Engineered Endolysin-Based “Artilysins” To Combat Multidrug-Resistant Gram-Negative Pathogens

The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-b...

Full description

Saved in:
Bibliographic Details
Published in:mBio Vol. 5; no. 4; p. e01379
Main Authors: Briers, Yves, Walmagh, Maarten, Van Puyenbroeck, Victor, Cornelissen, Anneleen, Cenens, William, Aertsen, Abram, Oliveira, Hugo, Azeredo, Joana, Verween, Gunther, Pirnay, Jean-Paul, Miller, Stefan, Volckaert, Guido, Lavigne, Rob
Format: Journal Article
Language:English
Published: United States American Society for Microbiology 01.07.2014
American Society of Microbiology
Subjects:
ISSN:2161-2129, 2150-7511, 2150-7511
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii . Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo ( Caenorhabditis elegans ). IMPORTANCE Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii , two of the most hazardous drug-resistant Gram-negative pathogens. Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii , two of the most hazardous drug-resistant Gram-negative pathogens.
AbstractList The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii . Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo ( Caenorhabditis elegans ). IMPORTANCE Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii , two of the most hazardous drug-resistant Gram-negative pathogens. Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii , two of the most hazardous drug-resistant Gram-negative pathogens.
The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Importance: Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins--enzymes derived from bacterial viruses--represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens.
The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens.
ABSTRACT The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). IMPORTANCE Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens.
The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Importance: Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins--enzymes derived from bacterial viruses--represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens.The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Importance: Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins--enzymes derived from bacterial viruses--represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens.
Author Oliveira, Hugo
Azeredo, Joana
Van Puyenbroeck, Victor
Miller, Stefan
Briers, Yves
Lavigne, Rob
Walmagh, Maarten
Verween, Gunther
Pirnay, Jean-Paul
Cenens, William
Cornelissen, Anneleen
Volckaert, Guido
Aertsen, Abram
Author_xml – sequence: 1
  givenname: Yves
  surname: Briers
  fullname: Briers, Yves
  organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
– sequence: 2
  givenname: Maarten
  surname: Walmagh
  fullname: Walmagh, Maarten
  organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
– sequence: 3
  givenname: Victor
  surname: Van Puyenbroeck
  fullname: Van Puyenbroeck, Victor
  organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
– sequence: 4
  givenname: Anneleen
  surname: Cornelissen
  fullname: Cornelissen, Anneleen
  organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
– sequence: 5
  givenname: William
  surname: Cenens
  fullname: Cenens, William
  organization: Laboratory of Food Microbiology, KU Leuven, Leuven, Belgium
– sequence: 6
  givenname: Abram
  surname: Aertsen
  fullname: Aertsen, Abram
  organization: Laboratory of Food Microbiology, KU Leuven, Leuven, Belgium
– sequence: 7
  givenname: Hugo
  surname: Oliveira
  fullname: Oliveira, Hugo
  organization: Centre of Biological Engineering, University of Minho, Braga, Portugal
– sequence: 8
  givenname: Joana
  surname: Azeredo
  fullname: Azeredo, Joana
  organization: Centre of Biological Engineering, University of Minho, Braga, Portugal
– sequence: 9
  givenname: Gunther
  surname: Verween
  fullname: Verween, Gunther
  organization: Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
– sequence: 10
  givenname: Jean-Paul
  surname: Pirnay
  fullname: Pirnay, Jean-Paul
  organization: Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
– sequence: 11
  givenname: Stefan
  surname: Miller
  fullname: Miller, Stefan
  organization: Lisando GmbH, Regensburg, Germany
– sequence: 12
  givenname: Guido
  surname: Volckaert
  fullname: Volckaert, Guido
  organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
– sequence: 13
  givenname: Rob
  surname: Lavigne
  fullname: Lavigne, Rob
  organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24987094$$D View this record in MEDLINE/PubMed
BookMark eNqFks1O3DAQx6OKqlDKsdcqUi9cQv0VO7lUgtWWItEPVfRs2c5s8Cqxqe0gceNB2pfjSersQlVQpfri8fg_P8945mWx47yDoniN0RHGpHk3nlh_hDAVbYXZs2KP4BpVosZ4Z7Y5rggm7W5xEOMa5UUpbih6UewS1jYCtWyvUEvXWwcQoCuXrvPDTbSuOlExn-9ufx6HZDeueHf7q7zw5cKPWqXy0zQk24Wpr75BtDEpl8rToMbqM_Qq2Wsov6p06Xtw8VXxfKWGCAf3-37x_cPyYvGxOv9yerY4Pq8MpzRVHaNANSCudaezQTFGwAkCQzElHRYda7TQvKVMtYJjTVrMUSNoJ5jRfEX3i7Mtt_NqLa-CHVW4kV5ZuXH40EuVqzEDSE4appSqaw6ZusqvGa1rjTintWmpyaz3W9bVpEfoDLgU1PAI-vjG2UvZ-2vJ8qcTxjLg8B4Q_I8JYpKjjQaGQTnwU5RYMM4QFzX9v7RmhLOmZbP07RPp2k_B5V-VlHDKRNs0OKve_J38n6wfmp4FdCswwccYYCWNTblrfq7FDhIjOU-XnKdLbqZL4jmqehL1AP63_jdQE9LA
CitedBy_id crossref_primary_10_1007_s10930_023_10139_z
crossref_primary_10_1007_s00253_018_8811_1
crossref_primary_10_1007_s00103_025_04059_9
crossref_primary_10_1016_j_lwt_2024_115843
crossref_primary_10_1093_femsre_fuaa041
crossref_primary_10_1080_1040841X_2020_1809346
crossref_primary_10_4014_jmb_2312_12050
crossref_primary_10_1016_j_copbio_2020_08_014
crossref_primary_10_3109_07388551_2014_993587
crossref_primary_10_1007_s10930_024_10195_z
crossref_primary_10_1016_j_ijantimicag_2024_107216
crossref_primary_10_1093_femsre_fuab019
crossref_primary_10_1111_1462_2920_14767
crossref_primary_10_1128_AAC_00024_19
crossref_primary_10_1007_s00253_020_10862_y
crossref_primary_10_3389_fmicb_2021_619028
crossref_primary_10_3390_antibiotics12081304
crossref_primary_10_2217_fmb_2016_0035
crossref_primary_10_3390_antibiotics13121184
crossref_primary_10_1038_s41598_020_68983_3
crossref_primary_10_3389_fmicb_2022_988522
crossref_primary_10_1093_infdis_jiae027
crossref_primary_10_1016_j_fbio_2025_107274
crossref_primary_10_1088_1755_1315_947_1_012035
crossref_primary_10_1080_10408398_2023_2246554
crossref_primary_10_1016_j_nbt_2024_05_004
crossref_primary_10_3389_fmicb_2025_1526096
crossref_primary_10_1016_j_addr_2022_114378
crossref_primary_10_1111_mmi_14134
crossref_primary_10_1016_j_heliyon_2024_e34333
crossref_primary_10_1016_j_ijbiomac_2025_146934
crossref_primary_10_1007_s00253_017_8224_6
crossref_primary_10_1016_j_mimet_2016_07_027
crossref_primary_10_3390_antibiotics10121497
crossref_primary_10_3390_polysaccharides3020018
crossref_primary_10_1016_j_virusres_2019_197764
crossref_primary_10_1007_s12223_023_01046_y
crossref_primary_10_3389_fmicb_2017_02585
crossref_primary_10_1111_jam_13207
crossref_primary_10_3390_antibiotics14050457
crossref_primary_10_1002_rmv_2041
crossref_primary_10_1007_s12602_024_10374_5
crossref_primary_10_1016_j_foodcont_2023_110190
crossref_primary_10_3389_fmicb_2019_02771
crossref_primary_10_1080_10408398_2022_2059442
crossref_primary_10_3390_antib9030035
crossref_primary_10_3390_antibiotics7020029
crossref_primary_10_1134_S000368382460492X
crossref_primary_10_3389_fphar_2024_1385261
crossref_primary_10_1128_spectrum_04515_22
crossref_primary_10_3103_S0891416821020026
crossref_primary_10_1016_j_cofs_2021_02_016
crossref_primary_10_1016_j_drup_2023_100935
crossref_primary_10_1016_j_ijbiomac_2025_146105
crossref_primary_10_3390_v13061101
crossref_primary_10_1371_journal_pone_0160574
crossref_primary_10_2478_s11756_020_00508_9
crossref_primary_10_3389_fmicb_2022_841905
crossref_primary_10_1186_s13567_018_0563_5
crossref_primary_10_1016_j_ijantimicag_2024_107222
crossref_primary_10_3389_fmicb_2021_723834
crossref_primary_10_1111_raq_12376
crossref_primary_10_1038_s41598_017_14797_9
crossref_primary_10_1042_BST20150192
crossref_primary_10_3389_fmicb_2025_1603380
crossref_primary_10_1016_j_biotechadv_2023_108250
crossref_primary_10_3390_v17040564
crossref_primary_10_12688_f1000research_9705_1
crossref_primary_10_3390_foods13050734
crossref_primary_10_3390_v13101949
crossref_primary_10_3389_fmicb_2022_990910
crossref_primary_10_1002_2211_5463_13094
crossref_primary_10_4155_tde_2017_0040
crossref_primary_10_1002_adfm_201805112
crossref_primary_10_1016_j_biotechadv_2017_12_009
crossref_primary_10_1080_1040841X_2021_1939266
crossref_primary_10_1007_s11262_020_01735_7
crossref_primary_10_1002_adtp_202300355
crossref_primary_10_1128_AAC_02972_15
crossref_primary_10_3390_ph14030199
crossref_primary_10_3389_fcimb_2022_1035364
crossref_primary_10_1007_s12275_017_6431_6
crossref_primary_10_3389_fmicb_2024_1502593
crossref_primary_10_1016_j_ijbiomac_2025_140463
crossref_primary_10_3389_fmicb_2025_1519935
crossref_primary_10_3390_antibiotics9120916
crossref_primary_10_1038_nrmicro3564
crossref_primary_10_1016_j_scitotenv_2023_168461
crossref_primary_10_3390_antibiotics7010017
crossref_primary_10_3390_ijms231710143
crossref_primary_10_1099_vir_0_068494_0
crossref_primary_10_1016_j_febslet_2015_01_036
crossref_primary_10_1128_aac_01519_22
crossref_primary_10_1128_AAC_04641_14
crossref_primary_10_1007_s00253_021_11752_7
crossref_primary_10_1038_srep45139
crossref_primary_10_1016_j_foodres_2025_117214
crossref_primary_10_1146_annurev_virology_092917_043544
crossref_primary_10_3390_antibiotics10040461
crossref_primary_10_1038_s41586_024_07667_8
crossref_primary_10_3390_antibiotics9020074
crossref_primary_10_3389_fcimb_2021_637313
crossref_primary_10_4292_wjgpt_v8_i3_162
crossref_primary_10_3389_fvets_2025_1631293
crossref_primary_10_1016_j_ijantimicag_2024_107395
crossref_primary_10_3390_v16030478
crossref_primary_10_1016_j_bioorg_2019_103121
crossref_primary_10_1111_1751_7915_14465
crossref_primary_10_1016_j_jmb_2019_10_026
crossref_primary_10_3390_antibiotics11020169
crossref_primary_10_1016_j_enzmictec_2023_110368
crossref_primary_10_3389_fmicb_2016_01956
crossref_primary_10_1007_s10482_016_0806_2
crossref_primary_10_1128_aac_00764_23
crossref_primary_10_3389_fimmu_2018_02252
crossref_primary_10_3389_fmicb_2022_1093670
crossref_primary_10_1038_s41598_025_14753_y
crossref_primary_10_3390_ph14070634
crossref_primary_10_3389_fmicb_2017_02257
crossref_primary_10_1080_07388551_2024_2399530
crossref_primary_10_1016_j_ijfoodmicro_2021_109396
crossref_primary_10_3390_v13091848
crossref_primary_10_1097_CM9_0000000000003626
crossref_primary_10_3389_fmicb_2023_1259210
crossref_primary_10_3389_fmicb_2014_00542
crossref_primary_10_3390_microorganisms7110570
crossref_primary_10_1016_j_ijbiomac_2024_129493
crossref_primary_10_1007_s00203_024_03915_7
crossref_primary_10_3390_antibiotics9040205
crossref_primary_10_1128_AAC_00285_16
crossref_primary_10_1007_s11306_024_02133_y
crossref_primary_10_1111_jam_14910
crossref_primary_10_1016_j_fm_2018_10_009
crossref_primary_10_3390_v16091450
crossref_primary_10_1016_j_ijpharm_2020_119833
crossref_primary_10_1155_2017_3780697
crossref_primary_10_3390_v11020113
crossref_primary_10_1007_s10482_017_0912_9
crossref_primary_10_1016_j_lwt_2022_113705
crossref_primary_10_3390_antibiotics10111277
crossref_primary_10_1111_1751_7915_13594
crossref_primary_10_3390_antibiotics9070414
crossref_primary_10_1186_s12916_025_04016_y
crossref_primary_10_3390_molecules24050892
crossref_primary_10_1016_j_sbi_2015_07_006
crossref_primary_10_1038_s41598_020_64145_7
crossref_primary_10_1080_10408398_2025_2458742
crossref_primary_10_1007_s12088_024_01431_2
crossref_primary_10_3390_v13071215
crossref_primary_10_1007_s12250_014_3535_6
crossref_primary_10_1038_srep17257
crossref_primary_10_1007_s00253_019_10322_2
crossref_primary_10_1016_j_lwt_2025_117345
crossref_primary_10_3389_fmicb_2024_1397830
crossref_primary_10_3390_ijms252313111
crossref_primary_10_1146_annurev_virology_092818_015644
crossref_primary_10_1007_s12223_019_00750_y
crossref_primary_10_1128_aem_01846_23
crossref_primary_10_3390_v7122964
crossref_primary_10_1002_1873_3468_12848
crossref_primary_10_3390_v10060292
crossref_primary_10_1007_s44337_025_00424_4
crossref_primary_10_3389_fbioe_2022_869206
crossref_primary_10_3390_antibiotics8010008
crossref_primary_10_1080_17460441_2020_1803274
crossref_primary_10_1016_j_enzmictec_2019_05_006
crossref_primary_10_3390_pharmaceutics14102201
crossref_primary_10_3390_v11030268
crossref_primary_10_3390_antibiotics10050578
crossref_primary_10_1186_s12879_014_0681_2
crossref_primary_10_1038_srep35382
crossref_primary_10_3389_fmicb_2025_1443430
crossref_primary_10_1016_j_virol_2025_110649
crossref_primary_10_1128_JVI_00321_21
crossref_primary_10_3389_fvets_2025_1653748
crossref_primary_10_1089_phage_2023_0040
crossref_primary_10_1007_s00284_025_04478_6
crossref_primary_10_1016_j_micpath_2023_106064
crossref_primary_10_1002_bit_26300
crossref_primary_10_1016_j_foodcont_2022_109521
crossref_primary_10_1128_MMBR_00069_15
crossref_primary_10_1097_MS9_0000000000003522
crossref_primary_10_1128_spectrum_01813_23
crossref_primary_10_3390_pathogens8030100
crossref_primary_10_3389_fmicb_2016_00825
crossref_primary_10_1016_j_molliq_2020_114339
crossref_primary_10_3390_antibiotics10020124
crossref_primary_10_3390_antibiotics6040032
crossref_primary_10_3390_microorganisms9051056
crossref_primary_10_1016_S1473_3099_15_00466_1
crossref_primary_10_1128_CMR_00066_18
crossref_primary_10_1016_j_micpath_2022_105576
crossref_primary_10_3390_antibiotics10030293
crossref_primary_10_1016_j_jbiotec_2017_01_002
crossref_primary_10_1039_c9mt00020h
crossref_primary_10_1016_j_ijfoodmicro_2021_109112
crossref_primary_10_1016_j_jbc_2025_110224
crossref_primary_10_1186_s12929_024_01027_4
crossref_primary_10_3390_foods11050756
crossref_primary_10_3390_microorganisms12030629
crossref_primary_10_1007_s11274_022_03475_2
crossref_primary_10_2217_fmb_15_8
crossref_primary_10_1016_j_postharvbio_2025_113917
crossref_primary_10_1128_AEM_00446_16
crossref_primary_10_3390_antibiotics11091215
crossref_primary_10_1007_s12275_017_7288_4
crossref_primary_10_1111_1541_4337_12382
crossref_primary_10_3390_antibiotics9080466
crossref_primary_10_3390_v11070657
crossref_primary_10_3390_ijms24108523
crossref_primary_10_1080_1040841X_2021_1975643
crossref_primary_10_4315_0362_028X_JFP_17_278
crossref_primary_10_1099_jgv_0_001014
crossref_primary_10_1016_j_copbio_2015_10_005
crossref_primary_10_1016_j_copbio_2015_10_006
crossref_primary_10_32604_biocell_2021_015537
crossref_primary_10_1016_j_pep_2023_106402
crossref_primary_10_3390_ph14111157
crossref_primary_10_1128_AEM_01311_20
crossref_primary_10_3389_fmicb_2016_00208
crossref_primary_10_3389_fmicb_2019_01783
crossref_primary_10_1002_bit_28581
crossref_primary_10_4014_jmb_2205_05009
crossref_primary_10_1080_1040841X_2023_2181056
crossref_primary_10_3389_fcimb_2021_668430
crossref_primary_10_1016_j_virusres_2023_199296
crossref_primary_10_1016_j_microb_2025_100544
crossref_primary_10_1007_s00449_023_02938_6
crossref_primary_10_3390_pr8121587
crossref_primary_10_1111_pbi_12703
crossref_primary_10_1007_s00705_025_06274_w
crossref_primary_10_1016_j_pep_2018_12_002
crossref_primary_10_3390_antibiotics10101143
crossref_primary_10_3389_fmicb_2025_1606351
crossref_primary_10_1007_s00705_023_05910_7
crossref_primary_10_3390_biom10030440
crossref_primary_10_1042_BCJ20210701
crossref_primary_10_3389_fmicb_2015_01471
crossref_primary_10_3389_fmicb_2023_1170418
crossref_primary_10_3390_v11020096
crossref_primary_10_1002_jobm_202200056
crossref_primary_10_3389_fmicb_2022_854908
crossref_primary_10_3390_antibiotics12061044
crossref_primary_10_3389_fcimb_2017_00055
crossref_primary_10_1016_j_micres_2018_04_007
crossref_primary_10_1016_j_ijbiomac_2023_124239
crossref_primary_10_1111_jam_13251
crossref_primary_10_1007_s10068_022_01089_w
crossref_primary_10_1007_s00253_016_7858_0
crossref_primary_10_1007_s00253_025_13513_2
crossref_primary_10_1080_1040841X_2016_1271309
crossref_primary_10_3390_ijms21144894
crossref_primary_10_1038_s41467_020_19124_x
crossref_primary_10_1002_mco2_70280
crossref_primary_10_1080_1040841X_2023_2274849
crossref_primary_10_1371_journal_pone_0192507
crossref_primary_10_1016_j_enzmictec_2021_109846
crossref_primary_10_1016_j_ijfoodmicro_2022_109611
crossref_primary_10_3390_jox15010019
crossref_primary_10_3390_biomedicines11020481
crossref_primary_10_4315_0362_028X_JFP_17_144
crossref_primary_10_3390_v15010009
crossref_primary_10_3390_ijms21093119
crossref_primary_10_3390_v14020167
crossref_primary_10_3390_antibiotics10091030
crossref_primary_10_3390_cells12172169
crossref_primary_10_3389_fcimb_2016_00194
crossref_primary_10_1016_j_ijid_2016_09_005
crossref_primary_10_1038_nrmicro_2017_61
crossref_primary_10_1111_jam_15661
crossref_primary_10_3390_microorganisms8050724
crossref_primary_10_1016_j_ijfoodmicro_2025_111110
crossref_primary_10_1038_s41598_022_09865_8
crossref_primary_10_1128_AAC_00342_19
crossref_primary_10_3390_jpm12030371
crossref_primary_10_1128_AEM_01515_21
Cites_doi 10.1128/AEM.07050-11
10.1080/713610448
10.1073/pnas.1203472109
10.1099/jmm.0.061028-0
10.1111/j.1365-2672.2010.04931.x
10.1007/s00018-004-4301-y
10.1073/pnas.96.2.715
10.1016/S0014-5793(99)00405-6
10.1016/j.jbbm.2006.10.009
10.1111/j.1365-2958.2007.05870.x
10.1021/jf00011a039
10.1093/genetics/77.1.71
10.1128/CMR.19.2.403-434.2006
10.1007/s10561-011-9247-3
10.1111/j.1574-6968.2007.01051.x
10.1016/S0014-5793(98)01238-1
10.1146/annurev.biochem.71.110601.135414
10.1016/S0021-9258(17)37654-8
10.1016/j.bbrc.2009.03.161
10.1126/science.1066869
10.1038/nature01026
10.1271/bbb.56.1361
10.1016/j.bbapap.2008.11.005
10.1371/journal.pgen.1003269
10.1099/00221287-13-3-572
10.1074/jbc.273.4.2059
10.1073/pnas.0604055103
10.1016/S0014-5793(01)02587-X
10.1128/JCM.41.3.1192-1202.2003
10.1093/jac/dkg293
10.1371/journal.pone.0036991
10.1073/pnas.061038398
10.1895/wormbook.1.101.1
10.1007/s00253-012-4294-7
10.1371/journal.pone.0007740
10.1016/B978-0-12-394438-2.00007-4
10.1128/mr.56.3.395-411.1992
10.1128/MMBR.67.4.593-656.2003
10.1021/jf00031a029
ContentType Journal Article
Copyright Copyright © 2014 Briers et al.
2014. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2014 Briers et al. 2014 Briers et al.
Copyright_xml – notice: Copyright © 2014 Briers et al.
– notice: 2014. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2014 Briers et al. 2014 Briers et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8C1
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1128/mBio.01379-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE

AGRICOLA
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Public Health
DocumentTitleAlternate Artilysins against Gram-negative Pathogens
EISSN 2150-7511
ExternalDocumentID oai_doaj_org_article_6284aaa556ed48f3becbb5b06635c93c
PMC4161244
24987094
10_1128_mBio_01379_14
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
53G
5VS
8C1
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BTFSW
CCPQU
CITATION
DIK
E3Z
EBS
EJD
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
HZ~
KQ8
M48
M7P
O5R
O5S
O9-
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
RHI
RNS
RPM
RSF
UKHRP
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
8FE
8FH
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c633t-d43e3be06bbdb3be3110e620ec3132d17d48b7b6934a9761b29160873d74cb6f3
IEDL.DBID DOA
ISICitedReferencesCount 331
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341588100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2161-2129
2150-7511
IngestDate Mon Nov 10 04:34:09 EST 2025
Tue Nov 04 02:05:52 EST 2025
Fri Jul 11 10:11:23 EDT 2025
Sun Nov 09 13:28:17 EST 2025
Sat Oct 25 01:45:56 EDT 2025
Wed Feb 19 02:31:34 EST 2025
Tue Nov 18 22:23:38 EST 2025
Sat Nov 29 03:10:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2014 Briers et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-d43e3be06bbdb3be3110e620ec3132d17d48b7b6934a9761b29160873d74cb6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Editor Roger Hendrix, University of Pittsburgh
Y.B. and M.W. contributed equally to this work.
OpenAccessLink https://doaj.org/article/6284aaa556ed48f3becbb5b06635c93c
PMID 24987094
PQID 3263479881
PQPubID 7421146
ParticipantIDs doaj_primary_oai_doaj_org_article_6284aaa556ed48f3becbb5b06635c93c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4161244
proquest_miscellaneous_1746406753
proquest_miscellaneous_1542648943
proquest_journals_3263479881
pubmed_primary_24987094
crossref_citationtrail_10_1128_mBio_01379_14
crossref_primary_10_1128_mBio_01379_14
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2014
Publisher American Society for Microbiology
American Society of Microbiology
Publisher_xml – name: American Society for Microbiology
– name: American Society of Microbiology
References e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
Haun RS (e_1_3_2_37_2) 1992; 13
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Gasson MJ (e_1_3_2_26_2) 1991
References_xml – ident: e_1_3_2_5_2
  doi: 10.1128/AEM.07050-11
– ident: e_1_3_2_29_2
  doi: 10.1080/713610448
– ident: e_1_3_2_12_2
  doi: 10.1073/pnas.1203472109
– ident: e_1_3_2_34_2
  doi: 10.1099/jmm.0.061028-0
– ident: e_1_3_2_11_2
  doi: 10.1111/j.1365-2672.2010.04931.x
– ident: e_1_3_2_38_2
  doi: 10.1007/s00018-004-4301-y
– ident: e_1_3_2_25_2
  doi: 10.1073/pnas.96.2.715
– ident: e_1_3_2_15_2
  doi: 10.1016/S0014-5793(99)00405-6
– ident: e_1_3_2_39_2
  doi: 10.1016/j.jbbm.2006.10.009
– ident: e_1_3_2_19_2
  doi: 10.1111/j.1365-2958.2007.05870.x
– volume: 13
  start-page: 515
  year: 1992
  ident: e_1_3_2_37_2
  article-title: Rapid, reliable ligation-independent cloning of PCR products using modified plasmid vectors
  publication-title: BioTechniques
– ident: e_1_3_2_30_2
  doi: 10.1021/jf00011a039
– ident: e_1_3_2_41_2
  doi: 10.1093/genetics/77.1.71
– ident: e_1_3_2_23_2
  doi: 10.1128/CMR.19.2.403-434.2006
– ident: e_1_3_2_24_2
  doi: 10.1007/s10561-011-9247-3
– ident: e_1_3_2_10_2
  doi: 10.1111/j.1574-6968.2007.01051.x
– ident: e_1_3_2_16_2
  doi: 10.1016/S0014-5793(98)01238-1
– ident: e_1_3_2_22_2
  doi: 10.1146/annurev.biochem.71.110601.135414
– ident: e_1_3_2_14_2
  doi: 10.1016/S0021-9258(17)37654-8
– ident: e_1_3_2_18_2
  doi: 10.1016/j.bbrc.2009.03.161
– ident: e_1_3_2_3_2
  doi: 10.1126/science.1066869
– ident: e_1_3_2_4_2
  doi: 10.1038/nature01026
– ident: e_1_3_2_31_2
  doi: 10.1271/bbb.56.1361
– ident: e_1_3_2_9_2
  doi: 10.1016/j.bbapap.2008.11.005
– ident: e_1_3_2_40_2
  doi: 10.1371/journal.pgen.1003269
– ident: e_1_3_2_35_2
  doi: 10.1099/00221287-13-3-572
– ident: e_1_3_2_17_2
  doi: 10.1074/jbc.273.4.2059
– ident: e_1_3_2_43_2
  doi: 10.1073/pnas.0604055103
– ident: e_1_3_2_7_2
  doi: 10.1016/S0014-5793(01)02587-X
– ident: e_1_3_2_20_2
  doi: 10.1128/JCM.41.3.1192-1202.2003
– ident: e_1_3_2_33_2
– ident: e_1_3_2_28_2
  doi: 10.1093/jac/dkg293
– ident: e_1_3_2_8_2
  doi: 10.1371/journal.pone.0036991
– ident: e_1_3_2_2_2
  doi: 10.1073/pnas.061038398
– ident: e_1_3_2_42_2
  doi: 10.1895/wormbook.1.101.1
– ident: e_1_3_2_21_2
  doi: 10.1007/s00253-012-4294-7
– ident: e_1_3_2_36_2
  doi: 10.1371/journal.pone.0007740
– ident: e_1_3_2_6_2
  doi: 10.1016/B978-0-12-394438-2.00007-4
– volume-title: iral products.
  year: 1991
  ident: e_1_3_2_26_2
– ident: e_1_3_2_27_2
  doi: 10.1128/mr.56.3.395-411.1992
– ident: e_1_3_2_13_2
  doi: 10.1128/MMBR.67.4.593-656.2003
– ident: e_1_3_2_32_2
  doi: 10.1021/jf00031a029
SSID ssj0000331830
Score 2.5416272
Snippet The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to...
ABSTRACT The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e01379
SubjectTerms Acinetobacter baumannii
Acinetobacter baumannii - drug effects
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antibiotic resistance
Antibiotics
bacterial infections
bacteriophages
Caenorhabditis elegans
Cell walls
Drug resistance
Drug Resistance, Multiple, Bacterial - drug effects
E coli
endolysin
Endopeptidases - chemistry
Gram-positive bacteria
health services
humans
Hydrolysis
Hydrophobicity
Keratinocytes
Lipopolysaccharides
mechanism of action
Microscopy
Morbidity
mortality
Multidrug resistance
multiple drug resistance
Pathogens
Peptides
Peptidoglycans
probability
Protein engineering
Proteins
Pseudomonas aeruginosa
Pseudomonas aeruginosa - drug effects
Public health
Salmonella
Standard deviation
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BAakS4lFegYIWCXFi26x3s16fEEUtHFAUoSL1Zu3LIRKxW9tB4tYfAn-uv4SZtWMIgl64RJE9ijyZx36znv2GkBepRVYnzxm33ECBknGmC4GBpx13uphwE6eWfEinU31yks36Dbemb6tc58SYqH3lcI98H2AGHnrUmr8-PWM4NQrfrvYjNK6Sa8iSIGLr3mzYYxkL9FjcZkkA2DDI0tmaZjPR-0u7qPaQcS9jXG4sS5G9_2-Q88_Oyd-WoqPb_6vEHXKrB6H0Tec1d8mVUO6QG91Yym875Ga3l0e7I0r3iFmTFgZPD0tfIYtJyQ5g_fP04vw7_ky81Fyc_6DHFYUcY01L49leX6_m7GNoEKaWLX1XmyWbhnmkG6czgJ8VeHBzn3w6Ojx--571oxmYU0K0zEsRhA1jZa238EUAiggqGQeHVJCep15qm1qVCWkA8HCbAAwd61T4VDqrCvGAbJVVGR4RarRwstBSG-tlElzmjFAOhKxyEj5G5NXaMrnrectxfMaXPNYvic6X8P_k0ZBQyIzIy0H8tCPs-JfgAZp5EEKe7Xihqud5H7a5gtXbGDOZqAAaFaCps3ZiI05zmXAjsrs2dN4Hf5P_svKIPB9uQ9jiuxhThmrV5IBcsbcwk-ISmVQqiRUdyDzs_G54WqiaIdNmoEW64ZEb6mzeKRefI304lrQA6h5f_uhPyDZgQ9l1Ju-SrbZehafkuvvaLpr6WYyzn-zgM7g
  priority: 102
  providerName: ProQuest
Title Engineered Endolysin-Based “Artilysins” To Combat Multidrug-Resistant Gram-Negative Pathogens
URI https://www.ncbi.nlm.nih.gov/pubmed/24987094
https://www.proquest.com/docview/3263479881
https://www.proquest.com/docview/1542648943
https://www.proquest.com/docview/1746406753
https://pubmed.ncbi.nlm.nih.gov/PMC4161244
https://doaj.org/article/6284aaa556ed48f3becbb5b06635c93c
Volume 5
WOSCitedRecordID wos000341588100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: M7P
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: BENPR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: PIMPY
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2161-2129
  databaseCode: 8C1
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BAYlLxZvQEi0S4oRp1rtZr4-kSgEJIqsqUjit9pU2ErVR7CBx6w9p_1x_CTNrJ0oQjwsXy1qPHzuenflGHn9DyMvMIquTZwmzzECCkrNEzTguPOWYU7MhM7FrycdsMlHTaV5stPrCmrCWHrhV3IEE_2mMGQ5l8AIuA_e0dmhjpHQ5d-h9AfVsJFPRB3O01cGKVDNVB-ejefUG-fXyhImtIBS5-n8HMH-tk9wIPEf3yG6HGOnb9knvkxuhfEDutD0kfzwkZsUoGDwdl75CipEyGUFw8vT64hJPi0P19cUVPakoOABrGhp_vPWL5WlyHGrEkGVD3y3MeTIJp5ELnBaADSswr_oR-Xw0Pjl8n3R9ExInOW8SL3gAPQ2ktd7CDocQH2Q6CA55Gj3LQJE2szLnwgAaYTYFjDhQGfeZcFbO-GOyU1ZleEqoUdyJmRLKWC_S4HJnuHQgZKUTsOmR1ytFateRimNvi686Jhep0qh3HfUOWUaPvFqLf2vZNP4kOMK3shZCEuw4AKahO9PQ_zKNHtlfvVPdrcxaA1zFn2eVYj3yYn0Y1hR-KDFlqJa1BliJhX-54H-RyYQUmG6BzJPWTNZPCyktuMEcZpFtGdDWdLaPlPOzyO2N-SYgrmf_Y_575C7AO9EWF--TnWaxDM_Jbfe9mdeLPrmZTRVs1SHrk1uj8aQ47sdF1Mf61wLGig-fii8_AWb3JWU
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VAgIJ8SivQIFFAk4sjb0be31AiEJLq4YoQkHqzezLIRKxS-yAeusPgb_Aj-ovYWYdG4Kgtx64RJE9sjz2PL5Zz35DyKNYI6uTDVigAwUFShIwmXF0PGkCI7NeoPzUkn48GMj9_WS4Qn40e2GwrbKJiT5Q28LgGvkGwAzc9Chl8OLgM8OpUfh1tRmhUZvFnjv8CiVb-Xz3Nbzfx2G4vTV6tcMWUwWYiTivmBXcce26kdZWwx8OCdBFYdcZZDG0QWyF1LGOEi4U5OpAh4CgujLmNhZGRxmH654hZwFGhNK3Cg7bNZ0uRw_BZZ0QgBSDrJA0tJ6h3JjqSfEMGf4SFoilNOinBfwN4v7Zqflb6tu-8r89tKvk8gJk05e1V1wjKy5fI-frsZuHa-RSvVZJ6y1Y14lqSBmdpVu5LZClJWebkN8tPT76hpfxh8rjo-90VFCIoVpV1O9dtrP5mL1zJcLwvKJvZmrKBm7s6dTpEOB1AR5a3iDvT0Xfm2Q1L3J3m1AluRGZFFJpK0JnEqN4ZEBIR0bAT4c8bSwhNQtedhwP8in19Vko0yk8n9QbDhRqHfKkFT-oCUn-JbiJZtUKIY-4P1DMxukiLKURoBOlVK8XOdAoA02N1j3tcahJuOmQ9caw0kVwK9NfVtUhD9vTEJbwW5PKXTEvU0Dm2DuZCH6CTCwigRUryNyq7by921AkkEkS0CJe8oAldZbP5JOPnh4dS3YArXdOvvUH5MLO6G0_7e8O9u6Si4CDRd2FvU5Wq9nc3SPnzJdqUs7uex-n5MNp-8dPMqyPjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+Endolysin-Based+%E2%80%9CArtilysins%E2%80%9D+To+Combat+Multidrug-Resistant+Gram-Negative+Pathogens&rft.jtitle=mBio&rft.au=Yves+Briers&rft.au=Maarten+Walmagh&rft.au=Victor+Van+Puyenbroeck&rft.au=Anneleen+Cornelissen&rft.date=2014-07-01&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1128%2FmBio.01379-14&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6284aaa556ed48f3becbb5b06635c93c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon