primary_10_1007_s10404_016_1740_3 crossref_primary_10_1002_adbi_202000024 crossref_primary_10_1007_s10404_020_02371_1 crossref_primary_10_1063_1_5096030 crossref_primary_10_1146_annurev_bioeng_092618_020341 crossref_primary_10_1088_1758_5090_8_2_025019 crossref_primary_10_1016_j_foodres_2022_111699 crossref_primary_10_1007_s40684_020_00277_5 crossref_primary_10_3390_mi15030337 crossref_primary_10_1002_elan_201600043 crossref_primary_10_1039_D4LC00970C crossref_primary_10_1016_j_jcis_2023_06_010 crossref_primary_10_1371_journal_pone_0143636 crossref_primary_10_3390_s17061336 crossref_primary_10_1146_annurev_anchem_091619_102649 crossref_primary_10_1016_j_snb_2017_03_054 crossref_primary_10_1146_annurev_bioeng_082219_033358 crossref_primary_10_1038_s41587_025_02709_6 crossref_primary_10_1038_s41586_019_1701_6 crossref_primary_10_3390_mi11020224 crossref_primary_10_1007_s10404_021_02478_z crossref_primary_10_1016_j_mtnano_2021_100136 crossref_primary_10_1007_s11814_016_0041_6 crossref_primary_10_1016_j_jcrysgro_2017_01_026 crossref_primary_10_1038_s41467_020_14434_6 crossref_primary_10_1002_admt_201900960 crossref_primary_10_1007_s00604_024_06512_z crossref_primary_10_3390_mi9090469 crossref_primary_10_1007_s00216_017_0398_3 crossref_primary_10_1134_S106377101704008X crossref_primary_10_1002_admt_202401254 crossref_primary_10_1002_smll_201702831 crossref_primary_10_1007_s42242_020_00112_5 crossref_primary_10_1002_adem_202100738 crossref_primary_10_3390_mi13111946 crossref_primary_10_1007_s10404_016_1715_4 crossref_primary_10_1371_journal_pone_0160624 crossref_primary_10_1088_1361_6439_aa53ed crossref_primary_10_3390_mi9020071 crossref_primary_10_1002_adem_201901109 crossref_primary_10_1016_j_trac_2022_116864 crossref_primary_10_1016_j_ces_2019_07_036 crossref_primary_10_1039_C9PY00211A crossref_primary_10_3390_mi12121467 crossref_primary_10_1016_j_nbt_2017_09_001 crossref_primary_10_1021_acsbiomaterials_9b00953 crossref_primary_10_3390_molecules26092817 crossref_primary_10_1088_1758_5090_aaadd3 crossref_primary_10_1002_admt_201900275 crossref_primary_10_1002_smll_201802769 crossref_primary_10_1109_ACCESS_2023_3302327 crossref_primary_10_1016_j_aca_2016_01_057 crossref_primary_10_1063_1_4958909 crossref_primary_10_1007_s10404_023_02693_w crossref_primary_10_1016_j_jiec_2018_02_040 crossref_primary_10_1371_journal_pone_0137631 crossref_primary_10_1038_s41378_020_00229_8 crossref_primary_10_1016_j_chempr_2017_01_009 crossref_primary_10_1088_1361_6439_aa6152 crossref_primary_10_1016_j_ces_2018_08_057 crossref_primary_10_1016_j_jmbbm_2023_106352 crossref_primary_10_1016_j_matpr_2023_05_683 crossref_primary_10_1016_j_chroma_2020_461506 crossref_primary_10_1371_journal_pone_0224492 crossref_primary_10_1016_j_snb_2016_04_046 crossref_primary_10_3390_mi10110754 crossref_primary_10_1088_0960_1317_25_8_085013 crossref_primary_10_1016_j_ces_2018_07_021 crossref_primary_10_1371_journal_pone_0158706 crossref_primary_10_1016_j_snb_2018_04_005 crossref_primary_10_1038_srep15609 crossref_primary_10_1016_j_sna_2021_113330 crossref_primary_10_1070_RCR4980 crossref_primary_10_1186_s12929_017_0384_2 crossref_primary_10_7868_S0320791917040098 crossref_primary_10_1002_ange_201504382 crossref_primary_10_1038_s41598_018_36727_z crossref_primary_10_3390_ma10050520 crossref_primary_10_1371_journal_pone_0152023 crossref_primary_10_3390_mi14081521 crossref_primary_10_1002_adma_201606111 crossref_primary_10_1103_PhysRevResearch_6_023234 crossref_primary_10_1002_admt_201800515 crossref_primary_10_1039_D4RA07234K crossref_primary_10_1016_j_colsurfb_2019_01_008 crossref_primary_10_1021_acs_analchem_4c00464 crossref_primary_10_1002_adhm_201901773 crossref_primary_10_3390_mi15070843 crossref_primary_10_1016_j_tibtech_2019_03_009 crossref_primary_10_1073_pnas_1712195114 crossref_primary_10_1002_smll_202504750 crossref_primary_10_1186_s12951_023_01846_x crossref_primary_10_1016_j_cad_2017_12_004 crossref_primary_10_3390_mi9100502 crossref_primary_10_1016_j_trac_2018_06_013 crossref_primary_10_1016_j_mee_2019_111046 crossref_primary_10_1016_j_cclet_2021_05_073 crossref_primary_10_1038_s41378_020_0152_4 crossref_primary_10_1002_advs_201700187 crossref_primary_10_1038_micronano_2016_63 crossref_primary_10_1063_1_4935593 crossref_primary_10_1039_C7CC09649F crossref_primary_10_1002_elps_202000050 crossref_primary_10_1016_j_sna_2017_10_044 crossref_primary_10_1063_1_4939031 crossref_primary_10_1016_j_trac_2016_09_008 crossref_primary_10_1073_pnas_1612906114 crossref_primary_10_1007_s10404_016_1806_2 crossref_primary_10_1007_s10544_015_9989_y crossref_primary_10_3390_mi9040196 crossref_primary_10_1038_s41598_022_13165_6 crossref_primary_10_1016_j_cej_2020_126098 crossref_primary_10_1021_acsbiomaterials_7b00401 crossref_primary_10_1371_journal_pone_0139587 crossref_primary_10_1088_1361_6439_ab0e64 crossref_primary_10_1063_1_4905840 crossref_primary_10_1088_0957_4484_27_28_284002 crossref_primary_10_1016_j_mee_2017_12_010 crossref_primary_10_1080_05704928_2017_1287082 crossref_primary_10_1038_s41598_018_26072_6 crossref_primary_10_1038_s41378_023_00585_1 crossref_primary_10_1109_LRA_2020_2976306 crossref_primary_10_3390_s24227282 crossref_primary_10_1002_adfm_202410349 crossref_primary_10_1002_anie_201504382 crossref_primary_10_1016_j_colsurfa_2025_136625 crossref_primary_10_1002_adma_201802739 crossref_primary_10_1002_admt_201900457 crossref_primary_10_1039_C4AN02220C crossref_primary_10_1016_j_biotechadv_2018_05_001 crossref_primary_10_3390_mi13020188 crossref_primary_10_1063_5_0074156 crossref_primary_10_1088_1361_6439_abec1c crossref_primary_10_3390_mi10120873 crossref_primary_10_3390_en13112800 crossref_primary_10_1007_s42242_022_00215_1 crossref_primary_10_3390_inventions3030060 crossref_primary_10_3390_en16207120 crossref_primary_10_3390_mi7010011 crossref_primary_10_3390_bios13010026 crossref_primary_10_1007_s11696_021_01782_w crossref_primary_10_1088_1361_6439_adc313 crossref_primary_10_1016_j_sna_2017_11_056 crossref_primary_10_1002_smtd_201700277 crossref_primary_10_1016_j_addlet_2025_100277 crossref_primary_10_3390_mi13081363 crossref_primary_10_3390_mi6111448 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1414764111 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 25246553 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: 1R01GM093279 – fundername: NIGMS NIH HHS grantid: R01 GM093279 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c635t-f6ff9a64e0fa96f9d89ac79df0c7d8947818f5c07478ad9cb4d2f15dae84be912 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 265 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343302600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Oct 02 07:37:51 EDT 2025 Thu Apr 03 07:03:31 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 42 |
| Keywords | 3D-printed microfluidics modular microfluidics microfluidic circuit design |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c635t-f6ff9a64e0fa96f9d89ac79df0c7d8947818f5c07478ad9cb4d2f15dae84be912 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4210303 |
| PMID | 25246553 |
| PQID | 1615746216 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1615746216 pubmed_primary_25246553 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-21 |
| PublicationDateYYYYMMDD | 2014-10-21 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2014 |
| References | 21850298 - Lab Chip. 2011 Sep 21;11(18):3049-52 24722827 - Lab Chip. 2014 Jun 7;14(11):1834-41 22179505 - Lab Chip. 2012 Feb 7;12(3):515-45 24510161 - Lab Chip. 2014 Apr 7;14(7):1294-301 16871203 - Nature. 2006 Jul 27;442(7101):368-73 18818810 - Lab Chip. 2008 Sep;8(9):1536-43 22875258 - Lab Chip. 2012 Sep 21;12(18):3267-71 18651081 - Lab Chip. 2008 Aug;8(8):1374-8 24622198 - Nature. 2014 Mar 13;507(7491):181-9 15985549 - Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9745-50 21412522 - Lab Chip. 2011 May 7;11(9):1679-87 18651080 - Lab Chip. 2008 Aug;8(8):1365-73 18231657 - Lab Chip. 2008 Feb;8(2):198-220 20877656 - Biomicrofluidics. 2010 Aug 31;4(3):null |
| References_xml | – reference: 24722827 - Lab Chip. 2014 Jun 7;14(11):1834-41 – reference: 16871203 - Nature. 2006 Jul 27;442(7101):368-73 – reference: 21412522 - Lab Chip. 2011 May 7;11(9):1679-87 – reference: 18818810 - Lab Chip. 2008 Sep;8(9):1536-43 – reference: 18651081 - Lab Chip. 2008 Aug;8(8):1374-8 – reference: 24622198 - Nature. 2014 Mar 13;507(7491):181-9 – reference: 18651080 - Lab Chip. 2008 Aug;8(8):1365-73 – reference: 20877656 - Biomicrofluidics. 2010 Aug 31;4(3):null – reference: 15985549 - Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9745-50 – reference: 24510161 - Lab Chip. 2014 Apr 7;14(7):1294-301 – reference: 22179505 - Lab Chip. 2012 Feb 7;12(3):515-45 – reference: 21850298 - Lab Chip. 2011 Sep 21;11(18):3049-52 – reference: 22875258 - Lab Chip. 2012 Sep 21;12(18):3267-71 – reference: 18231657 - Lab Chip. 2008 Feb;8(2):198-220 |
| SSID | ssj0009580 |
| Score | 2.5802455 |
| Snippet | Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 15013 |
| SubjectTerms | Electric Impedance Electronics Equipment Design Fluorocarbons - chemistry Ketones - chemistry Materials Testing Microfluidic Analytical Techniques Microfluidics - methods Polyethylene Glycols - chemistry |
| Title | Discrete elements for 3D microfluidics |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25246553 https://www.proquest.com/docview/1615746216 |
| Volume | 111 |
| WOSCitedRecordID | wos000343302600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEMeDWg9e1PqsL1YQ0UNwk83mcRKxFi-WHhR6W_KEgm6r2_r5nexu0YsgeAm5BMIkM_mRTP6D0EWWC2uUS7HjGcPMpAabIANWlFiplU-NlnWxCTEcyvFYjdoLt6pNq1zGxDpQu6mNd-Q3kUwE45Tw29k7jlWj4utqW0JjFXUyQJmY0iXG8oformzUCBTBnKl0Ke0jsptZqSuIEoQJzgghv_Nlfc4Mtv47w2202RJmctdsiS5a8eUO6rY-XCVXrdD09S667E8gaAA1J75JIq8SQNgk6ydvMU0vvC4mbmKrPfQyeHi-f8Rt3QRsAR_mOPAQlObMp0ErHpSTSluhXEitgH78XCpDbmvpfO2UNczRQHKnvWTGK0L30Vo5Lf0hSpwQnuYePD84Bu5rbLDKGAOUBuSnsx46X9qigH0ZHxt06aeLqvi2Rg8dNAYtZo2ARkFzGmXbsqM_jD5GG8AoLB4XlJygTgCv9Kdo3X7OJ9XHWb3g0A5HT1-qmrTR |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+elements+for+3D+microfluidics&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bhargava%2C+Krisna+C&rft.au=Thompson%2C+Bryant&rft.au=Malmstadt%2C+Noah&rft.date=2014-10-21&rft.eissn=1091-6490&rft.volume=111&rft.issue=42&rft.spage=15013&rft_id=info:doi/10.1073%2Fpnas.1414764111&rft_id=info%3Apmid%2F25246553&rft_id=info%3Apmid%2F25246553&rft.externalDocID=25246553 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |