Metabolite discovery through global annotation of untargeted metabolomics data

Liquid chromatography-high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature methods Ročník 18; číslo 11; s. 1377 - 1385
Hlavní autoři: Chen, Li, Lu, Wenyun, Wang, Lin, Xing, Xi, Chen, Ziyang, Teng, Xin, Zeng, Xianfeng, Muscarella, Antonio D, Shen, Yihui, Cowan, Alexis, McReynolds, Melanie R, Kennedy, Brandon J, Lato, Ashley M, Campagna, Shawn R, Singh, Mona, Rabinowitz, Joshua D
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Nature Publishing Group 01.11.2021
Témata:
ISSN:1548-7091, 1548-7105, 1548-7105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Liquid chromatography-high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times and (when available) tandem mass spectrometry fragmentation patterns. Peaks are connected based on mass differences reflecting adduction, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically informative peak-peak relationships, including for peaks lacking tandem mass spectrometry spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery.
AbstractList Liquid chromatography-high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times and (when available) tandem mass spectrometry fragmentation patterns. Peaks are connected based on mass differences reflecting adduction, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically informative peak-peak relationships, including for peaks lacking tandem mass spectrometry spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery.
Liquid chromatography-high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times and (when available) tandem mass spectrometry fragmentation patterns. Peaks are connected based on mass differences reflecting adduction, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically informative peak-peak relationships, including for peaks lacking tandem mass spectrometry spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery.Liquid chromatography-high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times and (when available) tandem mass spectrometry fragmentation patterns. Peaks are connected based on mass differences reflecting adduction, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically informative peak-peak relationships, including for peaks lacking tandem mass spectrometry spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery.
Liquid chromatography–high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times and (when available) tandem mass spectrometry fragmentation patterns. Peaks are connected based on mass differences reflecting adduction, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically informative peak–peak relationships, including for peaks lacking tandem mass spectrometry spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery.The NetID algorithm annotates untargeted LC-MS metabolomics data by combining known biochemical and metabolomic principles with a global network optimization strategy.
Author Zeng, Xianfeng
Xing, Xi
Chen, Ziyang
Muscarella, Antonio D
Lu, Wenyun
Teng, Xin
Singh, Mona
Chen, Li
Cowan, Alexis
Kennedy, Brandon J
Wang, Lin
Shen, Yihui
Campagna, Shawn R
McReynolds, Melanie R
Lato, Ashley M
Rabinowitz, Joshua D
Author_xml – sequence: 1
  givenname: Li
  surname: Chen
  fullname: Chen, Li
  organization: Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
– sequence: 2
  givenname: Wenyun
  orcidid: 0000-0003-1787-2617
  surname: Lu
  fullname: Lu, Wenyun
  organization: Department of Chemistry, Princeton University, Princeton, NJ, USA
– sequence: 3
  givenname: Lin
  orcidid: 0000-0002-9370-6891
  surname: Wang
  fullname: Wang, Lin
  organization: Department of Chemistry, Princeton University, Princeton, NJ, USA
– sequence: 4
  givenname: Xi
  surname: Xing
  fullname: Xing, Xi
  organization: Department of Chemistry, Princeton University, Princeton, NJ, USA
– sequence: 5
  givenname: Ziyang
  surname: Chen
  fullname: Chen, Ziyang
  organization: Department of Molecular Biology, Princeton University, Princeton, NJ, USA
– sequence: 6
  givenname: Xin
  surname: Teng
  fullname: Teng, Xin
  organization: Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
– sequence: 7
  givenname: Xianfeng
  surname: Zeng
  fullname: Zeng, Xianfeng
  organization: Department of Chemistry, Princeton University, Princeton, NJ, USA
– sequence: 8
  givenname: Antonio D
  orcidid: 0000-0001-8399-4378
  surname: Muscarella
  fullname: Muscarella, Antonio D
  organization: Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
– sequence: 9
  givenname: Yihui
  surname: Shen
  fullname: Shen, Yihui
  organization: Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
– sequence: 10
  givenname: Alexis
  surname: Cowan
  fullname: Cowan, Alexis
  organization: Department of Molecular Biology, Princeton University, Princeton, NJ, USA
– sequence: 11
  givenname: Melanie R
  orcidid: 0000-0001-5427-2739
  surname: McReynolds
  fullname: McReynolds, Melanie R
  organization: Department of Chemistry, Princeton University, Princeton, NJ, USA
– sequence: 12
  givenname: Brandon J
  orcidid: 0000-0003-1892-8926
  surname: Kennedy
  fullname: Kennedy, Brandon J
  organization: Lotus Separations, LLC, Department of Chemistry, Princeton University, Princeton, NJ, USA
– sequence: 13
  givenname: Ashley M
  orcidid: 0000-0003-4076-9714
  surname: Lato
  fullname: Lato, Ashley M
  organization: Department of Chemistry, The University of Tennessee at Knoxville, Knoxville, TN, USA
– sequence: 14
  givenname: Shawn R
  surname: Campagna
  fullname: Campagna, Shawn R
  organization: Department of Chemistry, The University of Tennessee at Knoxville, Knoxville, TN, USA
– sequence: 15
  givenname: Mona
  surname: Singh
  fullname: Singh, Mona
  organization: Department of Computer Science, Princeton University, Princeton, NJ, USA
– sequence: 16
  givenname: Joshua D
  orcidid: 0000-0002-1247-4727
  surname: Rabinowitz
  fullname: Rabinowitz, Joshua D
  email: joshr@princeton.edu, joshr@princeton.edu, joshr@princeton.edu, joshr@princeton.edu
  organization: Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA. joshr@princeton.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34711973$$D View this record in MEDLINE/PubMed
BookMark eNpdkDtPwzAUhS1URB_wBxiQJRaWwL2xncQjqnhJBRaYIye221SJXWIHqf-eoNKF6Zzhu1efzpxMnHeGkEuEWwRW3AWOQqYJpJgAMmAJOyEzFLxIcgQxOXaQOCXzELYAjPFUnJEp4zmizNmMvL2aqCrfNtFQ3YTaf5t-T-Om98N6Q9etr1RLlXM-qth4R72lg4uqX5toNO0Ox75r6kC1iuqcnFrVBnPxlwvy-fjwsXxOVu9PL8v7VVJnjMeEy0yO2qmtrNSIyioODHUhuJFpJsAW1qJCjhXkXJrMalFpYEqAUlDVNVuQm8PfXe-_BhNi2Y3ypm2VM34IZSokYFqAhBG9_odu_dC70e6XSvOM5-MuC3L1Rw1VZ3S565tO9fvyuBT7ARwUbM8
CitedBy_id crossref_primary_10_1134_S1061934824020126
crossref_primary_10_1186_s12870_025_06704_6
crossref_primary_10_1007_s00726_022_03179_9
crossref_primary_10_1016_j_ejphar_2024_176539
crossref_primary_10_1021_acs_analchem_4c05315
crossref_primary_10_1080_14789450_2025_2463324
crossref_primary_10_1128_mmbr_00164_22
crossref_primary_10_1111_jipb_13774
crossref_primary_10_1073_pnas_2505532122
crossref_primary_10_1038_s41467_024_50128_z
crossref_primary_10_3389_fpls_2025_1478061
crossref_primary_10_1016_j_ecoenv_2025_117711
crossref_primary_10_1016_j_cell_2022_11_023
crossref_primary_10_1016_j_iliver_2024_100142
crossref_primary_10_1016_j_cej_2024_150224
crossref_primary_10_1016_j_tibs_2025_01_010
crossref_primary_10_1038_s42255_024_01119_3
crossref_primary_10_1002_EXP_20210222
crossref_primary_10_1002_smtd_202200130
crossref_primary_10_3389_fevo_2022_841824
crossref_primary_10_1007_s12288_025_02059_y
crossref_primary_10_1016_j_freeradbiomed_2025_02_031
crossref_primary_10_1016_j_jchromb_2025_124564
crossref_primary_10_1016_j_aca_2023_341308
crossref_primary_10_1021_acs_analchem_5c01213
crossref_primary_10_1016_j_mib_2022_102195
crossref_primary_10_1016_j_fbio_2024_103997
crossref_primary_10_1155_jcpt_5516416
crossref_primary_10_7554_eLife_91597_3
crossref_primary_10_1016_j_pbi_2025_102729
crossref_primary_10_1016_j_lfs_2023_121619
crossref_primary_10_1186_s12967_024_05100_2
crossref_primary_10_1016_j_jpha_2022_11_006
crossref_primary_10_3389_fpls_2021_803603
crossref_primary_10_1038_s41467_023_44035_y
crossref_primary_10_3390_metabo13030460
crossref_primary_10_1038_s41392_023_01399_3
crossref_primary_10_7554_eLife_91597
crossref_primary_10_1038_s41467_023_39617_9
crossref_primary_10_1186_s12951_023_01908_0
crossref_primary_10_1093_nar_gkac376
crossref_primary_10_1038_s41556_023_01117_9
crossref_primary_10_1002_bmc_5733
crossref_primary_10_1021_jasms_2c00153
crossref_primary_10_3390_microorganisms13040915
crossref_primary_10_1038_s41575_024_00914_3
crossref_primary_10_1093_bib_bbae498
crossref_primary_10_3390_metabo12050456
crossref_primary_10_1016_j_ecoenv_2024_115975
crossref_primary_10_1038_s41592_023_01851_w
crossref_primary_10_1016_j_trac_2022_116903
crossref_primary_10_1042_EBC20230019
crossref_primary_10_3390_metabo13040522
crossref_primary_10_1093_bioinformatics_btaf161
crossref_primary_10_1186_s43897_022_00038_9
crossref_primary_10_1038_s41467_025_60640_5
crossref_primary_10_3389_fmicb_2023_1097148
crossref_primary_10_1007_s11306_025_02309_0
crossref_primary_10_1038_s41467_024_48009_6
crossref_primary_10_3389_fmolb_2023_1305439
crossref_primary_10_1038_s41586_025_09535_5
crossref_primary_10_1146_annurev_nutr_062322_030557
crossref_primary_10_1016_j_jep_2023_117637
crossref_primary_10_1007_s42994_024_00194_0
crossref_primary_10_1007_s00210_023_02750_9
crossref_primary_10_1101_gad_352277_124
crossref_primary_10_3389_fcimb_2023_1091083
crossref_primary_10_1021_acs_analchem_4c06210
crossref_primary_10_1186_s40001_025_02824_9
crossref_primary_10_1016_j_tplants_2022_06_010
crossref_primary_10_1038_s41467_022_32155_w
crossref_primary_10_1016_j_talanta_2025_128327
crossref_primary_10_1146_annurev_immunol_101220_031513
crossref_primary_10_1038_s41598_024_55356_3
crossref_primary_10_1016_j_cell_2025_04_041
crossref_primary_10_1016_j_ymben_2023_01_001
crossref_primary_10_1161_ATVBAHA_122_318332
crossref_primary_10_3390_metabo15060401
crossref_primary_10_1021_jasms_4c00175
crossref_primary_10_1038_s41467_025_56646_8
crossref_primary_10_1016_j_heliyon_2024_e36267
crossref_primary_10_1038_s12276_022_00803_2
crossref_primary_10_1021_acs_analchem_5c00314
crossref_primary_10_1016_j_soilbio_2024_109382
crossref_primary_10_1016_S1875_5364_25_60852_1
crossref_primary_10_1038_s41467_022_35734_z
crossref_primary_10_3390_foods14183217
crossref_primary_10_1007_s12672_025_03374_6
crossref_primary_10_1016_j_chroma_2025_465986
crossref_primary_10_1016_j_phrs_2025_107675
crossref_primary_10_1021_envhealth_5c00091
crossref_primary_10_1038_s41467_024_51433_3
crossref_primary_10_1016_j_csbj_2022_09_004
crossref_primary_10_1016_j_jconrel_2024_05_029
crossref_primary_10_1371_journal_pone_0294355
crossref_primary_10_1038_s41592_023_01850_x
crossref_primary_10_1016_j_ecoenv_2023_114763
crossref_primary_10_1186_s12859_023_05383_0
crossref_primary_10_1021_acs_est_5c07353
crossref_primary_10_1016_j_aquatox_2025_107522
crossref_primary_10_1007_s00277_025_06302_4
crossref_primary_10_1016_j_tem_2023_09_006
crossref_primary_10_1210_clinem_dgac555
crossref_primary_10_1016_j_scitotenv_2022_159932
crossref_primary_10_1128_msystems_00151_23
crossref_primary_10_1016_j_trac_2023_117287
crossref_primary_10_1371_journal_pone_0326164
crossref_primary_10_1021_jasms_5c00038
crossref_primary_10_1007_s11306_025_02273_9
crossref_primary_10_1186_s12931_025_03250_5
crossref_primary_10_1016_j_cclet_2024_109627
crossref_primary_10_1016_j_tifs_2024_104555
crossref_primary_10_1021_acs_jnatprod_4c00740
crossref_primary_10_3389_fpls_2024_1361183
crossref_primary_10_3390_gucdd1010006
crossref_primary_10_1016_j_clim_2023_109764
crossref_primary_10_1038_s41467_023_39889_1
crossref_primary_10_3389_fphar_2022_894099
crossref_primary_10_1038_s41467_025_63536_6
crossref_primary_10_1016_j_ab_2023_115036
crossref_primary_10_1016_j_indcrop_2025_121126
crossref_primary_10_1111_tpj_16277
crossref_primary_10_1016_j_lwt_2022_113852
crossref_primary_10_1038_s41467_022_34537_6
crossref_primary_10_1016_j_heliyon_2023_e16083
crossref_primary_10_1039_D4RA01384K
crossref_primary_10_1093_bib_bbac553
crossref_primary_10_1007_s12031_025_02382_z
crossref_primary_10_1016_j_cell_2022_10_011
crossref_primary_10_1128_jvi_00586_23
crossref_primary_10_3389_fpls_2025_1496200
crossref_primary_10_1093_lifemeta_load048
crossref_primary_10_1155_jfbc_9920574
crossref_primary_10_3390_ijms25031682
crossref_primary_10_3390_metabo14110586
crossref_primary_10_1016_j_cmet_2021_12_011
ContentType Journal Article
Copyright 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
Copyright_xml – notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
DBID CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7SS
7TK
7U9
7X2
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
L6V
LK8
M0K
M0S
M1P
M2P
M7N
M7P
M7S
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
RC3
7X8
DOI 10.1038/s41592-021-01303-3
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Science Database (subscription)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database (subscription)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1548-7105
EndPage 1385
ExternalDocumentID 34711973
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: NHGRI NIH HHS
  grantid: T32 HG003284
– fundername: NCI NIH HHS
  grantid: R50 CA211437
GroupedDBID ---
-~X
0R~
123
29M
39C
4.4
53G
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAHBH
AAYZH
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
D1I
D1J
D1K
DB5
DU5
DWQXO
EBS
ECM
EE.
EIF
EJD
EMOBN
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NFIDA
NNMJJ
NPM
O9-
ODYON
P2P
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
3V.
7QL
7QO
7SS
7TK
7U9
7XB
8FD
8FK
AARCD
AGSTI
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c634t-49690212fbf9d11afa4031d854e92650f8ff1a141b0749e6fd5bd03a50aa0bcc3
IEDL.DBID M7P
ISICitedReferencesCount 171
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000712400000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1548-7091
1548-7105
IngestDate Wed Oct 01 09:23:16 EDT 2025
Mon Oct 06 17:11:12 EDT 2025
Fri Aug 08 01:51:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-49690212fbf9d11afa4031d854e92650f8ff1a141b0749e6fd5bd03a50aa0bcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1247-4727
0000-0002-9370-6891
0000-0001-8399-4378
0000-0003-1787-2617
0000-0001-5427-2739
0000-0003-4076-9714
0000-0003-1892-8926
OpenAccessLink https://www.osti.gov/servlets/purl/1855984
PMID 34711973
PQID 2592764703
PQPubID 28015
PageCount 9
ParticipantIDs proquest_miscellaneous_2590128090
proquest_journals_2592764703
pubmed_primary_34711973
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Nature methods
PublicationTitleAlternate Nat Methods
PublicationYear 2021
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
SSID ssj0033425
Score 2.6783836
Snippet Liquid chromatography-high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain...
Liquid chromatography–high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1377
SubjectTerms Algorithms
Animals
Annotations
Chromatography, Liquid - methods
Data Curation - methods
Data Curation - standards
Fragmentation
Global optimization
Isotopes
Liquid chromatography
Liver - metabolism
Mass spectrometry
Mass spectroscopy
Metabolites
Metabolome
Metabolomics
Metabolomics - methods
Metabolomics - standards
Mice
Network management systems
Optimization
Saccharomyces cerevisiae - metabolism
Scientific imaging
Spectroscopy
Tandem Mass Spectrometry - methods
Taurine
Thiamine
Yeast
Title Metabolite discovery through global annotation of untargeted metabolomics data
URI https://www.ncbi.nlm.nih.gov/pubmed/34711973
https://www.proquest.com/docview/2592764703
https://www.proquest.com/docview/2590128090
Volume 18
WOSCitedRecordID wos000712400000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VaKVeoC1tWUpXrtSrwY7zcE4IEAiJbhT1pVUvKzu2JQ5NgOxW4t93xsm2J7hwGSnKQ5E9nm_seXwAnxHzgki84bkwgqdOFdxkmeXUEFe4xmsdech-fimqSs_nZT0euPVjWuXaJkZD7bqGzsiP0E1PijxFBT2-ueXEGkXR1ZFCYwO2qEuCiql79doSK5VG0lXyynmBwDgWzQilj3oELsq7TGgzrajG7GEXM0LNxc5Tf_IVbI9OJjsZtOI1PPPtG3gx0E7e70I180uce6o-ZlSVS1mc92xk7GFDixBm2rYbwvSsC2zVDinj3rHfw8tUzdwzSjB9Cz8uzr-fXfKRV4E3uUqXPC1xS4yQFWwonZQmmBSXttNZ6ssEPbagQ5BGptKif1H6PLjMOqFMJowRtmnUO9hsu9bvATNBWlVaLZvM4dbQaCuNL2wScjQlWpkJHKwHajEujn7xf5Qm8OnfbVRrilWY1ner-AxBpyjFBN4Pk7G4GfpvLBQCqiwLtf_4xz_Ay4TmNxYOHsDm8m7lP8Lz5s_yur-bwkYxL6LUU9g6Pa_qr3h1dXqIciauSCb1NOpTlN9QVvUMZZ39-guVFM9t
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoJLeRVYKGAkOFr1Iw_ngCoEVK26XfVQUG_Bjm2JA0lpdkH7p_obOxMncIJbD5yTWErm8zzi75sBeIMxLwoVLC-EFTzzuuQ2zx2nhrjCN8GYYQ7Zl3m5WJizs-pkAy4nLQzRKiefODhq3zX0j3wX03RVFhkCdO_8B6epUXS6Oo3QSLA4CutfWLL17w4_on3fKrX_6fTDAR-nCvCm0NmSZxUWhOiwo4uVl9JGmyGwvcmzUCnMV6KJUVqZSYfRtQpF9LnzQttcWCtc02hc9wbcxDRCmYEqeDJ5fq2zYcgrVQG8xEA8inSENrs9BkrieSoq3jVp2v6e0g6hbf_e__ZR7sPWmESz9wn1D2AjtA_hdhqruX4Ei-OwRGyTupqR6phYqms2TiRiqQUKs23bJRoC6yJbtYkSHzz7nh4mtXbPiEC7DZ-v5WUew2bbteEpMBul05Uzssk9lr7WOGlD6VQs0FUabWewMxmmHjd_X_-xygxe_76M25bOYmwbutVwD6UGohIzeJKMX5-n_iK1xoRBVqV-9u_FX8Gdg9PjeT0_XBw9h7uKsDWIJHdgc3mxCi_gVvNz-a2_eDmglMHX60bAFSSJIzk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAXyqPQLYUaCY7W2nEezqFCiLKiarvaA6Degh3bUg9NSrNbtH-NX8dMnMAJbj30nMRSMp_nEX_fDMBbjHlBJN7wXBjBU6cKbrLMcmqIK1ztte7nkH07KeZzfXZWLjbg16iFIVrl6BN7R-3amv6RTzFNT4o8RYBOw0CLWBzO3l_-4DRBik5ax3EaESLHfv0Ty7fu4OgQbf0uSWafvnz8zIcJA7zOVbrkaYnFITrvYEPppDTBpAhyp7PUlwnmLkGHII1MpcVIW_o8uMw6oUwmjBG2rhWuewfuFtS0vKcNLsYooFTaD3ylioAXGJQHwY5Qetph0CTOZ0KFvCJ927_T2z7MzbZu8wd6DI-G5Jp9iLvhCWz45incj-M2189gfuqXiHlSXTNSIxN7dc2GSUUstkZhpmnaSE9gbWCrJlLlvWMX8WFScXeMiLXb8PVGXuY5bDZt43eAmSCtKq2WdeawJDbaSuMLm4QcXahWZgJ7o5GqwSl01V8LTeDNn8u4nemMxjS-XfX3UMogSjGBFxEI1WXsO1IpTCRkWajd_y--Dw_Q8NXJ0fz4JTxMCGa9dnIPNpdXK_8K7tXXy_Pu6nUPWAbfbxoAvwFAkSv2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolite+discovery+through+global+annotation+of+untargeted+metabolomics+data&rft.jtitle=Nature+methods&rft.au=Chen%2C+Li&rft.au=Lu+Wenyun&rft.au=Wang%2C+Lin&rft.au=Xing+Xi&rft.date=2021-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=18&rft.issue=11&rft.spage=1377&rft.epage=1385&rft_id=info:doi/10.1038%2Fs41592-021-01303-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon