Computer vision in surgery: from potential to clinical value
Hundreds of millions of operations are performed worldwide each year, and the rising uptake in minimally invasive surgery has enabled fiber optic cameras and robots to become both important tools to conduct surgery and sensors from which to capture information about surgery. Computer vision (CV), th...
Uložené v:
| Vydané v: | NPJ digital medicine Ročník 5; číslo 1; s. 163 - 9 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer Science and Business Media LLC
28.10.2022
Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2398-6352, 2398-6352 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Hundreds of millions of operations are performed worldwide each year, and the rising uptake in minimally invasive surgery has enabled fiber optic cameras and robots to become both important tools to conduct surgery and sensors from which to capture information about surgery. Computer vision (CV), the application of algorithms to analyze and interpret visual data, has become a critical technology through which to study the intraoperative phase of care with the goals of augmenting surgeons’ decision-making processes, supporting safer surgery, and expanding access to surgical care. While much work has been performed on potential use cases, there are currently no CV tools widely used for diagnostic or therapeutic applications in surgery. Using laparoscopic cholecystectomy as an example, we reviewed current CV techniques that have been applied to minimally invasive surgery and their clinical applications. Finally, we discuss the challenges and obstacles that remain to be overcome for broader implementation and adoption of CV in surgery. |
|---|---|
| AbstractList | Hundreds of millions of operations are performed worldwide each year, and the rising uptake in minimally invasive surgery has enabled fiber optic cameras and robots to become both important tools to conduct surgery and sensors from which to capture information about surgery. Computer vision (CV), the application of algorithms to analyze and interpret visual data, has become a critical technology through which to study the intraoperative phase of care with the goals of augmenting surgeons’ decision-making processes, supporting safer surgery, and expanding access to surgical care. While much work has been performed on potential use cases, there are currently no CV tools widely used for diagnostic or therapeutic applications in surgery. Using laparoscopic cholecystectomy as an example, we reviewed current CV techniques that have been applied to minimally invasive surgery and their clinical applications. Finally, we discuss the challenges and obstacles that remain to be overcome for broader implementation and adoption of CV in surgery. Abstract Hundreds of millions of operations are performed worldwide each year, and the rising uptake in minimally invasive surgery has enabled fiber optic cameras and robots to become both important tools to conduct surgery and sensors from which to capture information about surgery. Computer vision (CV), the application of algorithms to analyze and interpret visual data, has become a critical technology through which to study the intraoperative phase of care with the goals of augmenting surgeons’ decision-making processes, supporting safer surgery, and expanding access to surgical care. While much work has been performed on potential use cases, there are currently no CV tools widely used for diagnostic or therapeutic applications in surgery. Using laparoscopic cholecystectomy as an example, we reviewed current CV techniques that have been applied to minimally invasive surgery and their clinical applications. Finally, we discuss the challenges and obstacles that remain to be overcome for broader implementation and adoption of CV in surgery. Hundreds of millions of operations are performed worldwide each year, and the rising uptake in minimally invasive surgery has enabled fiber optic cameras and robots to become both important tools to conduct surgery and sensors from which to capture information about surgery. Computer vision (CV), the application of algorithms to analyze and interpret visual data, has become a critical technology through which to study the intraoperative phase of care with the goals of augmenting surgeons' decision-making processes, supporting safer surgery, and expanding access to surgical care. While much work has been performed on potential use cases, there are currently no CV tools widely used for diagnostic or therapeutic applications in surgery. Using laparoscopic cholecystectomy as an example, we reviewed current CV techniques that have been applied to minimally invasive surgery and their clinical applications. Finally, we discuss the challenges and obstacles that remain to be overcome for broader implementation and adoption of CV in surgery.Hundreds of millions of operations are performed worldwide each year, and the rising uptake in minimally invasive surgery has enabled fiber optic cameras and robots to become both important tools to conduct surgery and sensors from which to capture information about surgery. Computer vision (CV), the application of algorithms to analyze and interpret visual data, has become a critical technology through which to study the intraoperative phase of care with the goals of augmenting surgeons' decision-making processes, supporting safer surgery, and expanding access to surgical care. While much work has been performed on potential use cases, there are currently no CV tools widely used for diagnostic or therapeutic applications in surgery. Using laparoscopic cholecystectomy as an example, we reviewed current CV techniques that have been applied to minimally invasive surgery and their clinical applications. Finally, we discuss the challenges and obstacles that remain to be overcome for broader implementation and adoption of CV in surgery. |
| ArticleNumber | 163 |
| Author | Amin Madani Maria S. Altieri Deepak Alapatt Sergio Alfieri Ivo Boškoski Daniel A. Hashimoto Pietro Mascagni Nicolas Padoy Jay A. Redan Yusuke Watanabe Adnan Alseidi Guido Costamagna Luca Sestini |
| Author_xml | – sequence: 1 givenname: Pietro orcidid: 0000-0001-7288-3023 surname: Mascagni fullname: Mascagni, Pietro email: pietro.mascagni@ihu-strasbourg.eu organization: Gemelli Hospital, Catholic University of the Sacred Heart, IHU-Strasbourg, Institute of Image-Guided Surgery, Global Surgical Artificial Intelligence Collaborative – sequence: 2 givenname: Deepak surname: Alapatt fullname: Alapatt, Deepak organization: ICube, University of Strasbourg, CNRS – sequence: 3 givenname: Luca orcidid: 0000-0002-5993-468X surname: Sestini fullname: Sestini, Luca organization: ICube, University of Strasbourg, CNRS, Department of Electronics, Information and Bioengineering, Politecnico di Milano – sequence: 4 givenname: Maria S. surname: Altieri fullname: Altieri, Maria S. organization: Global Surgical Artificial Intelligence Collaborative, Department of Surgery, University of Pennsylvania Perelman School of Medicine – sequence: 5 givenname: Amin surname: Madani fullname: Madani, Amin organization: Global Surgical Artificial Intelligence Collaborative, Department of Surgery, University Health Network – sequence: 6 givenname: Yusuke surname: Watanabe fullname: Watanabe, Yusuke organization: Global Surgical Artificial Intelligence Collaborative, Department of Surgery, University of Hokkaido – sequence: 7 givenname: Adnan surname: Alseidi fullname: Alseidi, Adnan organization: Global Surgical Artificial Intelligence Collaborative, Department of Surgery, University of California San Francisco – sequence: 8 givenname: Jay A. surname: Redan fullname: Redan, Jay A. organization: Department of Surgery, AdventHealth-Celebration Health – sequence: 9 givenname: Sergio surname: Alfieri fullname: Alfieri, Sergio organization: Fondazione Policlinico Universitario A. Gemelli IRCCS – sequence: 10 givenname: Guido surname: Costamagna fullname: Costamagna, Guido organization: Fondazione Policlinico Universitario A. Gemelli IRCCS – sequence: 11 givenname: Ivo orcidid: 0000-0001-8194-2670 surname: Boškoski fullname: Boškoski, Ivo organization: Fondazione Policlinico Universitario A. Gemelli IRCCS – sequence: 12 givenname: Nicolas surname: Padoy fullname: Padoy, Nicolas organization: IHU-Strasbourg, Institute of Image-Guided Surgery, ICube, University of Strasbourg, CNRS – sequence: 13 givenname: Daniel A. orcidid: 0000-0003-4725-3104 surname: Hashimoto fullname: Hashimoto, Daniel A. organization: Global Surgical Artificial Intelligence Collaborative, Department of Surgery, University of Pennsylvania Perelman School of Medicine |
| BackLink | https://cir.nii.ac.jp/crid/1870020692579907456$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/36307544$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1v1DAQtVAR_aB_gAOKBAcuobbjT4SQ0Kq0lSr1AmfLdZzFq8Re7GSl_nsmm1LaHnrwh8bvvZnxvGN0EFP0CL0j-DPBjTorjEgmakxpjbHEsuav0BFttKpFw-nBo_shOi1lgzGmmCnNxBt02IgGS87YEfq6SsN2Gn2udqGEFKsQqzLltc93X6oup6HaptHHMdi-GlPl-hCDg_vO9pN_i153ti_-9P48Qb9-nP9cXdbXNxdXq-_XtYP8Y01IQzS1LVOCd1p1vhVcNIS3FmuvRUsIwRIWaZXyECduLm4J70Mn6GrRbZPdmG0Og813Jtlg9oGU18bmMbjeGyeoFK1sMIX24IM01lQT1mntibhtMWh9W7S20-3gWwe9Zds_EX36EsNvs047owUBNQECn-4Fcvoz-TKaIRTn-95Gn6ZiKCSHJiiZoR-eQTdpyhG-ClBUS0YV54B6_7iih1L-DQkAdAG4nErJvnuAEGxmM5jFDAbMYPZmMLOqekZyYbQjjBi6Cv3L1GahFsgTwQr_y36R9XFhxRAg17wTJWfXCU251BpLBmP_C05NzrI |
| CitedBy_id | crossref_primary_10_1007_s00259_024_06706_w crossref_primary_10_1016_j_intonc_2025_09_001 crossref_primary_10_1080_00015458_2024_2363599 crossref_primary_10_1007_s00464_023_10375_5 crossref_primary_10_1007_s13304_025_02227_9 crossref_primary_10_1007_s44186_025_00373_7 crossref_primary_10_1097_JS9_0000000000002159 crossref_primary_10_1007_s00104_025_02377_x crossref_primary_10_1002_ags3_12784 crossref_primary_10_1007_s44186_024_00268_z crossref_primary_10_1016_j_mpsur_2024_12_005 crossref_primary_10_1097_SLA_0000000000006287 crossref_primary_10_1038_s41746_023_00882_z crossref_primary_10_1007_s11701_025_02225_4 crossref_primary_10_1007_s12262_025_04365_1 crossref_primary_10_1007_s44186_024_00255_4 crossref_primary_10_3390_jcm14082698 crossref_primary_10_1097_DCR_0000000000003098 crossref_primary_10_4081_sigaf_2025_20 crossref_primary_10_1007_s11701_024_02087_2 crossref_primary_10_3389_fsurg_2023_1266399 crossref_primary_10_1002_aisy_202400753 crossref_primary_10_1007_s10462_024_10929_6 crossref_primary_10_1007_s11548_024_03147_6 crossref_primary_10_1007_s13304_025_02362_3 crossref_primary_10_1016_j_ciresp_2024_04_006 crossref_primary_10_1177_00031348251346539 crossref_primary_10_1055_a_1854_2770 crossref_primary_10_1007_s00464_023_10551_7 crossref_primary_10_1109_JBHI_2023_3306818 crossref_primary_10_1007_s00464_023_10322_4 crossref_primary_10_3390_diagnostics15030274 crossref_primary_10_1136_bmjsit_2024_000334 crossref_primary_10_3390_jcm13072080 crossref_primary_10_1007_s13193_023_01836_3 crossref_primary_10_1007_s13304_024_01853_z crossref_primary_10_1002_adsr_70004 crossref_primary_10_1038_s41591_024_02970_3 crossref_primary_10_1016_j_urolonc_2023_11_002 crossref_primary_10_3389_frai_2024_1375482 crossref_primary_10_1097_JS9_0000000000002713 crossref_primary_10_1109_ACCESS_2025_3566772 crossref_primary_10_1007_s11701_025_02583_z crossref_primary_10_1038_s41597_025_05255_7 crossref_primary_10_1109_LRA_2024_3445654 crossref_primary_10_1016_j_wneu_2024_08_137 crossref_primary_10_1158_2159_8290_CD_23_1199 crossref_primary_10_1093_postmj_qgad095 crossref_primary_10_1016_j_compbiomed_2024_109531 crossref_primary_10_1016_j_jechem_2024_12_063 crossref_primary_10_1016_j_ejso_2025_110010 crossref_primary_10_1016_j_ipha_2024_05_007 crossref_primary_10_1016_j_media_2025_103726 crossref_primary_10_1016_j_amjsurg_2025_116257 crossref_primary_10_1016_j_ejso_2023_106996 crossref_primary_10_32604_cmes_2024_057032 crossref_primary_10_1038_s41598_025_99608_2 crossref_primary_10_7759_cureus_79871 crossref_primary_10_1007_s11701_024_02139_7 crossref_primary_10_1007_s11548_025_03460_8 crossref_primary_10_1038_s41467_023_42451_8 crossref_primary_10_1016_j_cireng_2024_04_009 crossref_primary_10_1038_s41597_025_05646_w crossref_primary_10_3390_diagnostics13213386 crossref_primary_10_1016_j_media_2025_103644 crossref_primary_10_1016_j_meadig_2025_100007 crossref_primary_10_1080_17453054_2025_2462060 crossref_primary_10_3390_jcm13030656 crossref_primary_10_1038_s41597_023_02744_5 crossref_primary_10_1007_s00464_024_10958_w crossref_primary_10_3389_fsurg_2024_1493779 crossref_primary_10_1109_ACCESS_2025_3593635 crossref_primary_10_1007_s00464_025_11685_6 crossref_primary_10_1016_j_jtcvs_2025_04_029 crossref_primary_10_1016_j_media_2023_102844 crossref_primary_10_1016_j_media_2023_102888 crossref_primary_10_1109_TMI_2025_3529294 crossref_primary_10_1016_j_amjsurg_2025_116248 crossref_primary_10_1097_SLA_0000000000006377 crossref_primary_10_1038_s41746_023_00846_3 crossref_primary_10_1159_000545224 crossref_primary_10_1007_s11548_025_03413_1 crossref_primary_10_1016_j_media_2025_103613 crossref_primary_10_1038_s41746_024_01372_6 crossref_primary_10_3389_fimag_2025_1547166 crossref_primary_10_1007_s11548_024_03098_y crossref_primary_10_1002_bco2_452 crossref_primary_10_1038_s41597_025_04642_4 |
| Cites_doi | 10.1007/s00464-020-07548-x 10.1007/s00464-020-07833-9 10.1109/TMI.2019.2931158 10.1007/s11548-022-02559-6 10.1016/j.media.2021.102306 10.1007/s11548-020-02285-x 10.1001/jamasurg.2017.6233 10.1186/1754-9493-5-13 10.1097/SLA.0b013e31828faa66 10.1007/s00464-012-2767-5 10.1016/j.surg.2020.10.039 10.1002/jso.26496 10.1001/jamasurg.2014.1791 10.1016/j.media.2022.102433 10.1016/S2589-7500(22)00063-2 10.1016/j.jamcollsurg.2021.06.018 10.1097/01.SLA.0000060680.92690.E9 10.1016/j.media.2021.102158 10.1109/TNNLS.2017.2677468 10.1016/j.surg.2015.04.011 10.1016/j.surg.2006.01.008 10.1097/SLA.0000000000004736 10.1097/SLA.0000000000003791 10.3390/jimaging7020015 10.1097/SLA.0000000000004351 10.1007/s11548-019-01958-6 10.1148/ryai.2020190043 10.1016/j.surg.2021.10.001 10.1016/j.jss.2017.05.067 10.1136/bmj.e6457 10.1109/TMI.2018.2878055 10.21037/jss.2019.09.31 10.1007/s00464-017-5974-2 10.1002/bjs.11198 10.1007/s00464-011-2011-8 10.1038/s41591-018-0316-z 10.1038/s41467-020-17478-w 10.1016/S0140-6736(15)60806-6 10.1007/s00464-021-08375-4 10.1016/j.amjsurg.2014.02.014 10.1016/j.amjsurg.2020.06.027 10.1038/s41591-020-01192-7 10.1007/s00330-021-07892-z 10.1109/TMI.2016.2593957 10.1109/ACCESS.2021.3068852 10.1016/S2589-7500(22)00003-6 10.1007/s00464-020-07628-y 10.1080/24699322.2021.1937320 10.1109/ACCESS.2020.2997831 10.1007/s11548-019-01962-w 10.1007/s00464-020-08168-1 10.1097/SLA.0000000000004425 10.1007/s11548-021-02441-x 10.1038/s41598-021-84295-6 10.1016/j.gie.2020.06.059 10.1097/SLA.0000000000004594 10.1007/s00464-021-08578-9 10.1056/NEJM199104183241601 10.1109/WACV.2018.00081 10.1097/SLA.0000000000004759 10.1007/s00464-022-09009-z 10.1007/s00464-022-09296-6 10.1109/TMI.2022.3222126 10.1007/978-3-030-69541-5_26 10.1109/cvpr.2009.5206848 10.1016/B978-0-12-818438-7.00012-5 10.1186/s40537-019-0197-0 10.21203/rs.3.rs-1129461/v1 10.1007/s00464-022-09112-1 10.1007/s11548-022-02680-6 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RYH C6C AAYXX CITATION NPM 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1038/s41746-022-00707-5 |
| DatabaseName | CiNii Complete Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Nursing & Allied Health Premium ProQuest One Academic ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2398-6352 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_c6276d73025447469092914f99e16bd0 PMC9616906 36307544 10_1038_s41746_022_00707_5 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Agence Nationale de la Recherche (French National Research Agency) grantid: ANR-20-CHIA-0029-01; ANR-10-IAHU-02 funderid: https://doi.org/10.13039/501100001665 – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 813782 funderid: https://doi.org/10.13039/100010661 – fundername: Agence Nationale de la Recherche (French National Research Agency) grantid: ANR-10-IAHU-02 – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 813782 – fundername: Agence Nationale de la Recherche (French National Research Agency) grantid: ANR-20-CHIA-0029-01 – fundername: ; grantid: 813782 – fundername: ; grantid: ANR-20-CHIA-0029-01; ANR-10-IAHU-02 |
| GroupedDBID | 0R~ 53G 7RV 7X7 8FI 8FJ AAJSJ AASML ABUWG ACGFS ADBBV AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR C6C CCPQU EBLON EBS EIHBH FYUFA GROUPED_DOAJ HMCUK HYE M~E NAO NAPCQ NO~ OK1 PGMZT PHGZM PHGZT PIMPY PPXIY RNT RPM RYH SNYQT UKHRP ACSMW AJTQC ALIPV AAYXX CITATION NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c635t-113192ad4865f98fed656315da09e96d111071101d88e3151c0754d11107d88e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 108 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000876291100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2398-6352 |
| IngestDate | Fri Oct 03 12:49:40 EDT 2025 Tue Nov 04 02:07:11 EST 2025 Sun Nov 09 11:20:04 EST 2025 Tue Oct 07 07:13:14 EDT 2025 Thu Jan 02 22:37:42 EST 2025 Sat Nov 29 02:05:39 EST 2025 Tue Nov 18 22:12:48 EST 2025 Fri Feb 21 02:39:50 EST 2025 Mon Nov 10 09:06:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c635t-113192ad4865f98fed656315da09e96d111071101d88e3151c0754d11107d88e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-7288-3023 0000-0001-8194-2670 0000-0002-5993-468X 0000-0003-4725-3104 |
| OpenAccessLink | https://doaj.org/article/c6276d73025447469092914f99e16bd0 |
| PMID | 36307544 |
| PQID | 2729742855 |
| PQPubID | 5061815 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c6276d73025447469092914f99e16bd0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9616906 proquest_miscellaneous_2730315216 proquest_journals_2729742855 pubmed_primary_36307544 crossref_primary_10_1038_s41746_022_00707_5 crossref_citationtrail_10_1038_s41746_022_00707_5 springer_journals_10_1038_s41746_022_00707_5 nii_cinii_1870020692579907456 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-28 |
| PublicationDateYYYYMMDD | 2022-10-28 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | NPJ digital medicine |
| PublicationTitleAbbrev | npj Digit. Med |
| PublicationTitleAlternate | NPJ Digit Med |
| PublicationYear | 2022 |
| Publisher | Springer Science and Business Media LLC Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Springer Science and Business Media LLC – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Törnqvist, Strömberg, Persson, Nilsson (CR18) 2012; 345 Aspart (CR46) 2022; 17 Rau (CR61) 2019; 14 Zhang, Sheng, Li, Wu (CR67) 2018; 29 CR37 CR36 Ward (CR48) 2021; 35 CR79 CR34 CR78 CR33 Brunt (CR44) 2020; 272 Childers, Maggard-Gibbons (CR3) 2018; 153 CR32 CR31 Castro, Walker, Glocker (CR71) 2020; 11 CR75 Zegers (CR4) 2011; 5 Loukas, Frountzas, Schizas (CR35) 2021; 16 Way (CR43) 2003; 237 CR74 Ward (CR14) 2021; 169 Ward (CR58) 2021; 26 Maier-Hein (CR60) 2022; 76 Rivas-Blanco, Perez-Del-Pulgar, Garcia-Morales, Munoz (CR53) 2021; 9 Mascagni (CR45) 2022; 275 Kannan, Yengera, Mutter, Marescaux, Padoy (CR25) 2020; 39 Feldman (CR12) 2020; 34 Liu (CR72) 2022; 4 CR9 Shi, Jin, Dou, Heng (CR66) 2021; 73 Twinanda, Yengera, Mutter, Marescaux, Padoy (CR47) 2019; 38 Garrow (CR23) 2021; 273 Sun, Jiang, Ren, Guo (CR73) 2020; 8 van Dalen, Legemaate, Schlack, Legemate, Schijven (CR51) 2019; 106 Weiser (CR1) 2015; 385 Lavanchy (CR38) 2021; 11 Richards (CR7) 2015; 150 Gichoya (CR76) 2022; 4 Shimizu, Hachiuma, Kajita, Takatsume, Saito (CR54) 2021; 7 Bardakcioglu, Khan, Aldridge, Chen (CR6) 2013; 258 Mazer, Varban, Montgomery, Awad, Schulman (CR50) 2022; 36 van Leeuwen, Schalekamp, Rutten, van Ginneken, de Rooij (CR16) 2021; 31 CR19 Vannucci (CR40) 2022; 171 Madani (CR42) 2022; 276 Zhang (CR55) 2020; 2020 Goldbraikh, D’Angelo, Pugh, Laufer (CR56) 2022; 17 CR57 CR52 Sharma (CR13) 2018; 223 Zhou (CR8) 2012; 26 Mascagni (CR30) 2021; 274 Pucher (CR17) 2018; 32 Reyes (CR70) 2020; 2 Tokuyasu (CR41) 2021; 35 Mascagni (CR10) 2021; 233 Meara (CR2) 2015; 158 Lewandrowski (CR5) 2020; 6 Anteby (CR22) 2021; 35 Twinanda (CR24) 2017; 36 CR29 Nwoye, Mutter, Marescaux, Padoy (CR68) 2019; 14 CR27 CR26 CR69 Rogers (CR20) 2006; 140 Berci (CR21) 2013; 27 Mavros (CR49) 2014; 208 CR65 Esteva (CR59) 2019; 25 CR64 CR63 CR62 Pierson, Cutler, Leskovec, Mullainathan, Obermeyer (CR77) 2021; 27 Ward (CR39) 2021; 124 Nwoye (CR28) 2022; 78 Pugh, Hashimoto, Korndorffer (CR11) 2021; 221 Hassan (CR15) 2021; 93 TM Ward (707_CR14) 2021; 169 MK Richards (707_CR7) 2015; 150 T Shimizu (707_CR54) 2021; 7 JG Meara (707_CR2) 2015; 158 S Kannan (707_CR25) 2020; 39 P Mascagni (707_CR10) 2021; 233 DC Castro (707_CR71) 2020; 11 E Pierson (707_CR77) 2021; 27 A Madani (707_CR42) 2022; 276 CI Nwoye (707_CR68) 2019; 14 A Esteva (707_CR59) 2019; 25 T Tokuyasu (707_CR41) 2021; 35 CR Garrow (707_CR23) 2021; 273 TM Ward (707_CR48) 2021; 35 G Berci (707_CR21) 2013; 27 G Sharma (707_CR13) 2018; 223 TM Ward (707_CR58) 2021; 26 J Zhang (707_CR67) 2018; 29 C Loukas (707_CR35) 2021; 16 707_CR52 L Maier-Hein (707_CR60) 2022; 76 CP Childers (707_CR3) 2018; 153 F Aspart (707_CR46) 2022; 17 707_CR57 L Mazer (707_CR50) 2022; 36 K-U Lewandrowski (707_CR5) 2020; 6 C Hassan (707_CR15) 2021; 93 KG van Leeuwen (707_CR16) 2021; 31 L Sun (707_CR73) 2020; 8 SO Rogers Jr. (707_CR20) 2006; 140 707_CR19 AP Twinanda (707_CR24) 2017; 36 CI Nwoye (707_CR28) 2022; 78 MN Mavros (707_CR49) 2014; 208 M Zegers (707_CR4) 2011; 5 B Törnqvist (707_CR18) 2012; 345 TG Weiser (707_CR1) 2015; 385 M Vannucci (707_CR40) 2022; 171 LS Feldman (707_CR12) 2020; 34 PH Pucher (707_CR17) 2018; 32 M Zhou (707_CR8) 2012; 26 X Shi (707_CR66) 2021; 73 ASHM van Dalen (707_CR51) 2019; 106 JL Lavanchy (707_CR38) 2021; 11 707_CR62 707_CR63 707_CR64 A Rau (707_CR61) 2019; 14 707_CR65 M Reyes (707_CR70) 2020; 2 O Bardakcioglu (707_CR6) 2013; 258 I Rivas-Blanco (707_CR53) 2021; 9 707_CR69 X Liu (707_CR72) 2022; 4 707_CR26 707_CR27 707_CR29 P Mascagni (707_CR45) 2022; 275 TM Ward (707_CR39) 2021; 124 AP Twinanda (707_CR47) 2019; 38 LM Brunt (707_CR44) 2020; 272 707_CR74 CM Pugh (707_CR11) 2021; 221 707_CR31 707_CR75 P Mascagni (707_CR30) 2021; 274 707_CR32 A Goldbraikh (707_CR56) 2022; 17 707_CR33 707_CR34 LW Way (707_CR43) 2003; 237 707_CR78 707_CR79 707_CR36 707_CR37 R Anteby (707_CR22) 2021; 35 707_CR9 JW Gichoya (707_CR76) 2022; 4 M Zhang (707_CR55) 2020; 2020 |
| References_xml | – volume: 35 start-page: 1651 year: 2021 end-page: 1658 ident: CR41 article-title: Development of an artificial intelligence system using deep learning to indicate anatomical landmarks during laparoscopic cholecystectomy publication-title: Surg. Endosc. doi: 10.1007/s00464-020-07548-x – volume: 35 start-page: 4008 year: 2021 end-page: 4015 ident: CR48 article-title: Automated operative phase identification in peroral endoscopic myotomy publication-title: Surg. Endosc. doi: 10.1007/s00464-020-07833-9 – volume: 39 start-page: 556 year: 2020 end-page: 566 ident: CR25 article-title: Future-State Predicting LSTM for early surgery type recognition publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2931158 – volume: 17 start-page: 437 year: 2022 end-page: 448 ident: CR56 article-title: Video-based fully automatic assessment of open surgery suturing skills publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-022-02559-6 – volume: 76 start-page: 102306 year: 2022 ident: CR60 article-title: Surgical data science - from concepts toward clinical translation publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102306 – ident: CR74 – volume: 16 start-page: 103 year: 2021 end-page: 113 ident: CR35 article-title: Patch-based classification of gallbladder wall vascularity from laparoscopic images using deep learning publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-020-02285-x – ident: CR29 – volume: 153 start-page: e176233 year: 2018 ident: CR3 article-title: Understanding costs of care in the operating room publication-title: JAMA Surg. doi: 10.1001/jamasurg.2017.6233 – volume: 5 year: 2011 ident: CR4 article-title: The incidence, root-causes, and outcomes of adverse events in surgical units: implication for potential prevention strategies publication-title: Patient Saf. Surg. doi: 10.1186/1754-9493-5-13 – volume: 258 start-page: 270 year: 2013 end-page: 274 ident: CR6 article-title: Growth of laparoscopic colectomy in the United States: analysis of regional and socioeconomic factors over time publication-title: Ann. Surg. doi: 10.1097/SLA.0b013e31828faa66 – volume: 27 start-page: 1051 year: 2013 end-page: 1054 ident: CR21 article-title: Laparoscopic cholecystectomy: first, do no harm; second, take care of bile duct stones publication-title: Surg. Endosc. doi: 10.1007/s00464-012-2767-5 – volume: 169 start-page: 1253 year: 2021 end-page: 1256 ident: CR14 article-title: Computer vision in surgery publication-title: Surgery doi: 10.1016/j.surg.2020.10.039 – volume: 124 start-page: 221 year: 2021 end-page: 230 ident: CR39 article-title: Surgical data science and artificial intelligence for surgical education publication-title: J. Surg. Oncol. doi: 10.1002/jso.26496 – volume: 150 start-page: 169 year: 2015 end-page: 172 ident: CR7 article-title: A national review of the frequency of minimally invasive surgery among general surgery residents: assessment of ACGME case logs during 2 decades of general surgery resident training publication-title: JAMA Surg. doi: 10.1001/jamasurg.2014.1791 – ident: CR19 – volume: 78 start-page: 102433 year: 2022 ident: CR28 article-title: Rendezvous: Attention mechanisms for the recognition of surgical action triplets in endoscopic videos publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102433 – volume: 4 start-page: e406 year: 2022 end-page: e414 ident: CR76 article-title: AI recognition of patient race in medical imaging: a modelling study publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(22)00063-2 – ident: CR75 – volume: 233 start-page: 497 year: 2021 end-page: 505 ident: CR10 article-title: Intraoperative time-out to promote the implementation of the critical view of safety in laparoscopic cholecystectomy: A video-based assessment of 343 procedures publication-title: J. Am. Coll. Surg. doi: 10.1016/j.jamcollsurg.2021.06.018 – ident: CR9 – ident: CR57 – volume: 237 start-page: 460 year: 2003 end-page: 469 ident: CR43 article-title: Causes and prevention of laparoscopic bile duct injuries publication-title: Ann. Surg. doi: 10.1097/01.SLA.0000060680.92690.E9 – ident: CR32 – volume: 73 start-page: 102158 year: 2021 ident: CR66 article-title: Semi-supervised learning with progressive unlabeled data excavation for label-efficient surgical workflow recognition publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102158 – ident: CR36 – ident: CR78 – volume: 29 start-page: 1675 year: 2018 end-page: 1688 ident: CR67 article-title: Improving crowdsourced label quality using noise correction publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2677468 – volume: 158 start-page: 3 year: 2015 end-page: 6 ident: CR2 article-title: Global Surgery 2030: Evidence and solutions for achieving health, welfare, and economic development publication-title: Surgery doi: 10.1016/j.surg.2015.04.011 – volume: 140 start-page: 25 year: 2006 end-page: 33 ident: CR20 article-title: Analysis of surgical errors in closed malpractice claims at 4 liability insurers publication-title: Surgery doi: 10.1016/j.surg.2006.01.008 – volume: 274 start-page: e93 year: 2021 end-page: e95 ident: CR30 article-title: A computer vision platform to automatically locate critical events in surgical videos: Documenting safety in laparoscopic cholecystectomy publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000004736 – ident: CR64 – ident: CR26 – volume: 272 start-page: 3 year: 2020 end-page: 23 ident: CR44 article-title: Safe Cholecystectomy Multi-society Practice Guideline and State of the Art Consensus Conference on Prevention of Bile Duct Injury During Cholecystectomy publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000003791 – volume: 7 start-page: 15 year: 2021 ident: CR54 article-title: Hand motion-aware surgical tool localization and classification from an egocentric camera publication-title: J. Imaging doi: 10.3390/jimaging7020015 – volume: 275 start-page: 955 year: 2022 end-page: 961 ident: CR45 article-title: Artificial intelligence for surgical safety publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000004351 – volume: 14 start-page: 1059 year: 2019 end-page: 1067 ident: CR68 article-title: Weakly supervised convolutional LSTM approach for tool tracking in laparoscopic videos publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-019-01958-6 – volume: 2 start-page: e190043 year: 2020 ident: CR70 article-title: On the interpretability of artificial intelligence in radiology: Challenges and opportunities publication-title: Radio. Artif. Intell. doi: 10.1148/ryai.2020190043 – volume: 171 start-page: 1158 year: 2022 end-page: 1167 ident: CR40 article-title: Statistical models to preoperatively predict operative difficulty in laparoscopic cholecystectomy: A systematic review publication-title: Surgery doi: 10.1016/j.surg.2021.10.001 – volume: 223 start-page: 64 year: 2018 end-page: 71 ident: CR13 article-title: A cadaveric procedural anatomy simulation course improves video-based assessment of operative performance publication-title: J. Surg. Res. doi: 10.1016/j.jss.2017.05.067 – volume: 345 start-page: e6457 year: 2012 ident: CR18 article-title: Effect of intended intraoperative cholangiography and early detection of bile duct injury on survival after cholecystectomy: population based cohort study publication-title: BMJ doi: 10.1136/bmj.e6457 – volume: 38 start-page: 1069 year: 2019 end-page: 1078 ident: CR47 article-title: RSDNet: Learning to predict remaining surgery duration from laparoscopic videos without manual annotations publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2878055 – volume: 6 start-page: S260 year: 2020 end-page: S274 ident: CR5 article-title: Regional variations in acceptance, and utilization of minimally invasive spinal surgery techniques among spine surgeons: results of a global survey publication-title: J. Spine Surg. doi: 10.21037/jss.2019.09.31 – ident: CR37 – volume: 32 start-page: 2175 year: 2018 end-page: 2183 ident: CR17 article-title: Outcome trends and safety measures after 30 years of laparoscopic cholecystectomy: a systematic review and pooled data analysis publication-title: Surg. Endosc. doi: 10.1007/s00464-017-5974-2 – volume: 106 start-page: 1433 year: 2019 end-page: 1441 ident: CR51 article-title: Legal perspectives on black box recording devices in the operating environment publication-title: Br. J. Surg. doi: 10.1002/bjs.11198 – volume: 26 start-page: 1128 year: 2012 end-page: 1134 ident: CR8 article-title: Effect of haptic feedback in laparoscopic surgery skill acquisition publication-title: Surg. Endosc. doi: 10.1007/s00464-011-2011-8 – volume: 25 start-page: 24 year: 2019 end-page: 29 ident: CR59 article-title: A guide to deep learning in healthcare publication-title: Nat. Med. doi: 10.1038/s41591-018-0316-z – ident: CR33 – volume: 11 year: 2020 ident: CR71 article-title: Causality matters in medical imaging publication-title: Nat. Commun. doi: 10.1038/s41467-020-17478-w – volume: 385 start-page: S11 year: 2015 ident: CR1 article-title: Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes publication-title: Lancet doi: 10.1016/S0140-6736(15)60806-6 – ident: CR79 – volume: 36 start-page: 1090 year: 2022 end-page: 1097 ident: CR50 article-title: Video is better: why aren’t we using it? A mixed-methods study of the barriers to routine procedural video recording and case review publication-title: Surg. Endosc. doi: 10.1007/s00464-021-08375-4 – volume: 208 start-page: 626 year: 2014 end-page: 631 ident: CR49 article-title: Opening Pandora’s box: understanding the nature, patterns, and 30-day outcomes of intraoperative adverse events publication-title: Am. J. Surg. doi: 10.1016/j.amjsurg.2014.02.014 – ident: CR63 – ident: CR27 – volume: 221 start-page: 13 year: 2021 end-page: 18 ident: CR11 article-title: The what? How? And Who? Of video based assessment publication-title: Am. J. Surg. doi: 10.1016/j.amjsurg.2020.06.027 – ident: CR69 – volume: 27 start-page: 136 year: 2021 end-page: 140 ident: CR77 article-title: An algorithmic approach to reducing unexplained pain disparities in underserved populations publication-title: Nat. Med. doi: 10.1038/s41591-020-01192-7 – volume: 31 start-page: 3797 year: 2021 end-page: 3804 ident: CR16 article-title: Artificial intelligence in radiology: 100 commercially available products and their scientific evidence publication-title: Eur. Radiol. doi: 10.1007/s00330-021-07892-z – ident: CR65 – volume: 36 start-page: 86 year: 2017 end-page: 97 ident: CR24 article-title: EndoNet: A deep architecture for recognition tasks on laparoscopic videos publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2593957 – volume: 9 start-page: 48658 year: 2021 end-page: 48678 ident: CR53 article-title: A review on deep learning in minimally invasive surgery publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3068852 – ident: CR52 – volume: 4 start-page: e384 year: 2022 end-page: e397 ident: CR72 article-title: The medical algorithmic audit publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(22)00003-6 – volume: 34 start-page: 3285 year: 2020 end-page: 3288 ident: CR12 article-title: SAGES Video-Based Assessment (VBA) program: a vision for life-long learning for surgeons publication-title: Surg. Endosc. doi: 10.1007/s00464-020-07628-y – ident: CR31 – volume: 26 start-page: 58 year: 2021 end-page: 68 ident: CR58 article-title: Challenges in surgical video annotation publication-title: Comput Assist Surg. (Abingdon) doi: 10.1080/24699322.2021.1937320 – volume: 8 start-page: 101079 year: 2020 end-page: 101092 ident: CR73 article-title: Edge-cloud computing and artificial intelligence in internet of medical things: Architecture, technology and application publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997831 – volume: 2020 start-page: 1373 year: 2020 end-page: 1382 ident: CR55 article-title: Using computer vision to automate hand detection and tracking of surgeon movements in videos of open surgery publication-title: AMIA Annu. Symp. Proc. – volume: 14 start-page: 1167 year: 2019 end-page: 1176 ident: CR61 article-title: Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-019-01962-w – volume: 35 start-page: 1521 year: 2021 end-page: 1533 ident: CR22 article-title: Deep learning visual analysis in laparoscopic surgery: a systematic review and diagnostic test accuracy meta-analysis publication-title: Surg. Endosc. doi: 10.1007/s00464-020-08168-1 – ident: CR34 – volume: 273 start-page: 684 year: 2021 end-page: 693 ident: CR23 article-title: Machine learning for surgical phase recognition: A systematic review publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000004425 – volume: 17 start-page: 5 year: 2022 end-page: 13 ident: CR46 article-title: ClipAssistNet: bringing real-time safety feedback to operating rooms publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-021-02441-x – ident: CR62 – volume: 11 year: 2021 ident: CR38 article-title: Automation of surgical skill assessment using a three-stage machine learning algorithm publication-title: Sci. Rep. doi: 10.1038/s41598-021-84295-6 – volume: 93 start-page: 77 year: 2021 end-page: 85.e6 ident: CR15 article-title: Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2020.06.059 – volume: 276 start-page: 363 year: 2022 end-page: 369 ident: CR42 article-title: Artificial intelligence for intraoperative guidance publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000004594 – ident: 707_CR27 doi: 10.1007/s00464-021-08578-9 – volume: 35 start-page: 4008 year: 2021 ident: 707_CR48 publication-title: Surg. Endosc. doi: 10.1007/s00464-020-07833-9 – ident: 707_CR19 doi: 10.1056/NEJM199104183241601 – ident: 707_CR37 doi: 10.1109/WACV.2018.00081 – volume: 32 start-page: 2175 year: 2018 ident: 707_CR17 publication-title: Surg. Endosc. doi: 10.1007/s00464-017-5974-2 – ident: 707_CR52 – volume: 26 start-page: 58 year: 2021 ident: 707_CR58 publication-title: Comput Assist Surg. (Abingdon) doi: 10.1080/24699322.2021.1937320 – volume: 273 start-page: 684 year: 2021 ident: 707_CR23 publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000004425 – ident: 707_CR65 – volume: 73 start-page: 102158 year: 2021 ident: 707_CR66 publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102158 – volume: 39 start-page: 556 year: 2020 ident: 707_CR25 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2931158 – volume: 8 start-page: 101079 year: 2020 ident: 707_CR73 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997831 – volume: 6 start-page: S260 year: 2020 ident: 707_CR5 publication-title: J. Spine Surg. doi: 10.21037/jss.2019.09.31 – volume: 38 start-page: 1069 year: 2019 ident: 707_CR47 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2878055 – volume: 27 start-page: 1051 year: 2013 ident: 707_CR21 publication-title: Surg. Endosc. doi: 10.1007/s00464-012-2767-5 – volume: 9 start-page: 48658 year: 2021 ident: 707_CR53 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3068852 – volume: 237 start-page: 460 year: 2003 ident: 707_CR43 publication-title: Ann. Surg. doi: 10.1097/01.SLA.0000060680.92690.E9 – ident: 707_CR78 – volume: 36 start-page: 1090 year: 2022 ident: 707_CR50 publication-title: Surg. Endosc. doi: 10.1007/s00464-021-08375-4 – volume: 35 start-page: 1651 year: 2021 ident: 707_CR41 publication-title: Surg. Endosc. doi: 10.1007/s00464-020-07548-x – volume: 16 start-page: 103 year: 2021 ident: 707_CR35 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-020-02285-x – volume: 345 start-page: e6457 year: 2012 ident: 707_CR18 publication-title: BMJ doi: 10.1136/bmj.e6457 – volume: 25 start-page: 24 year: 2019 ident: 707_CR59 publication-title: Nat. Med. doi: 10.1038/s41591-018-0316-z – volume: 76 start-page: 102306 year: 2022 ident: 707_CR60 publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102306 – volume: 5 year: 2011 ident: 707_CR4 publication-title: Patient Saf. Surg. doi: 10.1186/1754-9493-5-13 – ident: 707_CR75 doi: 10.1097/SLA.0000000000004759 – ident: 707_CR36 doi: 10.1007/s00464-022-09009-z – volume: 272 start-page: 3 year: 2020 ident: 707_CR44 publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000003791 – volume: 26 start-page: 1128 year: 2012 ident: 707_CR8 publication-title: Surg. Endosc. doi: 10.1007/s00464-011-2011-8 – volume: 106 start-page: 1433 year: 2019 ident: 707_CR51 publication-title: Br. J. Surg. doi: 10.1002/bjs.11198 – volume: 153 start-page: e176233 year: 2018 ident: 707_CR3 publication-title: JAMA Surg. doi: 10.1001/jamasurg.2017.6233 – ident: 707_CR9 doi: 10.1007/s00464-022-09296-6 – volume: 275 start-page: 955 year: 2022 ident: 707_CR45 publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000004351 – volume: 34 start-page: 3285 year: 2020 ident: 707_CR12 publication-title: Surg. Endosc. doi: 10.1007/s00464-020-07628-y – ident: 707_CR63 doi: 10.1109/TMI.2022.3222126 – ident: 707_CR32 doi: 10.1007/978-3-030-69541-5_26 – volume: 11 year: 2021 ident: 707_CR38 publication-title: Sci. Rep. doi: 10.1038/s41598-021-84295-6 – volume: 35 start-page: 1521 year: 2021 ident: 707_CR22 publication-title: Surg. Endosc. doi: 10.1007/s00464-020-08168-1 – volume: 208 start-page: 626 year: 2014 ident: 707_CR49 publication-title: Am. J. Surg. doi: 10.1016/j.amjsurg.2014.02.014 – volume: 17 start-page: 437 year: 2022 ident: 707_CR56 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-022-02559-6 – ident: 707_CR69 doi: 10.1109/cvpr.2009.5206848 – volume: 385 start-page: S11 year: 2015 ident: 707_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(15)60806-6 – volume: 171 start-page: 1158 year: 2022 ident: 707_CR40 publication-title: Surgery doi: 10.1016/j.surg.2021.10.001 – volume: 2020 start-page: 1373 year: 2020 ident: 707_CR55 publication-title: AMIA Annu. Symp. Proc. – volume: 36 start-page: 86 year: 2017 ident: 707_CR24 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2593957 – volume: 31 start-page: 3797 year: 2021 ident: 707_CR16 publication-title: Eur. Radiol. doi: 10.1007/s00330-021-07892-z – volume: 258 start-page: 270 year: 2013 ident: 707_CR6 publication-title: Ann. Surg. doi: 10.1097/SLA.0b013e31828faa66 – ident: 707_CR74 doi: 10.1016/B978-0-12-818438-7.00012-5 – volume: 11 year: 2020 ident: 707_CR71 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17478-w – volume: 2 start-page: e190043 year: 2020 ident: 707_CR70 publication-title: Radio. Artif. Intell. doi: 10.1148/ryai.2020190043 – volume: 78 start-page: 102433 year: 2022 ident: 707_CR28 publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102433 – volume: 150 start-page: 169 year: 2015 ident: 707_CR7 publication-title: JAMA Surg. doi: 10.1001/jamasurg.2014.1791 – ident: 707_CR57 – ident: 707_CR62 doi: 10.1186/s40537-019-0197-0 – volume: 233 start-page: 497 year: 2021 ident: 707_CR10 publication-title: J. Am. Coll. Surg. doi: 10.1016/j.jamcollsurg.2021.06.018 – volume: 17 start-page: 5 year: 2022 ident: 707_CR46 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-021-02441-x – volume: 7 start-page: 15 year: 2021 ident: 707_CR54 publication-title: J. Imaging doi: 10.3390/jimaging7020015 – volume: 93 start-page: 77 year: 2021 ident: 707_CR15 publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2020.06.059 – volume: 4 start-page: e406 year: 2022 ident: 707_CR76 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(22)00063-2 – volume: 158 start-page: 3 year: 2015 ident: 707_CR2 publication-title: Surgery doi: 10.1016/j.surg.2015.04.011 – volume: 221 start-page: 13 year: 2021 ident: 707_CR11 publication-title: Am. J. Surg. doi: 10.1016/j.amjsurg.2020.06.027 – volume: 274 start-page: e93 year: 2021 ident: 707_CR30 publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000004736 – ident: 707_CR29 doi: 10.21203/rs.3.rs-1129461/v1 – ident: 707_CR26 – volume: 140 start-page: 25 year: 2006 ident: 707_CR20 publication-title: Surgery doi: 10.1016/j.surg.2006.01.008 – volume: 124 start-page: 221 year: 2021 ident: 707_CR39 publication-title: J. Surg. Oncol. doi: 10.1002/jso.26496 – ident: 707_CR31 doi: 10.1007/s00464-022-09112-1 – ident: 707_CR34 doi: 10.1007/s11548-022-02680-6 – ident: 707_CR64 – volume: 169 start-page: 1253 year: 2021 ident: 707_CR14 publication-title: Surgery doi: 10.1016/j.surg.2020.10.039 – volume: 27 start-page: 136 year: 2021 ident: 707_CR77 publication-title: Nat. Med. doi: 10.1038/s41591-020-01192-7 – volume: 14 start-page: 1059 year: 2019 ident: 707_CR68 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-019-01958-6 – ident: 707_CR33 – volume: 4 start-page: e384 year: 2022 ident: 707_CR72 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(22)00003-6 – volume: 276 start-page: 363 year: 2022 ident: 707_CR42 publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000004594 – volume: 223 start-page: 64 year: 2018 ident: 707_CR13 publication-title: J. Surg. Res. doi: 10.1016/j.jss.2017.05.067 – volume: 14 start-page: 1167 year: 2019 ident: 707_CR61 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-019-01962-w – volume: 29 start-page: 1675 year: 2018 ident: 707_CR67 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2677468 – ident: 707_CR79 |
| SSID | ssj0002048946 |
| Score | 2.5482776 |
| SecondaryResourceType | review_article |
| Snippet | Hundreds of millions of operations are performed worldwide each year, and the rising uptake in minimally invasive surgery has enabled fiber optic cameras and... Abstract Hundreds of millions of operations are performed worldwide each year, and the rising uptake in minimally invasive surgery has enabled fiber optic... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer nii |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 163 |
| SubjectTerms | 692/308/2778 692/308/575 Algorithms Biomedicine Biotechnology Clinical decision making Computer applications to medicine. Medical informatics Computer vision Fiber optics Laparoscopy Medicine Medicine & Public Health Minimally invasive surgery N/A Patient safety R858-859.7 Review Review Article Robotic surgery Surgery |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDI_YQGgXvsZHYUNF4saiNU2aNggJAWLiABMHkN4tSpN0VELt22vH34-dpp0eH7vs0B7SNEpiO3Hs-GdCXhbM1t5kgkplcyqMEdQw66grM-VZVmdFEyDzP5enp9Vqpb5Gg9sQr1XOa2JYqF1v0UZ-nIMWCMe4qijers8pZo1C72pMobFDbmLabOTzclUuNhYEpVVCxliZjFfHgwANHG_d5jQA3dBiaz8KsP2wy3Rt-y-N8--Lk394T8OmdHL3usO5R-5EdTR9N_HPfXLDdw_I7S_R4b5P3sxZH9IpCD1tu3SYIqlfpxiakq77ES8cQSNjn85xliliiPuH5PvJx28fPtGYcIFa0DtGyhgIZG6cqGTRqKrxDrQ9zgpngHBKOoaHRXiYqyoP5cyCwiGm4lD0iOx2feefkDTLVWMyr7ypSzgTsTozXDluPQcFrOFZQtg87dpGNHJMivFTB684r_REKg2k0oFUukjIq-Wf9YTFcWXt90jNpSbiaIeCfnOmo1hqK_NSOljlEKmtRFMBqItMNAoYVdYOunkIvAA9xDdwGPKUVLDMKTQqFDIhBzN5dRT-QV_SNiEvls8gtuiLMZ3vL7AOx_waOYMmHk9MtfSUS47zKhJSbrHb1lC2v3TtjwANriS6PaHNo5kxL7v1_6l6evUonpG9HCUGduy8OiC74-bCH5Jb9tfYDpvnQeR-A3_mLAA priority: 102 providerName: ProQuest |
| Title | Computer vision in surgery: from potential to clinical value |
| URI | https://cir.nii.ac.jp/crid/1870020692579907456 https://link.springer.com/article/10.1038/s41746-022-00707-5 https://www.ncbi.nlm.nih.gov/pubmed/36307544 https://www.proquest.com/docview/2729742855 https://www.proquest.com/docview/2730315216 https://pubmed.ncbi.nlm.nih.gov/PMC9616906 https://doaj.org/article/c6276d73025447469092914f99e16bd0 |
| Volume | 5 |
| WOSCitedRecordID | wos000876291100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: 7X7 dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: 7RV dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: BENPR dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: PIMPY dateStart: 20181201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMQF8SbQroLEDazaseMH4kJRK5DoalUBWk6WEztqEMpW3ZTfz4yTLF2eFw5raR3HmoxnMjMZz2dCnpW8rqJnkipbF1R6L6nndaBBMxs5q1jZJMj893o-N8ulXVw66gv3hA3wwAPj9mtVaBVADhFLS2MwBwady8bCVKoKKVpn2l4Kpr6k9Jo0VqqxSoYJs7-W4HvjftuCJogbWm5ZogTYD_ala9vf-Zq_bpn8KW-azNHRbXJr9CPz1wP9d8iV2N0lN47HTPk98mo6riEfqsfztsvXQwn0yxxrSvKzVY87hWCSfpVPBZI5gn_H--Tj0eGHN2_peFICrcFh6CnnoEmFD9KosrGmiQHcNMHL4IHjVgWOUR78eDAmQj-vwVOQQ3fqekB2ulUXH5GcFbbxLNroKw3BDK-YFzaIOgrwnBrBMsInrrl6hBHH0yy-upTOFsYNnHbAaZc47cqMPN_cczaAaPx19AEuxmYkAmCnDhALN4qF-5dYZGQPlhIoxJbDSwlEQll4P1n8GlCqjOxOi-xGrV27AiINDfFYCTQ83VwGfcMkiu_i6gLHCDwYo-AwxcNBJjaUCiWQrzIjektath5l-0rXniZMb6swXwlzvpjk6gdZf2bV4__BqifkZoFqAQa5MLtkpz-_iHvkev2tb9fnM3JVn3zCdqlTa2bk2sHhfHEySxoH_xbvjhefvwNePCH7 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLaJceBcWWggSnCBq7DhOjECIV9VVd1d7KFI5mSR2IBJKlk0K4k_xG5nJq1oevfXAITk4jjVxvhmPPS-ARwFLExt7wpUq5a6IY-HGLDWuCT1lmZd4QdakzJ-G83l0fKwWG_Czj4Uht8peJjaC2pQpnZHvcdQCcRsXBcHL5VeXqkaRdbUvodHC4tD--I5bturF5C3-38ec7787enPgdlUF3BQX19plDFHHYyMiGWQqyqxBlcZngYmROiUNox0RXsxEkcV2luKqKtrmpgnHvQCbAsHujWBzMZktPgynOpQGVwnZRed4frRXCdT5yc-Xu01qHTdYWwGbQgG4rhV5_jcd909Xzd_stc0yuH_1f5vAa3ClU7idVy2HXIcNW9yAS7POpeAmPO_rWjhtmL2TF07Vxoo_cyj4xlmWNblU4SB16fSRpA5lSbe34P250L4No6Is7B1wPK6y2LPKxkmIuz6WeLGvjJ9aH1XMzPfGwPrfrNMu3zqV_fiiG7u_H-kWGhqhoRto6GAMT4Z3lm22kTN7vyb0DD0pU3jTUK4-6U7w6FTyUBqU45SLLqTDEFSImcgUsqJMDJK5i9hDCunOUHojhqVCQa7o2CSQY9jp4aQ78VbpUyyN4eHwGAUTWZviwpYn1MenCiKc4RC3WxAPlPrSp3kVYwjX4L32KetPivxzk_xcSTLs4phPe0Y4JevfU3X37K94AFsHR7Opnk7mh_fgMiduRf2ERzswqlcndhcupt_qvFrd7xjegY_nzSK_AOU1hZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+vision+in+surgery%3A+from+potential+to+clinical+value&rft.jtitle=npj+Digital+Medicine&rft.au=Pietro+Mascagni&rft.au=Deepak+Alapatt&rft.au=Luca+Sestini&rft.au=Maria+S.+Altieri&rft.date=2022-10-28&rft.pub=Springer+Science+and+Business+Media+LLC&rft.eissn=2398-6352&rft.volume=5&rft_id=info:doi/10.1038%2Fs41746-022-00707-5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon |