Out-of-distribution generalization for learning quantum dynamics

Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 14; H. 1; S. 3751 - 9
Hauptverfasser: Caro, Matthias C., Huang, Hsin-Yuan, Ezzell, Nicholas, Gibbs, Joe, Sornborger, Andrew T., Cincio, Lukasz, Coles, Patrick J., Holmes, Zoë
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 05.07.2023
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution. However, there are currently no results on out-of-distribution generalization in QML, where we require a trained model to perform well even on data drawn from a different distribution to the training distribution. Here, we prove out-of-distribution generalization for the task of learning an unknown unitary. In particular, we show that one can learn the action of a unitary on entangled states having trained only product states. Since product states can be prepared using only single-qubit gates, this advances the prospects of learning quantum dynamics on near term quantum hardware, and further opens up new methods for both the classical and quantum compilation of quantum circuits. Generalization - that is, the ability to extrapolate from training data to unseen data - is fundamental in machine learning, and thus also for quantum ML. Here, the authors show that QML algorithms are able to generalise the training they had on a specific distribution and learn over different distributions.
AbstractList Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution. However, there are currently no results on out-of-distribution generalization in QML, where we require a trained model to perform well even on data drawn from a different distribution to the training distribution. Here, we prove out-of-distribution generalization for the task of learning an unknown unitary. In particular, we show that one can learn the action of a unitary on entangled states having trained only product states. Since product states can be prepared using only single-qubit gates, this advances the prospects of learning quantum dynamics on near term quantum hardware, and further opens up new methods for both the classical and quantum compilation of quantum circuits. Generalization - that is, the ability to extrapolate from training data to unseen data - is fundamental in machine learning, and thus also for quantum ML. Here, the authors show that QML algorithms are able to generalise the training they had on a specific distribution and learn over different distributions.
Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution. However, there are currently no results on out-of-distribution generalization in QML, where we require a trained model to perform well even on data drawn from a different distribution to the training distribution. Here, we prove out-of-distribution generalization for the task of learning an unknown unitary. In particular, we show that one can learn the action of a unitary on entangled states having trained only product states. Since product states can be prepared using only single-qubit gates, this advances the prospects of learning quantum dynamics on near term quantum hardware, and further opens up new methods for both the classical and quantum compilation of quantum circuits.
Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution. However, there are currently no results on out-of-distribution generalization in QML, where we require a trained model to perform well even on data drawn from a different distribution to the training distribution. Here, we prove out-of-distribution generalization for the task of learning an unknown unitary. In particular, we show that one can learn the action of a unitary on entangled states having trained only product states. Since product states can be prepared using only single-qubit gates, this advances the prospects of learning quantum dynamics on near term quantum hardware, and further opens up new methods for both the classical and quantum compilation of quantum circuits.Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution. However, there are currently no results on out-of-distribution generalization in QML, where we require a trained model to perform well even on data drawn from a different distribution to the training distribution. Here, we prove out-of-distribution generalization for the task of learning an unknown unitary. In particular, we show that one can learn the action of a unitary on entangled states having trained only product states. Since product states can be prepared using only single-qubit gates, this advances the prospects of learning quantum dynamics on near term quantum hardware, and further opens up new methods for both the classical and quantum compilation of quantum circuits.
Abstract Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution. However, there are currently no results on out-of-distribution generalization in QML, where we require a trained model to perform well even on data drawn from a different distribution to the training distribution. Here, we prove out-of-distribution generalization for the task of learning an unknown unitary. In particular, we show that one can learn the action of a unitary on entangled states having trained only product states. Since product states can be prepared using only single-qubit gates, this advances the prospects of learning quantum dynamics on near term quantum hardware, and further opens up new methods for both the classical and quantum compilation of quantum circuits.
Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution. However, there are currently no results on out-of-distribution generalization in QML, where we require a trained model to perform well even on data drawn from a different distribution to the training distribution. Here, we prove out-of-distribution generalization for the task of learning an unknown unitary. In particular, we show that one can learn the action of a unitary on entangled states having trained only product states. Since product states can be prepared using only single-qubit gates, this advances the prospects of learning quantum dynamics on near term quantum hardware, and further opens up new methods for both the classical and quantum compilation of quantum circuits. Generalization - that is, the ability to extrapolate from training data to unseen data - is fundamental in machine learning, and thus also for quantum ML. Here, the authors show that QML algorithms are able to generalise the training they had on a specific distribution and learn over different distributions.
ArticleNumber 3751
Author Sornborger, Andrew T.
Cincio, Lukasz
Ezzell, Nicholas
Gibbs, Joe
Coles, Patrick J.
Caro, Matthias C.
Holmes, Zoë
Huang, Hsin-Yuan
Author_xml – sequence: 1
  givenname: Matthias C.
  orcidid: 0000-0001-9009-2372
  surname: Caro
  fullname: Caro, Matthias C.
  email: matthias.caro@fu-berlin.de
  organization: Department of Mathematics, Technical University of Munich, Munich Center for Quantum Science and Technology (MCQST), Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Institute for Quantum Information and Matter, Caltech
– sequence: 2
  givenname: Hsin-Yuan
  orcidid: 0000-0001-5317-2613
  surname: Huang
  fullname: Huang, Hsin-Yuan
  organization: Institute for Quantum Information and Matter, Caltech, Department of Computing and Mathematical Sciences, Caltech
– sequence: 3
  givenname: Nicholas
  orcidid: 0000-0002-4983-0617
  surname: Ezzell
  fullname: Ezzell, Nicholas
  organization: Information Sciences, Los Alamos National Laboratory, Department of Physics & Astronomy, University of Southern California
– sequence: 4
  givenname: Joe
  surname: Gibbs
  fullname: Gibbs, Joe
  organization: Department of Physics, University of Surrey, AWE, Aldermaston
– sequence: 5
  givenname: Andrew T.
  surname: Sornborger
  fullname: Sornborger, Andrew T.
  organization: Information Sciences, Los Alamos National Laboratory
– sequence: 6
  givenname: Lukasz
  surname: Cincio
  fullname: Cincio, Lukasz
  organization: Theoretical Division, Los Alamos National Laboratory
– sequence: 7
  givenname: Patrick J.
  surname: Coles
  fullname: Coles, Patrick J.
  organization: Theoretical Division, Los Alamos National Laboratory, Normal Computing Corporation
– sequence: 8
  givenname: Zoë
  surname: Holmes
  fullname: Holmes, Zoë
  organization: Information Sciences, Los Alamos National Laboratory, Institute of Physics, Ecole Polytechnique Fédéderale de Lausanne (EPFL)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37407571$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1988191$$D View this record in Osti.gov
BookMark eNp9UktPFTEYbQxG8MofcGFudMNmtJ12-lipIagkJGx03fS23wy9mWmh7Ujw11vugAILuujznNPzPV6jvRADIPSW4I8EU_kpM8K4aHBLG6qoJM31C3TQYkYaIlq692C_jw5z3uI6qCKSsVdonwqGRSfIAfpyPpcm9o3zuSS_mYuPYT1AgGRG_8fsjn1M6xFMCj4M66vZhDJPa3cTzORtfoNe9mbMcHi3rtCvbyc_j380Z-ffT4-_njWWU1YaCrxzPThqmABOMOeq68WGdoYTBhxbxxk3PSfcgQVMOoWtEZjwDgNrlaUrdLroumi2-jL5yaQbHY3Xu4uYBm1S8XYELXDfMpBiw6li1CqJDcHCdEKp3jnHq9bnRety3kzgLIRSw30k-vgl-As9xN-6Zr5tVZ1X6P2iEHPxOltfwF7YGALYoomSkihSQUd336R4NUMuevLZwjiaAHHOupWUKiW4vIV-eALdxjmFmtAdisqWM1FR7x76_mf4vpwVIBeATTHnBL2uznZFrGH4sfq_DUHqpXl0bR69ax59XantE-q9-rMkupByBYcB0n_bz7D-Aibu1g4
CitedBy_id crossref_primary_10_1088_1361_6633_ad82cf
crossref_primary_10_1103_3y65_f5w6
crossref_primary_10_1145_3670418
crossref_primary_10_1016_j_isci_2025_113324
crossref_primary_10_1103_PhysRevResearch_6_013076
crossref_primary_10_1038_s42005_024_01765_9
crossref_primary_10_1038_s41534_024_00804_1
crossref_primary_10_1007_s11227_025_06966_9
crossref_primary_10_1088_2058_9565_ad752d
crossref_primary_10_1088_2058_9565_ada79b
crossref_primary_10_1002_wcms_1701
crossref_primary_10_1007_s42484_024_00188_7
crossref_primary_10_1038_s41567_025_03025_1
crossref_primary_10_1038_s41534_024_00902_0
crossref_primary_10_1088_2058_9565_adfc07
crossref_primary_10_1103_PhysRevB_110_184414
crossref_primary_10_1103_PRXQuantum_6_010317
crossref_primary_10_1007_s42484_025_00274_4
crossref_primary_10_22331_q_2025_07_30_1817
crossref_primary_10_1109_TCE_2024_3351649
crossref_primary_10_1103_PhysRevResearch_5_043250
crossref_primary_10_1103_PhysRevResearch_6_013241
crossref_primary_10_1103_PRXQuantum_5_030306
crossref_primary_10_1007_s13222_024_00467_4
crossref_primary_10_1088_2632_2153_ad9705
crossref_primary_10_1038_s41467_024_47983_1
crossref_primary_10_1088_2632_2153_ada221
crossref_primary_10_1145_3729269
crossref_primary_10_1007_s00220_024_05030_6
crossref_primary_10_1038_s41467_024_49287_w
crossref_primary_10_1007_s42484_024_00204_w
crossref_primary_10_1017_eds_2025_10010
crossref_primary_10_1103_PhysRevResearch_7_023151
crossref_primary_10_22331_q_2025_07_09_1789
crossref_primary_10_1103_PhysRevApplied_23_014018
crossref_primary_10_1038_s41467_024_45882_z
crossref_primary_10_1103_PhysRevLett_134_120202
crossref_primary_10_1088_2058_9565_adf350
crossref_primary_10_1103_PRXQuantum_5_040306
Cites_doi 10.1007/s42484-021-00043-z
10.1137/1116025
10.1145/1968.1972
10.1038/s41567-021-01356-3
10.1038/s41567-021-01201-7
10.1103/PhysRevA.89.042314
10.1093/comjnl/7.4.308
10.1038/s41467-021-27922-0
10.1016/S0378-3758(00)00115-4
10.1007/JHEP04(2017)121
10.1016/S0375-9601(02)01272-0
10.1126/science.abn7293
10.1007/s42484-020-00027-5
10.1038/s41467-021-21728-w
10.1038/s41567-020-0932-7
10.1007/s11128-021-03225-7
10.1007/s00220-009-0824-2
10.1103/PhysRevLett.128.070501
10.1038/nature23474
10.1103/PhysRevResearch.5.023027
10.22331/q-2022-01-24-628
10.1103/PRXQuantum.2.010324
10.1103/PhysRevA.102.012415
10.1126/science.abk3333
10.1080/00107514.2014.964942
10.1103/RevModPhys.89.035002
10.1103/PhysRevLett.128.080506
10.1038/s41534-020-00302-0
10.1088/1367-2630/ab784c
10.1103/PhysRevLett.125.130601
10.22331/q-2021-11-17-582
10.1103/PhysRevLett.81.5672
10.1038/nphys4074
10.1038/s41467-022-32550-3
10.1103/PRXQuantum.2.010322
10.1145/3408039
10.1103/PhysRevA.105.032435
10.1145/3466797
10.1038/s41467-021-27045-6
10.22331/q-2021-09-23-549
10.1103/PRXQuantum.2.040321
10.22331/q-2019-05-13-140
10.1103/PhysRevLett.87.167902
10.1103/PhysRevResearch.3.033200
10.1109/TKDE.2009.191
10.1103/PRXQuantum.2.040327
10.22331/q-2018-08-06-79
10.1038/s41567-020-0992-8
10.1103/PhysRevB.101.224202
10.1088/2058-9565/ac4f30
10.1038/s43588-021-00084-1
10.1103/PhysRevA.105.062431
10.1103/PhysRevLett.126.190505
10.1109/FOCS52979.2021.00063
10.1038/s41534-022-00625-0
10.1038/s41567-021-01287-z
10.1038/s42254-022-00535-2
10.1007/978-3-030-83098-4
10.22331/q-2023-01-13-893
10.7551/mitpress/9780262170055.001.0001
10.1103/PhysRevB.107.L081105
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
OTOTI
5PM
DOA
DOI 10.1038/s41467-023-39381-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_70f24e87b63943c980a107a5799fddd6
PMC10322910
1988191
37407571
10_1038_s41467_023_39381_w
Genre Journal Article
GrantInformation_xml – fundername: Google
  funderid: https://doi.org/10.13039/100006785
– fundername: Bundesministerium für Wirtschaft und Technologie (Federal Ministry of Economics and Technology)
  funderid: https://doi.org/10.13039/501100002765
– fundername: Studienstiftung des Deutschen Volkes (German National Academic Foundation)
  funderid: https://doi.org/10.13039/501100004350
– fundername: U.S. Department of Energy (DOE)
  funderid: https://doi.org/10.13039/100000015
– fundername: Deutscher Akademischer Austauschdienst (German Academic Exchange Service)
  funderid: https://doi.org/10.13039/501100001655
– fundername: DOE | LDRD | Los Alamos National Laboratory (Los Alamos Lab)
  funderid: https://doi.org/10.13039/100008902
– fundername: State Ministry of Education and Culture, Science and the Arts | Elitenetzwerk Bayern (Elite Network of Bavaria)
  funderid: https://doi.org/10.13039/501100008848
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
PUEGO
OTOTI
5PM
ID FETCH-LOGICAL-c634t-3e65dfed3a47e6106695f7b35a614e60cd646af616dece01590ca701650e429c3
IEDL.DBID M7P
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024729900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Tue Oct 14 19:08:42 EDT 2025
Tue Nov 04 02:06:34 EST 2025
Mon Feb 10 03:54:41 EST 2025
Wed Oct 01 14:32:34 EDT 2025
Tue Oct 07 07:39:37 EDT 2025
Mon Jul 21 06:01:35 EDT 2025
Sat Nov 29 02:11:52 EST 2025
Tue Nov 18 22:10:18 EST 2025
Fri Feb 21 02:39:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-3e65dfed3a47e6106695f7b35a614e60cd646af616dece01590ca701650e429c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
89233218CNA000001
USDOE Laboratory Directed Research and Development (LDRD) Program
USDOE National Nuclear Security Administration (NNSA)
LA-UR-23-26072; LA-UR-22-23623
ORCID 0000-0001-9009-2372
0000-0002-4983-0617
0000-0001-5317-2613
0000000153172613
0000000190092372
0000000249830617
OpenAccessLink https://www.proquest.com/docview/2833382647?pq-origsite=%requestingapplication%
PMID 37407571
PQID 2833382647
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_70f24e87b63943c980a107a5799fddd6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10322910
osti_scitechconnect_1988191
proquest_miscellaneous_2833997681
proquest_journals_2833382647
pubmed_primary_37407571
crossref_citationtrail_10_1038_s41467_023_39381_w
crossref_primary_10_1038_s41467_023_39381_w
springer_journals_10_1038_s41467_023_39381_w
PublicationCentury 2000
PublicationDate 2023-07-05
PublicationDateYYYYMMDD 2023-07-05
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Belyansky, Bienias, Kharkov, Gorshkov, Swingle (CR40) 2020; 125
Sharma, Khatri, Cerezo, Coles (CR31) 2020; 22
Cincio, Rudinger, Sarovar, Coles (CR56) 2021; 2
Popescu (CR22) 2021; 20
CR37
CR35
CR33
CR76
CR75
CR74
CR72
Banchi, Pereira, Pirandola (CR16) 2021; 2
Harper, Flammia, Wallman (CR61) 2020; 16
CR70
Caro, Datta (CR12) 2020; 2
Du, Tu, Yuan, Tao (CR17) 2022; 128
Cirstoiu (CR34) 2020; 6
Vapnik, Chervonenkis (CR41) 1971; 16
Abbas (CR13) 2021; 1
Cerezo, Sone, Volkoff, Cincio, Coles (CR52) 2021; 12
CR3
Huang (CR11) 2021; 12
CR5
CR8
Huang, Kueng, Preskill (CR53) 2020; 16
Harper, Yu, Flammia (CR62) 2021; 2
CR9
Valiant (CR42) 1984; 27
CR48
CR47
Preskill (CR25) 2018; 2
CR45
CR44
Degen, Reinhard, Cappellaro (CR26) 2017; 89
Knill, Laflamme (CR58) 1998; 81
Biamonte (CR1) 2017; 549
Huang, Kueng, Torlai, Albert, Preskill (CR55) 2022; 377
Shimodaira (CR46) 2000; 90
Nielsen (CR77) 2002; 303
Roberts, Yoshida (CR59) 2017; 2017
Khatri (CR30) 2019; 3
Chen, Zhou, Seif, Jiang (CR64) 2022; 105
Flammia, O’Donnell (CR63) 2021; 5
CR18
Kuo, Akhtar, Arovas, You (CR38) 2020; 101
Mendl, Wolf (CR73) 2009; 289
CR10
CR54
Huang, Kueng, Preskill (CR7) 2021; 126
Cai, Ye, Deng (CR23) 2022; 7
Geller, Holmes, Coles, Sornborger (CR36) 2021; 3
Gentile (CR29) 2021; 17
Caro (CR66) 2021; 3
Wiebe, Granade, Ferrie, Cory (CR28) 2014; 89
Jones, Benjamin (CR32) 2022; 6
Stilck França, Garcia-Patron (CR51) 2021; 17
Huang (CR4) 2022; 376
Caro (CR20) 2022; 13
Bu, Koh, Li, Luo, Zhang (CR15) 2022; 105
Volkoff, Holmes, Sornborger (CR24) 2021; 2
Buhrman, Cleve, Watrous, De Wolf (CR43) 2001; 87
Caro, Gil-Fuster, Meyer, Eisert, Sweke (CR19) 2021; 5
Wang (CR27) 2017; 13
Schuld, Sinayskiy, Petruccione (CR2) 2015; 56
Pan, Yang (CR49) 2009; 22
CR69
CR68
Aharonov, Cotler, Qi (CR6) 2022; 13
Sharma (CR14) 2022; 128
Nelder, Mead (CR57) 1965; 7
CR67
Wang (CR50) 2021; 12
CR65
Uvarov, Kardashin, Biamonte (CR71) 2020; 102
Chen (CR21) 2021; 2
Flammia, Wallman (CR60) 2020; 1
Hu, Choi, You (CR39) 2023; 5
H Buhrman (39381_CR43) 2001; 87
K Sharma (39381_CR14) 2022; 128
39381_CR48
39381_CR47
C Cirstoiu (39381_CR34) 2020; 6
39381_CR45
39381_CR44
CB Mendl (39381_CR73) 2009; 289
M Schuld (39381_CR2) 2015; 56
MC Caro (39381_CR20) 2022; 13
S Chen (39381_CR64) 2022; 105
39381_CR9
39381_CR18
H-Y Huang (39381_CR55) 2022; 377
39381_CR8
VN Vapnik (39381_CR41) 1971; 16
ST Flammia (39381_CR60) 2020; 1
T Volkoff (39381_CR24) 2021; 2
S Khatri (39381_CR30) 2019; 3
39381_CR10
39381_CR54
MA Nielsen (39381_CR77) 2002; 303
H-Y Huang (39381_CR53) 2020; 16
H-Y Huang (39381_CR4) 2022; 376
H-Y Huang (39381_CR11) 2021; 12
L Cincio (39381_CR56) 2021; 2
J Preskill (39381_CR25) 2018; 2
H-Y Hu (39381_CR39) 2023; 5
MC Caro (39381_CR12) 2020; 2
39381_CR3
S Wang (39381_CR50) 2021; 12
J Biamonte (39381_CR1) 2017; 549
39381_CR5
Y Du (39381_CR17) 2022; 128
N Wiebe (39381_CR28) 2014; 89
C-C Chen (39381_CR21) 2021; 2
39381_CR69
E Knill (39381_CR58) 1998; 81
39381_CR68
L Banchi (39381_CR16) 2021; 2
39381_CR67
39381_CR65
AA Gentile (39381_CR29) 2021; 17
MC Caro (39381_CR19) 2021; 5
R Harper (39381_CR61) 2020; 16
ST Flammia (39381_CR63) 2021; 5
H Cai (39381_CR23) 2022; 7
LG Valiant (39381_CR42) 1984; 27
R Belyansky (39381_CR40) 2020; 125
CM Popescu (39381_CR22) 2021; 20
H Shimodaira (39381_CR46) 2000; 90
A Abbas (39381_CR13) 2021; 1
K Sharma (39381_CR31) 2020; 22
D Aharonov (39381_CR6) 2022; 13
MR Geller (39381_CR36) 2021; 3
A Uvarov (39381_CR71) 2020; 102
M Cerezo (39381_CR52) 2021; 12
CL Degen (39381_CR26) 2017; 89
39381_CR37
39381_CR35
39381_CR33
39381_CR76
39381_CR75
39381_CR74
D Stilck França (39381_CR51) 2021; 17
JA Nelder (39381_CR57) 1965; 7
39381_CR72
39381_CR70
H-Y Huang (39381_CR7) 2021; 126
SJ Pan (39381_CR49) 2009; 22
J Wang (39381_CR27) 2017; 13
R Harper (39381_CR62) 2021; 2
MC Caro (39381_CR66) 2021; 3
T Jones (39381_CR32) 2022; 6
W-T Kuo (39381_CR38) 2020; 101
K Bu (39381_CR15) 2022; 105
DA Roberts (39381_CR59) 2017; 2017
References_xml – ident: CR45
– volume: 3
  start-page: 18
  year: 2021
  ident: CR66
  article-title: Binary classification with classical instances and quantum labels
  publication-title: Quant. Mach. Intell.
  doi: 10.1007/s42484-021-00043-z
– ident: CR70
– volume: 16
  start-page: 264
  year: 1971
  ident: CR41
  article-title: On the uniform convergence of relative frequencies of events to their probabilities
  publication-title: Theor. Prob. Appl.
  doi: 10.1137/1116025
– volume: 27
  start-page: 1134
  year: 1984
  ident: CR42
  article-title: A theory of the learnable
  publication-title: Commun. ACM
  doi: 10.1145/1968.1972
– ident: CR68
– ident: CR74
– volume: 17
  start-page: 1221
  year: 2021
  ident: CR51
  article-title: Limitations of optimization algorithms on noisy quantum devices
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01356-3
– volume: 17
  start-page: 837
  year: 2021
  ident: CR29
  article-title: Learning models of quantum systems from experiments
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01201-7
– volume: 89
  start-page: 042314
  year: 2014
  ident: CR28
  article-title: Quantum Hamiltonian learning using imperfect quantum resources
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.042314
– volume: 7
  start-page: 308
  year: 1965
  ident: CR57
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 13
  year: 2022
  ident: CR6
  article-title: Quantum algorithmic measurement
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27922-0
– volume: 12
  year: 2021
  ident: CR11
  article-title: Power of data in quantum machine learning
  publication-title: Nat. Commun.
– ident: CR35
– ident: CR54
– volume: 90
  start-page: 227
  year: 2000
  ident: CR46
  article-title: Improving predictive inference under covariate shift by weighting the log-likelihood function
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/S0378-3758(00)00115-4
– ident: CR8
– volume: 2017
  year: 2017
  ident: CR59
  article-title: Chaos and complexity by design
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2017)121
– volume: 303
  start-page: 249
  year: 2002
  ident: CR77
  article-title: A simple formula for the average gate fidelity of a quantum dynamical operation
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)01272-0
– volume: 376
  start-page: 1182
  year: 2022
  ident: CR4
  article-title: Quantum advantage in learning from experiments
  publication-title: Science
  doi: 10.1126/science.abn7293
– volume: 2
  start-page: 14
  year: 2020
  ident: CR12
  article-title: Pseudo-dimension of quantum circuits
  publication-title: Quant. Mach. Intell.
  doi: 10.1007/s42484-020-00027-5
– volume: 12
  year: 2021
  ident: CR52
  article-title: Cost function dependent barren plateaus in shallow parametrized quantum circuits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21728-w
– volume: 16
  start-page: 1050
  year: 2020
  ident: CR53
  article-title: Predicting many properties of a quantum system from very few measurements
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0932-7
– volume: 20
  year: 2021
  ident: CR22
  article-title: Learning bounds for quantum circuits in the agnostic setting
  publication-title: Quant. Inf. Process.
  doi: 10.1007/s11128-021-03225-7
– volume: 289
  start-page: 1057
  year: 2009
  ident: CR73
  article-title: Unital quantum channels–convex structure and revivals of Birkhoff’s theorem
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0824-2
– volume: 128
  start-page: 070501
  year: 2022
  ident: CR14
  article-title: Reformulation of the no-free-lunch theorem for entangled datasets
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.070501
– volume: 549
  start-page: 195
  year: 2017
  ident: CR1
  article-title: Quantum machine learning
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 5
  start-page: 023027
  year: 2023
  ident: CR39
  article-title: Classical shadow tomography with locally scrambled quantum dynamics
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.023027
– ident: CR67
– ident: CR75
– volume: 6
  start-page: 628
  year: 2022
  ident: CR32
  article-title: Robust quantum compilation and circuit optimisation via energy minimisation
  publication-title: Quantum
  doi: 10.22331/q-2022-01-24-628
– ident: CR9
– volume: 2
  start-page: 010324
  year: 2021
  ident: CR56
  article-title: Machine learning of noise-resilient quantum circuits
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.2.010324
– ident: CR5
– volume: 102
  start-page: 012415
  year: 2020
  ident: CR71
  article-title: Machine learning phase transitions with a quantum processor
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.012415
– volume: 377
  start-page: eabk3333
  year: 2022
  ident: CR55
  article-title: Provably efficient machine learning for quantum many-body problems
  publication-title: Science
  doi: 10.1126/science.abk3333
– ident: CR18
– volume: 56
  start-page: 172
  year: 2015
  ident: CR2
  article-title: An introduction to quantum machine learning
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2014.964942
– volume: 89
  start-page: 035002
  year: 2017
  ident: CR26
  article-title: Quantum sensing
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.035002
– ident: CR47
– ident: CR72
– volume: 128
  start-page: 080506
  year: 2022
  ident: CR17
  article-title: Efficient measure for the expressivity of variational quantum algorithms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.080506
– ident: CR37
– volume: 6
  year: 2020
  ident: CR34
  article-title: Variational fast forwarding for quantum simulation beyond the coherence time
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-020-00302-0
– ident: CR10
– volume: 22
  start-page: 043006
  year: 2020
  ident: CR31
  article-title: Noise resilience of variational quantum compiling
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/ab784c
– ident: CR33
– volume: 125
  start-page: 130601
  year: 2020
  ident: CR40
  article-title: Minimal model for fast scrambling
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.130601
– volume: 5
  start-page: 582
  year: 2021
  ident: CR19
  article-title: Encoding-dependent generalization bounds for parametrized quantum circuits
  publication-title: Quantum
  doi: 10.22331/q-2021-11-17-582
– volume: 81
  start-page: 5672
  year: 1998
  ident: CR58
  article-title: Power of one bit of quantum information
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.5672
– volume: 13
  start-page: 551
  year: 2017
  ident: CR27
  article-title: Experimental quantum Hamiltonian learning
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4074
– volume: 13
  year: 2022
  ident: CR20
  article-title: Generalization in quantum machine learning from few training data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32550-3
– volume: 2
  start-page: 010322
  year: 2021
  ident: CR62
  article-title: Fast estimation of sparse quantum noise
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.2.010322
– volume: 1
  start-page: 1
  year: 2020
  ident: CR60
  article-title: Efficient estimation of Pauli channels
  publication-title: ACM Trans. Quant. Comput.
  doi: 10.1145/3408039
– volume: 105
  start-page: 032435
  year: 2022
  ident: CR64
  article-title: Quantum advantages for Pauli channel estimation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.032435
– ident: CR69
– ident: CR44
– volume: 2
  start-page: 1
  year: 2021
  ident: CR21
  article-title: On the expressibility and overfitting of quantum circuit learning
  publication-title: ACM Trans. Quant. Comput.
  doi: 10.1145/3466797
– ident: CR48
– volume: 12
  year: 2021
  ident: CR50
  article-title: Noise-induced barren plateaus in variational quantum algorithms
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27045-6
– ident: CR65
– volume: 5
  start-page: 549
  year: 2021
  ident: CR63
  article-title: Pauli error estimation via population recovery
  publication-title: Quantum
  doi: 10.22331/q-2021-09-23-549
– volume: 2
  start-page: 040321
  year: 2021
  ident: CR16
  article-title: Generalization in quantum machine learning: a quantum information standpoint
  publication-title: PRX Quant,
  doi: 10.1103/PRXQuantum.2.040321
– ident: CR3
– volume: 3
  start-page: 140
  year: 2019
  ident: CR30
  article-title: Quantum-assisted quantum compiling
  publication-title: Quantum
  doi: 10.22331/q-2019-05-13-140
– volume: 87
  start-page: 167902
  year: 2001
  ident: CR43
  article-title: Quantum fingerprinting
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.167902
– volume: 3
  start-page: 033200
  year: 2021
  ident: CR36
  article-title: Experimental quantum learning of a spectral decomposition
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.033200
– volume: 22
  start-page: 1345
  year: 2009
  ident: CR49
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowledge Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 2
  start-page: 040327
  year: 2021
  ident: CR24
  article-title: Universal compiling and (no-)free-lunch theorems for continuous-variable quantum learning
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.2.040327
– volume: 2
  start-page: 79
  year: 2018
  ident: CR25
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 16
  start-page: 1184
  year: 2020
  ident: CR61
  article-title: Efficient learning of quantum noise
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0992-8
– volume: 101
  start-page: 224202
  year: 2020
  ident: CR38
  article-title: Markovian entanglement dynamics under locally scrambled quantum evolution
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.224202
– ident: CR76
– volume: 7
  start-page: 025014
  year: 2022
  ident: CR23
  article-title: Sample complexity of learning parametric quantum circuits
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/ac4f30
– volume: 1
  start-page: 403
  year: 2021
  ident: CR13
  article-title: The power of quantum neural networks
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-021-00084-1
– volume: 105
  start-page: 062431
  year: 2022
  ident: CR15
  article-title: Statistical complexity of quantum circuits
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.062431
– volume: 126
  start-page: 190505
  year: 2021
  ident: CR7
  article-title: Information-theoretic bounds on quantum advantage in machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.190505
– volume: 2017
  year: 2017
  ident: 39381_CR59
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2017)121
– volume: 3
  start-page: 18
  year: 2021
  ident: 39381_CR66
  publication-title: Quant. Mach. Intell.
  doi: 10.1007/s42484-021-00043-z
– volume: 16
  start-page: 264
  year: 1971
  ident: 39381_CR41
  publication-title: Theor. Prob. Appl.
  doi: 10.1137/1116025
– volume: 13
  start-page: 551
  year: 2017
  ident: 39381_CR27
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4074
– volume: 56
  start-page: 172
  year: 2015
  ident: 39381_CR2
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2014.964942
– volume: 3
  start-page: 140
  year: 2019
  ident: 39381_CR30
  publication-title: Quantum
  doi: 10.22331/q-2019-05-13-140
– volume: 102
  start-page: 012415
  year: 2020
  ident: 39381_CR71
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.012415
– ident: 39381_CR8
  doi: 10.1109/FOCS52979.2021.00063
– volume: 5
  start-page: 582
  year: 2021
  ident: 39381_CR19
  publication-title: Quantum
  doi: 10.22331/q-2021-11-17-582
– ident: 39381_CR67
– volume: 105
  start-page: 062431
  year: 2022
  ident: 39381_CR15
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.062431
– volume: 17
  start-page: 837
  year: 2021
  ident: 39381_CR29
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01201-7
– ident: 39381_CR48
– ident: 39381_CR44
– volume: 27
  start-page: 1134
  year: 1984
  ident: 39381_CR42
  publication-title: Commun. ACM
  doi: 10.1145/1968.1972
– volume: 6
  year: 2020
  ident: 39381_CR34
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-020-00302-0
– volume: 105
  start-page: 032435
  year: 2022
  ident: 39381_CR64
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.032435
– volume: 2
  start-page: 010322
  year: 2021
  ident: 39381_CR62
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.2.010322
– volume: 2
  start-page: 1
  year: 2021
  ident: 39381_CR21
  publication-title: ACM Trans. Quant. Comput.
  doi: 10.1145/3466797
– ident: 39381_CR35
  doi: 10.1038/s41534-022-00625-0
– ident: 39381_CR10
– volume: 125
  start-page: 130601
  year: 2020
  ident: 39381_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.130601
– volume: 89
  start-page: 042314
  year: 2014
  ident: 39381_CR28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.042314
– ident: 39381_CR5
  doi: 10.1038/s41567-021-01287-z
– volume: 303
  start-page: 249
  year: 2002
  ident: 39381_CR77
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)01272-0
– volume: 3
  start-page: 033200
  year: 2021
  ident: 39381_CR36
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.033200
– volume: 7
  start-page: 025014
  year: 2022
  ident: 39381_CR23
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/ac4f30
– ident: 39381_CR54
  doi: 10.1038/s42254-022-00535-2
– volume: 5
  start-page: 023027
  year: 2023
  ident: 39381_CR39
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.023027
– volume: 101
  start-page: 224202
  year: 2020
  ident: 39381_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.224202
– volume: 7
  start-page: 308
  year: 1965
  ident: 39381_CR57
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 89
  start-page: 035002
  year: 2017
  ident: 39381_CR26
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.035002
– volume: 17
  start-page: 1221
  year: 2021
  ident: 39381_CR51
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01356-3
– ident: 39381_CR76
– ident: 39381_CR3
  doi: 10.1007/978-3-030-83098-4
– volume: 1
  start-page: 1
  year: 2020
  ident: 39381_CR60
  publication-title: ACM Trans. Quant. Comput.
  doi: 10.1145/3408039
– volume: 376
  start-page: 1182
  year: 2022
  ident: 39381_CR4
  publication-title: Science
  doi: 10.1126/science.abn7293
– volume: 6
  start-page: 628
  year: 2022
  ident: 39381_CR32
  publication-title: Quantum
  doi: 10.22331/q-2022-01-24-628
– volume: 16
  start-page: 1050
  year: 2020
  ident: 39381_CR53
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0932-7
– volume: 5
  start-page: 549
  year: 2021
  ident: 39381_CR63
  publication-title: Quantum
  doi: 10.22331/q-2021-09-23-549
– volume: 289
  start-page: 1057
  year: 2009
  ident: 39381_CR73
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0824-2
– volume: 22
  start-page: 1345
  year: 2009
  ident: 39381_CR49
  publication-title: IEEE Trans. Knowledge Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 12
  year: 2021
  ident: 39381_CR11
  publication-title: Nat. Commun.
– ident: 39381_CR65
– volume: 128
  start-page: 070501
  year: 2022
  ident: 39381_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.070501
– ident: 39381_CR9
– volume: 81
  start-page: 5672
  year: 1998
  ident: 39381_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.5672
– volume: 13
  year: 2022
  ident: 39381_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32550-3
– volume: 90
  start-page: 227
  year: 2000
  ident: 39381_CR46
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/S0378-3758(00)00115-4
– volume: 2
  start-page: 14
  year: 2020
  ident: 39381_CR12
  publication-title: Quant. Mach. Intell.
  doi: 10.1007/s42484-020-00027-5
– ident: 39381_CR69
– ident: 39381_CR18
  doi: 10.22331/q-2023-01-13-893
– ident: 39381_CR75
– volume: 1
  start-page: 403
  year: 2021
  ident: 39381_CR13
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-021-00084-1
– volume: 2
  start-page: 040321
  year: 2021
  ident: 39381_CR16
  publication-title: PRX Quant,
  doi: 10.1103/PRXQuantum.2.040321
– volume: 377
  start-page: eabk3333
  year: 2022
  ident: 39381_CR55
  publication-title: Science
  doi: 10.1126/science.abk3333
– ident: 39381_CR33
– volume: 549
  start-page: 195
  year: 2017
  ident: 39381_CR1
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 20
  year: 2021
  ident: 39381_CR22
  publication-title: Quant. Inf. Process.
  doi: 10.1007/s11128-021-03225-7
– volume: 2
  start-page: 040327
  year: 2021
  ident: 39381_CR24
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.2.040327
– ident: 39381_CR45
  doi: 10.7551/mitpress/9780262170055.001.0001
– volume: 16
  start-page: 1184
  year: 2020
  ident: 39381_CR61
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0992-8
– ident: 39381_CR37
– volume: 87
  start-page: 167902
  year: 2001
  ident: 39381_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.167902
– volume: 13
  year: 2022
  ident: 39381_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27922-0
– ident: 39381_CR72
  doi: 10.1103/PhysRevB.107.L081105
– volume: 2
  start-page: 010324
  year: 2021
  ident: 39381_CR56
  publication-title: PRX Quant.
  doi: 10.1103/PRXQuantum.2.010324
– volume: 22
  start-page: 043006
  year: 2020
  ident: 39381_CR31
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/ab784c
– volume: 128
  start-page: 080506
  year: 2022
  ident: 39381_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.080506
– ident: 39381_CR68
– volume: 2
  start-page: 79
  year: 2018
  ident: 39381_CR25
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– ident: 39381_CR74
– ident: 39381_CR47
– volume: 12
  year: 2021
  ident: 39381_CR50
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27045-6
– ident: 39381_CR70
– volume: 126
  start-page: 190505
  year: 2021
  ident: 39381_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.190505
– volume: 12
  year: 2021
  ident: 39381_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21728-w
SSID ssj0000391844
Score 2.6696177
Snippet Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees...
Abstract Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3751
SubjectTerms 639/705/117
639/766/483/481
Algorithms
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Entangled states
Humanities and Social Sciences
Learning algorithms
Machine learning
multidisciplinary
Neural networks
Quantum entanglement
Quantum Information Science and Technology
Quantum theory
Qubits (quantum computing)
Science
Science (multidisciplinary)
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkhcEC2v0IKCxA2sJvH7xkNUHFDhAFJvlmM7pRLNQjeh4t8zfuzShQIXToliJ7LHM55vYvsbgCeiC71S2sbjZwNhwXtiqZSk5cqiSgX0KYld_608OlLHx_r9pVRfcU9YpgfOgjuQzdCxoGSPrpRRp1VjMWKxXGo9eO8T2XYj9aVgKs3BVGPowsopmYaqgyVLcwK6KEI1uilyseGJEmE_XhZoWFeBzd_3TP6ycJr80eEtuFmAZP0id2AHroVxF67n1JLfb8Pzd_NEFgPxkRi35LSqTzLHdDl6WSNerUvWiJP664wyns9qn1PUL-_Ax8PXH169ISVbAnGCsonQILgfgqeWyYCgSAjNB9lTbtEDB9E4L5iwg2iFDy4gCtCNszKeZmoCOiVH78LWuBjDfagRU6nWOgSDrmVdL_uB4Y3lgVPumB0qaFeSM65QiceMFp9NWtKmymRpG5S2SdI2FxU8Xb_zJRNp_LX2yzgg65qRBDs9QNUwRTXMv1Sjgr04nAaxRCTEdXHnkJtMq1WMUivYX42yKXa7NAi2MGZHkCgreLwuRouLyyh2DIs519GI4hR-4l5WinU7qcQAmUssURvqstGRzZLx9FNi9Y7Mhh2CtwqerTTrZ7v-LKkH_0NSe3Cji5YRf1vzfdiazufwELbdt-l0ef4omdYPZcEkfQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Out-of-distribution generalization for learning quantum dynamics
URI https://link.springer.com/article/10.1038/s41467-023-39381-w
https://www.ncbi.nlm.nih.gov/pubmed/37407571
https://www.proquest.com/docview/2833382647
https://www.proquest.com/docview/2833997681
https://www.osti.gov/biblio/1988191
https://pubmed.ncbi.nlm.nih.gov/PMC10322910
https://doaj.org/article/70f24e87b63943c980a107a5799fddd6
Volume 14
WOSCitedRecordID wos001024729900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvAuhZRUkbmA1iZ85AUWtQIIlQiAtXCyv7SyVYNPug4p_z9jxbrU8euGSRLETxZkZz-ex_Q3AE1H5sVK1CdvPWsK8c8RQKUnJlUGV8uhTIrv-WzkcqtGoblLAbZ6WVa76xNhRu86GGPkBukEcTaH7ls9Pz0jIGhVmV1MKjS3YCSwJVVy616xjLIH9XDGW9soUVB3MWewZ0FERWqOzIucb_ijS9uOpQ_P6G-T8c-Xkb9On0Ssd3_zf9tyCGwmP5i97BboNV_z0DlzrM1T-vAsv3i8XpGuJC_y6KTVWPumpqtMOzhxhb56ST0zysyWKavk9d32m-_k9-HR89PHVa5KSLhArKFsQ6gV3rXfUMOkRWwlR81aOKTfoyL0orBNMmFaUwnnrEUzUhTUybIoqPPo2S3dhe9pN_QPIEZqp0ljElLZk1ViOW4YXhntOuWWmzaBc_XptEyN5SIzxTceZcap0Ly6N4tJRXPo8g6frZ057Po5Lax8Gia5rBi7teKObTXQyTS2LtmJeyTGCNUZtrQqDY2LDZV23zjmRwV7QB42QJPDq2rAAyS50Wasw2M1gfyVfncx_ri-Em8HjdTEabpiNMVPfLfs6NYJBha-432vV-jupxHE2l1iiNvRtoyGbJdOTr5EcPBAkVogBM3i2Us2L7_r3n3p4eTP24HoVjCbEtfk-bC9mS_8Irtofi5P5bABbciTjUQ1g5_Bo2HwYxODGINojHhv-BUuaN--az78AeKU6KQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qKQgu7MvQAoMEJ7A6M_bYngNirxo1DTkUqZyMY3tCJDrTZiHKn-I38jxLqrD01gOnRLEz8sx8773Py_sewDOeuKGUmfbpZzlhzlqiqRAkTqVGSDmMKZW6fk_0-_LoKBtswM82F8Yfq2x9YuWobWn8GvkOhkGcTWH4Fq9PTomvGuV3V9sSGjUs9t1ygVO26avuB3y_z5Nk9-Ph-z3SVBUghlM2I9Tx1ObOUs2EQ_LAeZbmYkhTjZHK8chYzrjOecytMw6jZRYZLXzWT-TQeRuK170Em8yDvQObg-7B4MtqVcfrrUvGmuyciMqdKat8EYZGQjMMj2SxFgGrQgH4UaJB_43k_nlW87cN2yoO7t74357gTbjeMO7wbW0it2DDFbfhSl2Dc3kH3nyaz0iZE-sVhJviX-GoFuNuclRDJPZhU15jFJ7OEYzz49AuC308NtO78PlChn8POkVZuAcQIvmUsTbImk3MkqEY5gy_6NSlNDVM5wHE7atWptFc96U_vqtq759KVcNDITxUBQ-1CODF6j8nteLIub3feQStenq18OqHcjJSjfNRIsoT5qQYIh1l1GQy0jjr16nIstxaywPY8vhTSLq8crDxR6zMTMWZ9NP5ALZbPKnGwU3VGZgCeLpqRtfk95t04cp53SdDuivxEvdrFK_GSQVDsiqwRa7he-1G1luK8bdK_txLQCbIcgN42ZrC2bj-_aQenn8bT-Dq3uFBT_W6_f0tuJZ4g_Wr-Ok2dGaTuXsEl82P2Xg6edzYfAhfL9pIfgGbCpCh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4a4yJeuDPCBgQJnsBqEju284C4jYppU-kDSBMvxrWdrhJLtjal6l_j13GcS6dy2dseeGpVu5GTfOecz_bxdwCe8cSNpMy0P36WE-asJZoKQeJUaoSUw5hSq-sfiMFAHh5mww342Z2F8WmVnU-sHbUtjV8j72EYxNkUhm_Ry9u0iOFu__XJKfEVpPxOa1dOo4HIvlsucPo2e7W3i-_6eZL0P3x-_5G0FQaI4ZRVhDqe2txZqplwSCQ4z9JcjGiqMWo5HhnLGdc5j7l1xmHkzCKjhT8BFDl05IbidS_BZYFzTJ9OOEy_rtZ3vPK6ZKw9pxNR2Zux2ithkCQ0w0BJFmuxsC4ZgB8lmvbf6O6fWZu_bd3WEbF_839-lrfgRsvDw7eN4dyGDVfcgatNZc7lXXjzaV6RMifW6wq3JcHCcSPR3Z5cDZHuh23RjXF4OkeIzo9Duyz08cTM7sGXCxn-fdgsysI9gBApqYy1QS5tYpaMxChn-EWnLqWpYToPIO5euzKtErsvCPJd1RkBVKoGKgqhomqoqEUAL1b_OWl0SM7t_c6jadXTa4jXP5TTsWpdkhJRnjAnxQhJKqMmk5GOI6FTkWW5tZYHsO2xqJCKeT1h4xOvTKXiTPpJfgA7HbZU6_Zm6gxYATxdNaPD8rtQunDlvOmTIQmWeImtBtGrcVLBkMIKbJFrWF-7kfWWYnJUi6J7YcgEuW8ALzuzOBvXv5_Uw_Nv4wlcQ8tQB3uD_W24nnjb9Uv76Q5sVtO5ewRXzI9qMps-ro0_hG8XbSG_AHOMmAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Out-of-distribution+generalization+for+learning+quantum+dynamics&rft.jtitle=Nature+communications&rft.au=Caro%2C+Matthias+C&rft.au=Huang%2C+Hsin-Yuan&rft.au=Ezzell%2C+Nicholas&rft.au=Gibbs%2C+Joe&rft.date=2023-07-05&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=3751&rft_id=info:doi/10.1038%2Fs41467-023-39381-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon