An epigenome-wide association study of sex-specific chronological ageing

Background Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome medicine Jg. 12; H. 1; S. 1 - 11
Hauptverfasser: McCartney, Daniel L., Zhang, Futao, Hillary, Robert F., Zhang, Qian, Stevenson, Anna J., Walker, Rosie M., Bermingham, Mairead L., Boutin, Thibaud, Morris, Stewart W., Campbell, Archie, Murray, Alison D., Whalley, Heather C., Porteous, David J., Hayward, Caroline, Evans, Kathryn L., Chandra, Tamir, Deary, Ian J., McIntosh, Andrew M., Yang, Jian, Visscher, Peter M., McRae, Allan F., Marioni, Riccardo E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 31.12.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1756-994X, 1756-994X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years. Methods Linear regression models were applied, with stringent genome-wide significance thresholds ( p  < 3.6 × 10 −8 ) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds. Results Using the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10 , an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r  = 0.02) but decreased across female adult age range (DNA methylation by age r  = − 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction. Conclusion The majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits.
AbstractList Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years.BACKGROUNDAdvanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years.Linear regression models were applied, with stringent genome-wide significance thresholds (p < 3.6 × 10-8) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds.METHODSLinear regression models were applied, with stringent genome-wide significance thresholds (p < 3.6 × 10-8) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds.Using the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10, an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r = 0.02) but decreased across female adult age range (DNA methylation by age r = - 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction.RESULTSUsing the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10, an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r = 0.02) but decreased across female adult age range (DNA methylation by age r = - 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction.The majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits.CONCLUSIONThe majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits.
Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years. Linear regression models were applied, with stringent genome-wide significance thresholds (p < 3.6 × 10 ) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds. Using the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10, an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r = 0.02) but decreased across female adult age range (DNA methylation by age r = - 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction. The majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits.
Abstract Background Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years. Methods Linear regression models were applied, with stringent genome-wide significance thresholds (p < 3.6 × 10−8) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds. Results Using the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10, an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r = 0.02) but decreased across female adult age range (DNA methylation by age r = − 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction. Conclusion The majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits.
Background Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years. Methods Linear regression models were applied, with stringent genome-wide significance thresholds (p < 3.6 x 10.sup.-8) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds. Results Using the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10, an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r = 0.02) but decreased across female adult age range (DNA methylation by age r = - 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction. Conclusion The majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits. Keywords: DNA methylation, Ageing, Sexual dimorphism, X chromosome, Generation Scotland
Background Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years. Methods Linear regression models were applied, with stringent genome-wide significance thresholds ( p  < 3.6 × 10 −8 ) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds. Results Using the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10 , an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r  = 0.02) but decreased across female adult age range (DNA methylation by age r  = − 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction. Conclusion The majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits.
Background Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years. Methods Linear regression models were applied, with stringent genome-wide significance thresholds (p < 3.6 × 10−8) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds. Results Using the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10, an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r = 0.02) but decreased across female adult age range (DNA methylation by age r = − 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction. Conclusion The majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits.
Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years. Linear regression models were applied, with stringent genome-wide significance thresholds (p < 3.6 x 10.sup.-8) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds. Using the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10, an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r = 0.02) but decreased across female adult age range (DNA methylation by age r = - 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction. The majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits.
ArticleNumber 1
Audience Academic
Author Hillary, Robert F.
Boutin, Thibaud
Chandra, Tamir
Whalley, Heather C.
Deary, Ian J.
Visscher, Peter M.
McCartney, Daniel L.
Zhang, Qian
Campbell, Archie
Porteous, David J.
Murray, Alison D.
Stevenson, Anna J.
Morris, Stewart W.
Walker, Rosie M.
McIntosh, Andrew M.
Yang, Jian
Bermingham, Mairead L.
Evans, Kathryn L.
McRae, Allan F.
Zhang, Futao
Hayward, Caroline
Marioni, Riccardo E.
Author_xml – sequence: 1
  givenname: Daniel L.
  surname: McCartney
  fullname: McCartney, Daniel L.
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh
– sequence: 2
  givenname: Futao
  surname: Zhang
  fullname: Zhang, Futao
  organization: Institute for Molecular Bioscience, University of Queensland
– sequence: 3
  givenname: Robert F.
  surname: Hillary
  fullname: Hillary, Robert F.
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh
– sequence: 4
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  organization: Institute for Molecular Bioscience, University of Queensland
– sequence: 5
  givenname: Anna J.
  surname: Stevenson
  fullname: Stevenson, Anna J.
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh
– sequence: 6
  givenname: Rosie M.
  surname: Walker
  fullname: Walker, Rosie M.
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh
– sequence: 7
  givenname: Mairead L.
  surname: Bermingham
  fullname: Bermingham, Mairead L.
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh
– sequence: 8
  givenname: Thibaud
  surname: Boutin
  fullname: Boutin, Thibaud
  organization: MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh
– sequence: 9
  givenname: Stewart W.
  surname: Morris
  fullname: Morris, Stewart W.
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh
– sequence: 10
  givenname: Archie
  surname: Campbell
  fullname: Campbell, Archie
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh
– sequence: 11
  givenname: Alison D.
  surname: Murray
  fullname: Murray, Alison D.
  organization: Aberdeen Biomedical Imaging Centre, University of Aberdeen
– sequence: 12
  givenname: Heather C.
  surname: Whalley
  fullname: Whalley, Heather C.
  organization: Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh
– sequence: 13
  givenname: David J.
  surname: Porteous
  fullname: Porteous, David J.
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh
– sequence: 14
  givenname: Caroline
  surname: Hayward
  fullname: Hayward, Caroline
  organization: MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh
– sequence: 15
  givenname: Kathryn L.
  surname: Evans
  fullname: Evans, Kathryn L.
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh
– sequence: 16
  givenname: Tamir
  surname: Chandra
  fullname: Chandra, Tamir
  organization: MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh
– sequence: 17
  givenname: Ian J.
  surname: Deary
  fullname: Deary, Ian J.
  organization: Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh
– sequence: 18
  givenname: Andrew M.
  surname: McIntosh
  fullname: McIntosh, Andrew M.
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh
– sequence: 19
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
  organization: Institute for Molecular Bioscience, University of Queensland, Institute for Advanced Research, Wenzhou Medical University
– sequence: 20
  givenname: Peter M.
  surname: Visscher
  fullname: Visscher, Peter M.
  organization: Institute for Molecular Bioscience, University of Queensland
– sequence: 21
  givenname: Allan F.
  surname: McRae
  fullname: McRae, Allan F.
  organization: Institute for Molecular Bioscience, University of Queensland
– sequence: 22
  givenname: Riccardo E.
  orcidid: 0000-0003-4430-4260
  surname: Marioni
  fullname: Marioni, Riccardo E.
  email: Riccardo.Marioni@ed.ac.uk
  organization: Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31892350$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURNuBH8AGRUJCbFL8SPzYII0qoJUqsQGJneU41xmPMvZgJ0D76_E0LZ2pAHkR6_o7J_HJOS2OfPBQFC8xOsNYsHcJU8RphbCsEJO0unlSnGDesErK-tvR3v64OE1pjRCrSc2fFccUC0log06Ki6UvYet68GED1U_XQalTCsbp0QVfpnHqrstgywS_qrQF46wzpVnF4MMQemf0UOoenO-fF0-tHhK8uHsuiq8fP3w5v6iuPn-6PF9eVYbReqww4Z0wUmrdacuIhkaS1uIWoMGWggHWca7B6qYBzXgjEEUGMd7yVouGtnRRXM6-XdBrtY1uo-O1Ctqp20GIvdJxdGYAJbCoTYt4LdqurikRAC1pgRMru9ZYnL3ez17bqd1AZ8CPUQ8Hpocn3q1UH36oHLZglGWDt3cGMXyfII1q45KBYdAewpQUoRRzKZGgGX39CF2HKfocVaZqjBvGRf1A9TpfwHkb8nvNzlQtGUZEMpbNFsXZX6i8Otg4kztiXZ4fCN7sCVagh3GVwjDt_nE6BF_tJ_InivvCZIDPgIkhpQhWGTfediV_ghsURmpXTTVXU-Vqql011U1W4kfKe_P_acisSZn1PcSH0P4t-g3thPWu
CitedBy_id crossref_primary_10_1038_s41598_021_98693_3
crossref_primary_10_1038_s43587_025_00856_8
crossref_primary_10_1186_s13059_021_02398_9
crossref_primary_10_1098_rsob_240177
crossref_primary_10_1111_joim_13306
crossref_primary_10_1186_s13073_020_00736_3
crossref_primary_10_1038_s41467_022_33511_6
crossref_primary_10_1016_j_arr_2024_102418
crossref_primary_10_1002_elps_70014
crossref_primary_10_1002_smtd_202300096
crossref_primary_10_1186_s13148_023_01600_y
crossref_primary_10_1016_j_mito_2021_07_007
crossref_primary_10_18632_aging_206317
crossref_primary_10_1186_s12864_024_10065_z
crossref_primary_10_1038_s41467_021_23621_y
crossref_primary_10_1038_s43587_023_00557_0
crossref_primary_10_1186_s13148_025_01941_w
crossref_primary_10_1016_j_fsigen_2024_103050
crossref_primary_10_1186_s13073_023_01161_y
crossref_primary_10_1039_D4NR04557B
crossref_primary_10_1186_s12859_021_04458_0
crossref_primary_10_1186_s13059_021_02596_5
crossref_primary_10_1186_s13195_022_01070_z
crossref_primary_10_1038_s41598_025_10031_z
crossref_primary_10_1038_s44320_023_00009_2
crossref_primary_10_1186_s12877_021_02399_0
crossref_primary_10_3390_cancers13081881
crossref_primary_10_7554_eLife_64932
crossref_primary_10_1186_s13072_021_00407_6
crossref_primary_10_3390_biology14010098
crossref_primary_10_1080_15592294_2024_2375022
crossref_primary_10_1021_acssynbio_4c00649
crossref_primary_10_1007_s00414_024_03365_2
crossref_primary_10_1186_s12958_021_00815_z
crossref_primary_10_1007_s11033_022_07257_9
crossref_primary_10_1007_s11357_024_01414_7
crossref_primary_10_1186_s12859_023_05470_2
crossref_primary_10_1186_s13148_022_01236_4
crossref_primary_10_1002_elps_202000367
crossref_primary_10_1080_17538157_2024_2400247
crossref_primary_10_1016_j_mad_2022_111707
crossref_primary_10_1016_j_gene_2025_149286
crossref_primary_10_1007_s10123_021_00184_y
crossref_primary_10_1038_s41598_022_11317_2
crossref_primary_10_1111_acel_13452
crossref_primary_10_1186_s13148_023_01549_y
crossref_primary_10_3390_epigenomes7040029
crossref_primary_10_3389_fnagi_2021_639428
crossref_primary_10_3389_fendo_2021_690648
crossref_primary_10_1186_s40246_023_00484_6
crossref_primary_10_1186_s41118_023_00181_1
crossref_primary_10_1172_JCI180071
crossref_primary_10_3389_fped_2023_1203289
crossref_primary_10_1186_s40659_024_00485_2
crossref_primary_10_7554_eLife_63425
crossref_primary_10_1186_s13059_022_02787_8
crossref_primary_10_3390_biomedicines10112894
crossref_primary_10_3390_ijms25094917
crossref_primary_10_1038_s41431_023_01301_3
crossref_primary_10_1111_nyas_70021
crossref_primary_10_1080_15592294_2022_2152637
crossref_primary_10_3389_fnagi_2021_674318
crossref_primary_10_1186_s13148_025_01818_y
crossref_primary_10_1080_15592294_2023_2257437
Cites_doi 10.1186/s13059-019-1718-z
10.1002/art.39504
10.1093/gerona/glw185
10.1038/ng.3434
10.1016/j.cmet.2016.05.019
10.1038/ng.89
10.1038/s41467-017-01261-5
10.1016/j.fsigen.2018.09.010
10.1016/S0197-4580(03)00059-9
10.1371/journal.pgen.1006594
10.1186/gb-2013-14-10-r115
10.1038/ng.3951
10.18632/aging.101684
10.1093/nar/gkw1133
10.1016/j.dadm.2018.05.006
10.1146/annurev-physiol-030212-183715
10.1007/s11357-017-9971-0
10.1101/664045
10.1093/ije/dys084
10.1038/ng.90
10.1002/ijc.21352
10.1186/s13293-015-0029-7
10.1002/(SICI)1097-0215(19960729)67:3<457::AID-IJC24>3.0.CO;2-3
10.1098/rstb.2015.0114
10.18632/aging.101414
10.1101/327890
10.1038/embor.2012.87
10.1038/s41576-018-0004-3
10.1002/jnr.23886
10.1093/bioinformatics/btv560
10.1002/art.39548
10.3892/ijmm.4.4.445
10.1016/j.molcel.2012.10.016
10.1210/jc.2002-020830
10.1038/s41467-018-07862-y
10.1186/s13059-016-0926-z
10.1038/ng.823
10.1038/s41588-018-0142-8
10.1038/sj.bjc.6600174
10.1038/nm.4445
10.1016/0921-8734(91)90018-7
10.1111/j.1399-0039.2007.00997.x
10.1093/nar/gkv007
10.1016/j.genm.2012.10.007
10.1371/journal.pone.0006767
10.1093/molbev/mst148
10.1038/ng.3094
10.1002/gepi.22086
10.1002/gepi.20303
10.1186/s12915-015-0118-4
10.1002/(sici)1097-0215(19970127)70:3<349::aid-ijc17>3.0.co
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13073-019-0693-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE




Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-994X
EndPage 11
ExternalDocumentID oai_doaj_org_article_8184cb0748bd44328eeb2be72f9dbcf1
PMC6938636
A610296608
31892350
10_1186_s13073_019_0693_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
United Kingdom--UK
Scotland
GeographicLocations_xml – name: United Kingdom
– name: United Kingdom--UK
– name: Scotland
GrantInformation_xml – fundername: Alzheimer’s Research UK (GB)
  grantid: ARUK-PG2017B-10
– fundername: Alzheimer’s Research UK
  grantid: ARUK-PG2017B-10
  funderid: http://dx.doi.org/10.13039/501100002283
– fundername: National Health and Medical Research Council
  grantid: 1078037; 1083656
  funderid: http://dx.doi.org/10.13039/501100000925
– fundername: Wellcome Trust (GB)
  grantid: 104036/Z/14/Z
– fundername: Wellcome Trust
  grantid: 104036/Z/14/Z; 104036/Z/14/Z; 104036/Z/14/Z; 104036/Z/14/Z; 108890/Z/15/Z; 108890/Z/15/Z
  funderid: http://dx.doi.org/10.13039/100004440
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: MC_UU_00007/10
– fundername: Wellcome Trust
  grantid: 104036/Z/14/Z
– fundername: Chief Scientist Office
  grantid: CZD/16/6
– fundername: Medical Research Council
  grantid: MR/K026992/1
– fundername: Wellcome Trust
  grantid: 108890/Z/15/Z
– fundername: Medical Research Council
  grantid: G0700704
– fundername: ;
  grantid: 104036/Z/14/Z
– fundername: ;
  grantid: 104036/Z/14/Z; 104036/Z/14/Z; 104036/Z/14/Z; 104036/Z/14/Z; 108890/Z/15/Z; 108890/Z/15/Z
– fundername: ;
  grantid: ARUK-PG2017B-10
– fundername: ;
  grantid: 1078037; 1083656
GroupedDBID ---
0R~
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFS
ACJQM
ACUHS
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIAM
BBNVY
BENPR
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
EJD
ESX
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
LK8
M1P
M7P
MK0
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
ROL
RPM
RSV
SBL
SOJ
TUS
UKHRP
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c634t-127d8c99aadaf62ae592bf1bee51f3ece6d77aefa55ea6758030c067b7ba853b3
IEDL.DBID DOA
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504988200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1756-994X
IngestDate Mon Nov 10 04:26:04 EST 2025
Tue Nov 04 01:44:45 EST 2025
Fri Sep 05 14:26:16 EDT 2025
Tue Oct 14 14:10:42 EDT 2025
Tue Nov 11 10:38:56 EST 2025
Tue Nov 04 18:05:24 EST 2025
Thu May 22 21:22:20 EDT 2025
Mon Jul 21 06:05:05 EDT 2025
Sat Nov 29 06:05:11 EST 2025
Tue Nov 18 21:40:40 EST 2025
Sat Sep 06 07:28:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DNA methylation
Sexual dimorphism
Generation Scotland
Ageing
X chromosome
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-127d8c99aadaf62ae592bf1bee51f3ece6d77aefa55ea6758030c067b7ba853b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4430-4260
OpenAccessLink https://doaj.org/article/8184cb0748bd44328eeb2be72f9dbcf1
PMID 31892350
PQID 2341156784
PQPubID 2040231
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_8184cb0748bd44328eeb2be72f9dbcf1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6938636
proquest_miscellaneous_2331799083
proquest_journals_2341156784
gale_infotracmisc_A610296608
gale_infotracacademiconefile_A610296608
gale_healthsolutions_A610296608
pubmed_primary_31892350
crossref_citationtrail_10_1186_s13073_019_0693_z
crossref_primary_10_1186_s13073_019_0693_z
springer_journals_10_1186_s13073_019_0693_z
PublicationCentury 2000
PublicationDate 2019-12-31
PublicationDateYYYYMMDD 2019-12-31
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-31
  day: 31
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome medicine
PublicationTitleAbbrev Genome Med
PublicationTitleAlternate Genome Med
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 693_CR39
G Hannum (693_CR8) 2013; 49
693_CR35
Steve Horvath (693_CR11) 2018; 19
Nicole M. Ashpole (693_CR50) 2017; 39
693_CR37
693_CR38
Sang-Eun Jung (693_CR15) 2019; 38
Nancy G. Forger (693_CR53) 2016; 371
Rosalind A Eeles (693_CR30) 2008; 40
693_CR42
693_CR45
693_CR41
Jacqueline MacArthur (693_CR26) 2016; 45
L Sigalotti (693_CR46) 2002; 86
693_CR24
Ake T. Lu (693_CR13) 2019; 11
Morgan E. Levine (693_CR12) 2018; 10
Marta E. Alarcón-Riquelme (693_CR34) 2016; 68
Jan Vijg (693_CR4) 2013; 75
Matthew E. Ritchie (693_CR21) 2015; 43
693_CR19
James Bentham (693_CR33) 2015; 47
Saskia P. Hagenaars (693_CR36) 2017; 13
Ali Amin Al Olama (693_CR32) 2014; 46
Steven N. Austad (693_CR49) 2016; 23
Robin Haring (693_CR48) 2012; 9
Yuchao Zhang (693_CR25) 2013; 30
Fredrick R. Schumacher (693_CR31) 2018; 50
Ayden Saffari (693_CR23) 2017; 42
Masato Akiyama (693_CR28) 2017; 49
693_CR20
Steve Horvath (693_CR9) 2013; 14
693_CR22
BH Smith (693_CR16) 2013; 42
Dick F. Swaab (693_CR51) 2003; 24
Michele Maio (693_CR43) 2003; 88
693_CR47
Julius Gudmundsson (693_CR29) 2008; 40
Vera Regitz-Zagrosek (693_CR2) 2012; 13
Daniel L. McCartney (693_CR17) 2018; 10
Calvin B. Harley (693_CR5) 1991; 256
Marco P. Boks (693_CR7) 2009; 4
Jian Yang (693_CR18) 2011; 43
Axel Mischo (693_CR44) 2005; 118
I Pe’er (693_CR27) 2008; 32
Vikram S. Ratnu (693_CR52) 2016; 95
693_CR6
Maria Giulia Bacalini (693_CR14) 2016; 72
M. F. Gjerstorff (693_CR40) 2008; 71
693_CR10
693_CR54
693_CR3
693_CR1
References_xml – ident: 693_CR22
  doi: 10.1186/s13059-019-1718-z
– volume: 68
  start-page: 932
  issue: 4
  year: 2016
  ident: 693_CR34
  publication-title: Arthritis & Rheumatology
  doi: 10.1002/art.39504
– volume: 72
  start-page: 1015
  issue: 8
  year: 2016
  ident: 693_CR14
  publication-title: The Journals of Gerontology: Series A
  doi: 10.1093/gerona/glw185
– volume: 47
  start-page: 1457
  issue: 12
  year: 2015
  ident: 693_CR33
  publication-title: Nature Genetics
  doi: 10.1038/ng.3434
– volume: 23
  start-page: 1022
  issue: 6
  year: 2016
  ident: 693_CR49
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2016.05.019
– volume: 40
  start-page: 281
  issue: 3
  year: 2008
  ident: 693_CR29
  publication-title: Nature Genetics
  doi: 10.1038/ng.89
– ident: 693_CR39
  doi: 10.1038/s41467-017-01261-5
– volume: 38
  start-page: 1
  year: 2019
  ident: 693_CR15
  publication-title: Forensic Science International: Genetics
  doi: 10.1016/j.fsigen.2018.09.010
– volume: 24
  start-page: S1
  year: 2003
  ident: 693_CR51
  publication-title: Neurobiology of Aging
  doi: 10.1016/S0197-4580(03)00059-9
– volume: 13
  start-page: e1006594
  issue: 2
  year: 2017
  ident: 693_CR36
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1006594
– volume: 14
  start-page: R115
  issue: 10
  year: 2013
  ident: 693_CR9
  publication-title: Genome Biology
  doi: 10.1186/gb-2013-14-10-r115
– volume: 49
  start-page: 1458
  issue: 10
  year: 2017
  ident: 693_CR28
  publication-title: Nature Genetics
  doi: 10.1038/ng.3951
– volume: 11
  start-page: 303
  issue: 2
  year: 2019
  ident: 693_CR13
  publication-title: Aging
  doi: 10.18632/aging.101684
– volume: 45
  start-page: D896
  issue: D1
  year: 2016
  ident: 693_CR26
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkw1133
– volume: 10
  start-page: 429
  year: 2018
  ident: 693_CR17
  publication-title: Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring
  doi: 10.1016/j.dadm.2018.05.006
– volume: 75
  start-page: 645
  issue: 1
  year: 2013
  ident: 693_CR4
  publication-title: Annual Review of Physiology
  doi: 10.1146/annurev-physiol-030212-183715
– volume: 39
  start-page: 129
  issue: 2
  year: 2017
  ident: 693_CR50
  publication-title: GeroScience
  doi: 10.1007/s11357-017-9971-0
– ident: 693_CR19
  doi: 10.1101/664045
– ident: 693_CR20
– volume: 42
  start-page: 689
  year: 2013
  ident: 693_CR16
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dys084
– volume: 40
  start-page: 316
  issue: 3
  year: 2008
  ident: 693_CR30
  publication-title: Nature Genetics
  doi: 10.1038/ng.90
– volume: 118
  start-page: 696
  issue: 3
  year: 2005
  ident: 693_CR44
  publication-title: International Journal of Cancer
  doi: 10.1002/ijc.21352
– ident: 693_CR54
  doi: 10.1186/s13293-015-0029-7
– ident: 693_CR45
  doi: 10.1002/(SICI)1097-0215(19960729)67:3<457::AID-IJC24>3.0.CO;2-3
– volume: 371
  start-page: 20150114
  issue: 1688
  year: 2016
  ident: 693_CR53
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2015.0114
– ident: 693_CR1
– volume: 10
  start-page: 573
  issue: 4
  year: 2018
  ident: 693_CR12
  publication-title: Aging
  doi: 10.18632/aging.101414
– ident: 693_CR10
  doi: 10.1101/327890
– volume: 13
  start-page: 596
  issue: 7
  year: 2012
  ident: 693_CR2
  publication-title: EMBO reports
  doi: 10.1038/embor.2012.87
– volume: 19
  start-page: 371
  issue: 6
  year: 2018
  ident: 693_CR11
  publication-title: Nature Reviews Genetics
  doi: 10.1038/s41576-018-0004-3
– volume: 95
  start-page: 301
  issue: 1-2
  year: 2016
  ident: 693_CR52
  publication-title: Journal of Neuroscience Research
  doi: 10.1002/jnr.23886
– ident: 693_CR24
  doi: 10.1093/bioinformatics/btv560
– ident: 693_CR35
  doi: 10.1002/art.39548
– ident: 693_CR42
  doi: 10.3892/ijmm.4.4.445
– volume: 49
  start-page: 359
  year: 2013
  ident: 693_CR8
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.10.016
– volume: 88
  start-page: 748
  issue: 2
  year: 2003
  ident: 693_CR43
  publication-title: The Journal of Clinical Endocrinology & Metabolism
  doi: 10.1210/jc.2002-020830
– ident: 693_CR37
  doi: 10.1038/s41467-018-07862-y
– ident: 693_CR38
  doi: 10.1186/s13059-016-0926-z
– volume: 43
  start-page: 519
  issue: 6
  year: 2011
  ident: 693_CR18
  publication-title: Nature Genetics
  doi: 10.1038/ng.823
– volume: 50
  start-page: 928
  issue: 7
  year: 2018
  ident: 693_CR31
  publication-title: Nature Genetics
  doi: 10.1038/s41588-018-0142-8
– volume: 86
  start-page: 979
  issue: 6
  year: 2002
  ident: 693_CR46
  publication-title: British Journal of Cancer
  doi: 10.1038/sj.bjc.6600174
– ident: 693_CR47
  doi: 10.1038/nm.4445
– volume: 256
  start-page: 271
  issue: 2-6
  year: 1991
  ident: 693_CR5
  publication-title: Mutation Research/DNAging
  doi: 10.1016/0921-8734(91)90018-7
– volume: 71
  start-page: 187
  issue: 3
  year: 2008
  ident: 693_CR40
  publication-title: Tissue Antigens
  doi: 10.1111/j.1399-0039.2007.00997.x
– volume: 43
  start-page: e47
  issue: 7
  year: 2015
  ident: 693_CR21
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkv007
– volume: 9
  start-page: 557
  issue: 6
  year: 2012
  ident: 693_CR48
  publication-title: Gender Medicine
  doi: 10.1016/j.genm.2012.10.007
– volume: 4
  start-page: e6767
  issue: 8
  year: 2009
  ident: 693_CR7
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006767
– volume: 30
  start-page: 2588
  issue: 12
  year: 2013
  ident: 693_CR25
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/mst148
– volume: 46
  start-page: 1103
  issue: 10
  year: 2014
  ident: 693_CR32
  publication-title: Nature Genetics
  doi: 10.1038/ng.3094
– volume: 42
  start-page: 20
  issue: 1
  year: 2017
  ident: 693_CR23
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.22086
– volume: 32
  start-page: 381
  year: 2008
  ident: 693_CR27
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20303
– ident: 693_CR3
– ident: 693_CR6
  doi: 10.1186/s12915-015-0118-4
– ident: 693_CR41
  doi: 10.1002/(sici)1097-0215(19970127)70:3<349::aid-ijc17>3.0.co
SSID ssj0064247
Score 2.485243
Snippet Background Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life...
Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy...
Background Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life...
Abstract Background Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Adult
Age
Aged
Ageing
Aging
Aging - genetics
Analysis
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Blood
Cancer Research
Chromosomes, Human, X - genetics
Cognitive ability
CpG Islands
Deoxyribonucleic acid
Disease
DNA
DNA Methylation
Epigenetics
Female
Gene Expression Regulation
Gene mapping
Generation Scotland
Genes
Genome-Wide Association Study
Genomes
Genomics
Health aspects
Human Genetics
Humans
Life expectancy
Life span
Linear Models
Male
Medicine/Public Health
Metabolomics
Methylation
Middle Aged
Mortality
Prostate cancer
Quality control
Quantitative Trait Loci
Regression analysis
Replication
Risk factors
Sex
Sex Characteristics
Sex differences
Sexual dimorphism
Software
Studies
Systems Biology
X chromosome
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egQJCQkEBWN7bjOCe0IKoeUNUDoN4s23FgJcgumy2P_npmnMeSInrhGo-lsWf8zTgefwZ4JnWuSp5zZmfcM-lFwUrhZ0xLm2e-5iGLxeMf3xWHh_r4uDzqf7i1fVnlgIkRqKulp3_kexzhFvcahZavVt8YvRpFp6v9ExoX4RKxJIhYunc0IDGm1rLoTzIzrfbajBwaN890774U7HQSiyJl_9_A_EdkOls1eeboNEak_ev_O5YbcK3PRdN55zw34UJobsGV7nXKX7fhYN6kYRVZXL8G9mNRhdRujZlGYtp0Wadt-MnowiYVHaWeyHYHQE0RrFD1O_Bh_-37Nwesf3iBeSXkhmW8qLQvS2srWytuQ15yV2cuhDyrRfBBVUVhQ23zPFjacSBSeAx7rnAWw78Td2GnWTbhPqRlZrUKqnZCVFLameNO5ErqUgZJvDAJzAYTGN-zktPjGF9M3J1oZTqrGbSaIauZ0wRejF1WHSXHecKvya6jILFpxw_L9SfTL06DSYv0DpMp7VBJwXUIqGcoeF1WztdZAk_IK0x3NXXEBDPH3JMTvalO4HmUIFRA9b3tLzfgJBC_1kRydyKJq9lPmweXMT2atGbrLwk8HZupJ1XINWF5QjKCyP0wo07gXueo46ARtzGPz2cJFBMXnszKtKVZfI5c4ziJWgmVwMvB2bdq_XPSH5w_iIdwldMijHSZu7CzWZ-ER3DZf98s2vXjuIR_Axp3TZg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Journals New Starts & Take-Overs Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9UwEA66Kvji_VJdtYIgKMU2SdPk8Sgu-yCLeFn2LSTpVA9oz3J61sv-emfSy9r1AvraTGA6mSuZ-cLYI6lLZXjJM5fzkMkgqsyIkGdaurIIDYciNo_vv6r29vTBgXk9zHF3Y7f7eCUZPXU0a62edQWpI5a-NDVvRHZ8lp3DaKfJGt-83R_dL-bTshquL3-7bRaAIk7_r974p3B0ulXy1H1pDEM7l__rB66wS0PWmS56NbnKzkB7jV3o36H8fp3tLtoUDiNe62fIvi5rSN3JsaURgjZdNWkH3zIazaT2ojQQrO7oOlN0S8jLDfZ-5-W7F7vZ8MRCFpSQm6zgVa2DMc7VrlHcQWm4bwoPUBaNgACqrioHjStLcFRboE8IGOB85R0Gei9usq121cJtlprCaQWq8ULUUrrccy9KJbWRIAkBJmH5KHcbBvxxegbjk411iFa2F5BFAVkSkD1O2JNpy2EPvvE34ud0mBMh4WbHD6v1BzuYocX0RAaPaZP2yKTgGgD5hIo3pvahKRL2gFTB9kOok_XbBWaZnIBMdcIeRwqyf2Q_uGGMAYVASFozyu0ZJdptmC-P6mYHv9FZjkkFVtSVRnE9nJZpJ_XCtbA6IhpBMH6YOyfsVq-d00-jh8aMvcwTVs30diaV-Uq7_BhRxVGIWgmVsKej9p6w9Ueh3_kn6rvsIif1jziZ22xrsz6Ce-x8-LJZduv70Yx_AMOXQ_M
  priority: 102
  providerName: Springer Nature
Title An epigenome-wide association study of sex-specific chronological ageing
URI https://link.springer.com/article/10.1186/s13073-019-0693-z
https://www.ncbi.nlm.nih.gov/pubmed/31892350
https://www.proquest.com/docview/2341156784
https://www.proquest.com/docview/2331799083
https://pubmed.ncbi.nlm.nih.gov/PMC6938636
https://doaj.org/article/8184cb0748bd44328eeb2be72f9dbcf1
Volume 12
WOSCitedRecordID wos000504988200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: RBZ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: RSV
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD5oVfBFvLbRukYQBCV0MzOZmTxupaWCLqFqWZ-GyWSCCzZbulsv_fWeM8mmTUV98SWwmRMy-825kjPfALwQOpM5y1hix8wlwnGV5NyNEy1slrqa-TQ0jx-9U9Opns3y4tJRX9QT1tIDt8DtYEARrsRAp8tKCM60x1qw9IrVeVW6OhQ-mPWsi6nWB2NSLVT3DTPVcmeZkipj2Uw77nOenA-iUCDr_90lX4pJV_slr3w0DbFo_y7c6ZLIeNJO_h5c8819uNUeK_nzARxMmtifBPrVY598n1c-therEAdG2XhRx0v_I6GdltQtFDtiyV17whi9DL75IXza3_v45iDpTkxInORilaRMVdrlubWVrSWzPstZWael91lac--8rJSyvrZZ5i2VCmjiDuNVqUqLcbvkj2CjWTR-C-I8tVp6WZecI-52jKDzTAqdCy-I0CWC8RpB4zo6cTrV4qsJZYWWpgXdIOiGQDfnEbzqHzlpuTT-JrxLy9ILEg12uIHKYTrlMP9Sjgie0aKadk9pb8xmgkkjI15SHcHLIEHmjNN3ttuVgCAQMdZAcnsgiWbohsNrxTGdG1gahjkCFshKI1zP-2F6klrbGr84IxlOrHyYCkew2epZ_6fR4WICno0jUAMNHKAyHGnmXwJJOIKoJZcRvF7r6sW0_gj64_8B-hO4zcjSAhvmNmysTs_8U7jpvq3my9MRXFczFa56BDd296bF4SjY7ojabgu8V7x9X3zGX4cfjn4Bi1xHjA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eg0CCBkIqsbmwncQ4ILY9qqy5VDwX1ZhzHgZUgu-xuKe2P4jcy4yS7pIjeeuC6dlb2ZOabmXj8DcBTqeIk4zFnpsctk1akLBO2x5Q0cWRL7iJfPP5xmO7uqoODbG8FfrV3YaisssVED9TF2NI38k2OcIu5Rqrkq8l3Rl2j6HS1baFRq8WOOz7ClG32cvstvt9nnG-9238zYE1XAWYTIecs4mmhbJYZU5gy4cbFGc_LKHcujkrhrEuKNDWuNHHsDIXTaAYWMT1Pc4O-LRf4vxfgIoYRXPlSwb0W-TGUl2lzchqpZHMWkQFhsk73_DPBTjq-z7cI-NsR_OEJT1dpnjqq9R5w6_r_JrsbcK2JtcN-bRw3YcVVt-By3X3z-DYM-lXoJp6l9ptjR6PChWaprKEn3g3HZThzPxldSKWiqtASmXDrMEIEYxTVHfhwLtu4C6vVuHL3IcwioxKXlLkQhZSml_NcxIlUmXSSeG8C6LWvXNuGdZ2af3zVPvtSia61RKOWaNISfRLAxuKRSU05ctbk16RHi4nEFu5_GE8_6wZ8NAZl0uYYLKocFym4cg7X6VJeZkVuyyiAddJCXV-9XWCe7mNszYm-VQXw3M8g1MPlW9Nc3kAhEH9YZ-ZaZyaile0OtyqqG7Sc6aV-BvBkMUxPUgVg5caHNEcQeSFmDAHcqw1jsWn0S5inxL0A0o7JdKTSHalGXzyXOgpRJSIJ4EVrXMtl_VPoD87exDpcGey_H-rh9u7OQ7jKCQA8NegarM6nh-4RXLI_5qPZ9LGHjxA-nbfN_QZjtK2h
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9QwDLdgwMQX3o_CYEVCQmKqdk3SNP14PE5DTKdJwLRvUZKmcNLone5uPPbXY6eP0fGQEF8bR3Id27EV-2eAp0JlsmAZS8yIuUQ4nicFd6NECZOlrmI-DcXjh_v5dKqOjoqDds7pqqt2754km54GQmmq17uLsmpMXMndVUqqiWkwddAXPDm9CJcEzQyidP3dYeeKMbYWefuU-dttg8soYPb_6pl_uprOl02eezsNV9Lk-n__zA241kaj8bhRn5twwde34Eozn_L7bdgb17FfBBzXzz75Oit9bM6OMw7QtPG8ilf-W0Itm1R2FDuC2-1caozuCvm6Ax8mr9-_3Eva0QuJk1ysk5TlpXJFYUxpKsmMzwpmq9R6n6UV987LMs-Nr0yWeUM5B_oKhxefza3BAMDyu7BRz2t_H-IiNUp6WVnOSyHMyDLLMylUIbwgZJgIRt0ZaNfiktN4jGMd8hMldSMgjQLSJCB9GsHzfsuiAeX4G_ELOtiekPC0w4f58qNuzVNj2CKcxXBKWWSSM-U98ulzVhWldVUawTaphW6aU3uvoMcYfTICOFURPAsU5BeQfWfa9gYUAiFsDSi3BpRoz2643Kmebv3JSjMMNjDTzhWK60m_TDupRq728xOi4QTvhzF1BPcaTe1_Gj03RvLZKIJ8oMMDqQxX6tmngDaOQlSSywh2Ok0-Y-uPQn_wT9TbsHnwaqL330zfPoSrjCwhQGluwcZ6eeIfwWX3ZT1bLR8H6_4BtMlPuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+epigenome-wide+association+study+of+sex-specific+chronological+ageing&rft.jtitle=Genome+medicine&rft.au=Daniel+L.+McCartney&rft.au=Futao+Zhang&rft.au=Robert+F.+Hillary&rft.au=Qian+Zhang&rft.date=2019-12-31&rft.pub=BMC&rft.eissn=1756-994X&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1186%2Fs13073-019-0693-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8184cb0748bd44328eeb2be72f9dbcf1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-994X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-994X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-994X&client=summon