Engineered Endolysin-Based “Artilysins” To Combat Multidrug-Resistant Gram-Negative Pathogens
The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-b...
Gespeichert in:
| Veröffentlicht in: | mBio Jg. 5; H. 4; S. e01379 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
American Society for Microbiology
01.07.2014
American Society of Microbiology |
| Schlagworte: | |
| ISSN: | 2161-2129, 2150-7511, 2150-7511 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including
Pseudomonas aeruginosa
and
Acinetobacter baumannii
. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains
in vitro
with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective
in vitro
(human keratinocytes) and
in vivo
(
Caenorhabditis elegans
).
IMPORTANCE
Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against
Pseudomonas aeruginosa
and
Acinetobacter baumannii
, two of the most hazardous drug-resistant Gram-negative pathogens.
Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against
Pseudomonas aeruginosa
and
Acinetobacter baumannii
, two of the most hazardous drug-resistant Gram-negative pathogens. |
|---|---|
| AbstractList | The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Importance: Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins--enzymes derived from bacterial viruses--represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens.The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Importance: Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins--enzymes derived from bacterial viruses--represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens. The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii . Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo ( Caenorhabditis elegans ). IMPORTANCE Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii , two of the most hazardous drug-resistant Gram-negative pathogens. Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii , two of the most hazardous drug-resistant Gram-negative pathogens. The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Importance: Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins--enzymes derived from bacterial viruses--represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens. The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens. ABSTRACT The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). IMPORTANCE Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens. |
| Author | Oliveira, Hugo Azeredo, Joana Van Puyenbroeck, Victor Miller, Stefan Briers, Yves Lavigne, Rob Walmagh, Maarten Verween, Gunther Pirnay, Jean-Paul Cenens, William Cornelissen, Anneleen Volckaert, Guido Aertsen, Abram |
| Author_xml | – sequence: 1 givenname: Yves surname: Briers fullname: Briers, Yves organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium – sequence: 2 givenname: Maarten surname: Walmagh fullname: Walmagh, Maarten organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium – sequence: 3 givenname: Victor surname: Van Puyenbroeck fullname: Van Puyenbroeck, Victor organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium – sequence: 4 givenname: Anneleen surname: Cornelissen fullname: Cornelissen, Anneleen organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium – sequence: 5 givenname: William surname: Cenens fullname: Cenens, William organization: Laboratory of Food Microbiology, KU Leuven, Leuven, Belgium – sequence: 6 givenname: Abram surname: Aertsen fullname: Aertsen, Abram organization: Laboratory of Food Microbiology, KU Leuven, Leuven, Belgium – sequence: 7 givenname: Hugo surname: Oliveira fullname: Oliveira, Hugo organization: Centre of Biological Engineering, University of Minho, Braga, Portugal – sequence: 8 givenname: Joana surname: Azeredo fullname: Azeredo, Joana organization: Centre of Biological Engineering, University of Minho, Braga, Portugal – sequence: 9 givenname: Gunther surname: Verween fullname: Verween, Gunther organization: Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium – sequence: 10 givenname: Jean-Paul surname: Pirnay fullname: Pirnay, Jean-Paul organization: Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium – sequence: 11 givenname: Stefan surname: Miller fullname: Miller, Stefan organization: Lisando GmbH, Regensburg, Germany – sequence: 12 givenname: Guido surname: Volckaert fullname: Volckaert, Guido organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium – sequence: 13 givenname: Rob surname: Lavigne fullname: Lavigne, Rob organization: Laboratory of Gene Technology, KU Leuven, Leuven, Belgium |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24987094$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1O3DAQx6OKqlDKsdcqUi9cQv0VO7lUgtWWItEPVfRs2c5s8Cqxqe0gceNB2pfjSersQlVQpfri8fg_P8945mWx47yDoniN0RHGpHk3nlh_hDAVbYXZs2KP4BpVosZ4Z7Y5rggm7W5xEOMa5UUpbih6UewS1jYCtWyvUEvXWwcQoCuXrvPDTbSuOlExn-9ufx6HZDeueHf7q7zw5cKPWqXy0zQk24Wpr75BtDEpl8rToMbqM_Qq2Wsov6p06Xtw8VXxfKWGCAf3-37x_cPyYvGxOv9yerY4Pq8MpzRVHaNANSCudaezQTFGwAkCQzElHRYda7TQvKVMtYJjTVrMUSNoJ5jRfEX3i7Mtt_NqLa-CHVW4kV5ZuXH40EuVqzEDSE4appSqaw6ZusqvGa1rjTintWmpyaz3W9bVpEfoDLgU1PAI-vjG2UvZ-2vJ8qcTxjLg8B4Q_I8JYpKjjQaGQTnwU5RYMM4QFzX9v7RmhLOmZbP07RPp2k_B5V-VlHDKRNs0OKve_J38n6wfmp4FdCswwccYYCWNTblrfq7FDhIjOU-XnKdLbqZL4jmqehL1AP63_jdQE9LA |
| CitedBy_id | crossref_primary_10_1007_s10930_023_10139_z crossref_primary_10_1007_s00253_018_8811_1 crossref_primary_10_1007_s00103_025_04059_9 crossref_primary_10_1016_j_lwt_2024_115843 crossref_primary_10_1093_femsre_fuaa041 crossref_primary_10_1080_1040841X_2020_1809346 crossref_primary_10_4014_jmb_2312_12050 crossref_primary_10_1016_j_copbio_2020_08_014 crossref_primary_10_3109_07388551_2014_993587 crossref_primary_10_1007_s10930_024_10195_z crossref_primary_10_1016_j_ijantimicag_2024_107216 crossref_primary_10_1093_femsre_fuab019 crossref_primary_10_1111_1462_2920_14767 crossref_primary_10_1128_AAC_00024_19 crossref_primary_10_1007_s00253_020_10862_y crossref_primary_10_3389_fmicb_2021_619028 crossref_primary_10_3390_antibiotics12081304 crossref_primary_10_2217_fmb_2016_0035 crossref_primary_10_3390_antibiotics13121184 crossref_primary_10_1038_s41598_020_68983_3 crossref_primary_10_3389_fmicb_2022_988522 crossref_primary_10_1093_infdis_jiae027 crossref_primary_10_1016_j_fbio_2025_107274 crossref_primary_10_1088_1755_1315_947_1_012035 crossref_primary_10_1080_10408398_2023_2246554 crossref_primary_10_1016_j_nbt_2024_05_004 crossref_primary_10_3389_fmicb_2025_1526096 crossref_primary_10_1016_j_addr_2022_114378 crossref_primary_10_1111_mmi_14134 crossref_primary_10_1016_j_heliyon_2024_e34333 crossref_primary_10_1016_j_ijbiomac_2025_146934 crossref_primary_10_1007_s00253_017_8224_6 crossref_primary_10_1016_j_mimet_2016_07_027 crossref_primary_10_3390_antibiotics10121497 crossref_primary_10_3390_polysaccharides3020018 crossref_primary_10_1016_j_virusres_2019_197764 crossref_primary_10_1007_s12223_023_01046_y crossref_primary_10_3389_fmicb_2017_02585 crossref_primary_10_1111_jam_13207 crossref_primary_10_3390_antibiotics14050457 crossref_primary_10_1002_rmv_2041 crossref_primary_10_1007_s12602_024_10374_5 crossref_primary_10_1016_j_foodcont_2023_110190 crossref_primary_10_3389_fmicb_2019_02771 crossref_primary_10_1080_10408398_2022_2059442 crossref_primary_10_3390_antib9030035 crossref_primary_10_3390_antibiotics7020029 crossref_primary_10_1134_S000368382460492X crossref_primary_10_3389_fphar_2024_1385261 crossref_primary_10_1128_spectrum_04515_22 crossref_primary_10_3103_S0891416821020026 crossref_primary_10_1016_j_cofs_2021_02_016 crossref_primary_10_1016_j_drup_2023_100935 crossref_primary_10_1016_j_ijbiomac_2025_146105 crossref_primary_10_3390_v13061101 crossref_primary_10_1371_journal_pone_0160574 crossref_primary_10_2478_s11756_020_00508_9 crossref_primary_10_3389_fmicb_2022_841905 crossref_primary_10_1186_s13567_018_0563_5 crossref_primary_10_1016_j_ijantimicag_2024_107222 crossref_primary_10_3389_fmicb_2021_723834 crossref_primary_10_1111_raq_12376 crossref_primary_10_1038_s41598_017_14797_9 crossref_primary_10_1042_BST20150192 crossref_primary_10_3389_fmicb_2025_1603380 crossref_primary_10_1016_j_biotechadv_2023_108250 crossref_primary_10_3390_v17040564 crossref_primary_10_12688_f1000research_9705_1 crossref_primary_10_3390_foods13050734 crossref_primary_10_3390_v13101949 crossref_primary_10_3389_fmicb_2022_990910 crossref_primary_10_1002_2211_5463_13094 crossref_primary_10_4155_tde_2017_0040 crossref_primary_10_1002_adfm_201805112 crossref_primary_10_1016_j_biotechadv_2017_12_009 crossref_primary_10_1080_1040841X_2021_1939266 crossref_primary_10_1007_s11262_020_01735_7 crossref_primary_10_1002_adtp_202300355 crossref_primary_10_1128_AAC_02972_15 crossref_primary_10_3390_ph14030199 crossref_primary_10_3389_fcimb_2022_1035364 crossref_primary_10_1007_s12275_017_6431_6 crossref_primary_10_3389_fmicb_2024_1502593 crossref_primary_10_1016_j_ijbiomac_2025_140463 crossref_primary_10_3389_fmicb_2025_1519935 crossref_primary_10_3390_antibiotics9120916 crossref_primary_10_1038_nrmicro3564 crossref_primary_10_1016_j_scitotenv_2023_168461 crossref_primary_10_3390_antibiotics7010017 crossref_primary_10_3390_ijms231710143 crossref_primary_10_1099_vir_0_068494_0 crossref_primary_10_1016_j_febslet_2015_01_036 crossref_primary_10_1128_aac_01519_22 crossref_primary_10_1128_AAC_04641_14 crossref_primary_10_1007_s00253_021_11752_7 crossref_primary_10_1038_srep45139 crossref_primary_10_1016_j_foodres_2025_117214 crossref_primary_10_1146_annurev_virology_092917_043544 crossref_primary_10_3390_antibiotics10040461 crossref_primary_10_1038_s41586_024_07667_8 crossref_primary_10_3390_antibiotics9020074 crossref_primary_10_3389_fcimb_2021_637313 crossref_primary_10_4292_wjgpt_v8_i3_162 crossref_primary_10_3389_fvets_2025_1631293 crossref_primary_10_1016_j_ijantimicag_2024_107395 crossref_primary_10_3390_v16030478 crossref_primary_10_1016_j_bioorg_2019_103121 crossref_primary_10_1111_1751_7915_14465 crossref_primary_10_1016_j_jmb_2019_10_026 crossref_primary_10_3390_antibiotics11020169 crossref_primary_10_1016_j_enzmictec_2023_110368 crossref_primary_10_3389_fmicb_2016_01956 crossref_primary_10_1007_s10482_016_0806_2 crossref_primary_10_1128_aac_00764_23 crossref_primary_10_3389_fimmu_2018_02252 crossref_primary_10_3389_fmicb_2022_1093670 crossref_primary_10_1038_s41598_025_14753_y crossref_primary_10_3390_ph14070634 crossref_primary_10_3389_fmicb_2017_02257 crossref_primary_10_1080_07388551_2024_2399530 crossref_primary_10_1016_j_ijfoodmicro_2021_109396 crossref_primary_10_3390_v13091848 crossref_primary_10_1097_CM9_0000000000003626 crossref_primary_10_3389_fmicb_2023_1259210 crossref_primary_10_3389_fmicb_2014_00542 crossref_primary_10_3390_microorganisms7110570 crossref_primary_10_1016_j_ijbiomac_2024_129493 crossref_primary_10_1007_s00203_024_03915_7 crossref_primary_10_3390_antibiotics9040205 crossref_primary_10_1128_AAC_00285_16 crossref_primary_10_1007_s11306_024_02133_y crossref_primary_10_1111_jam_14910 crossref_primary_10_1016_j_fm_2018_10_009 crossref_primary_10_3390_v16091450 crossref_primary_10_1016_j_ijpharm_2020_119833 crossref_primary_10_1155_2017_3780697 crossref_primary_10_3390_v11020113 crossref_primary_10_1007_s10482_017_0912_9 crossref_primary_10_1016_j_lwt_2022_113705 crossref_primary_10_3390_antibiotics10111277 crossref_primary_10_1111_1751_7915_13594 crossref_primary_10_3390_antibiotics9070414 crossref_primary_10_1186_s12916_025_04016_y crossref_primary_10_3390_molecules24050892 crossref_primary_10_1016_j_sbi_2015_07_006 crossref_primary_10_1038_s41598_020_64145_7 crossref_primary_10_1080_10408398_2025_2458742 crossref_primary_10_1007_s12088_024_01431_2 crossref_primary_10_3390_v13071215 crossref_primary_10_1007_s12250_014_3535_6 crossref_primary_10_1038_srep17257 crossref_primary_10_1007_s00253_019_10322_2 crossref_primary_10_1016_j_lwt_2025_117345 crossref_primary_10_3389_fmicb_2024_1397830 crossref_primary_10_3390_ijms252313111 crossref_primary_10_1146_annurev_virology_092818_015644 crossref_primary_10_1007_s12223_019_00750_y crossref_primary_10_1128_aem_01846_23 crossref_primary_10_3390_v7122964 crossref_primary_10_1002_1873_3468_12848 crossref_primary_10_3390_v10060292 crossref_primary_10_1007_s44337_025_00424_4 crossref_primary_10_3389_fbioe_2022_869206 crossref_primary_10_3390_antibiotics8010008 crossref_primary_10_1080_17460441_2020_1803274 crossref_primary_10_1016_j_enzmictec_2019_05_006 crossref_primary_10_3390_pharmaceutics14102201 crossref_primary_10_3390_v11030268 crossref_primary_10_3390_antibiotics10050578 crossref_primary_10_1186_s12879_014_0681_2 crossref_primary_10_1038_srep35382 crossref_primary_10_3389_fmicb_2025_1443430 crossref_primary_10_1016_j_virol_2025_110649 crossref_primary_10_1128_JVI_00321_21 crossref_primary_10_3389_fvets_2025_1653748 crossref_primary_10_1089_phage_2023_0040 crossref_primary_10_1007_s00284_025_04478_6 crossref_primary_10_1016_j_micpath_2023_106064 crossref_primary_10_1002_bit_26300 crossref_primary_10_1016_j_foodcont_2022_109521 crossref_primary_10_1128_MMBR_00069_15 crossref_primary_10_1097_MS9_0000000000003522 crossref_primary_10_1128_spectrum_01813_23 crossref_primary_10_3390_pathogens8030100 crossref_primary_10_3389_fmicb_2016_00825 crossref_primary_10_1016_j_molliq_2020_114339 crossref_primary_10_3390_antibiotics10020124 crossref_primary_10_3390_antibiotics6040032 crossref_primary_10_3390_microorganisms9051056 crossref_primary_10_1016_S1473_3099_15_00466_1 crossref_primary_10_1128_CMR_00066_18 crossref_primary_10_1016_j_micpath_2022_105576 crossref_primary_10_3390_antibiotics10030293 crossref_primary_10_1016_j_jbiotec_2017_01_002 crossref_primary_10_1039_c9mt00020h crossref_primary_10_1016_j_ijfoodmicro_2021_109112 crossref_primary_10_1016_j_jbc_2025_110224 crossref_primary_10_1186_s12929_024_01027_4 crossref_primary_10_3390_foods11050756 crossref_primary_10_3390_microorganisms12030629 crossref_primary_10_1007_s11274_022_03475_2 crossref_primary_10_2217_fmb_15_8 crossref_primary_10_1016_j_postharvbio_2025_113917 crossref_primary_10_1128_AEM_00446_16 crossref_primary_10_3390_antibiotics11091215 crossref_primary_10_1007_s12275_017_7288_4 crossref_primary_10_1111_1541_4337_12382 crossref_primary_10_3390_antibiotics9080466 crossref_primary_10_3390_v11070657 crossref_primary_10_3390_ijms24108523 crossref_primary_10_1080_1040841X_2021_1975643 crossref_primary_10_4315_0362_028X_JFP_17_278 crossref_primary_10_1099_jgv_0_001014 crossref_primary_10_1016_j_copbio_2015_10_005 crossref_primary_10_1016_j_copbio_2015_10_006 crossref_primary_10_32604_biocell_2021_015537 crossref_primary_10_1016_j_pep_2023_106402 crossref_primary_10_3390_ph14111157 crossref_primary_10_1128_AEM_01311_20 crossref_primary_10_3389_fmicb_2016_00208 crossref_primary_10_3389_fmicb_2019_01783 crossref_primary_10_1002_bit_28581 crossref_primary_10_4014_jmb_2205_05009 crossref_primary_10_1080_1040841X_2023_2181056 crossref_primary_10_3389_fcimb_2021_668430 crossref_primary_10_1016_j_virusres_2023_199296 crossref_primary_10_1016_j_microb_2025_100544 crossref_primary_10_1007_s00449_023_02938_6 crossref_primary_10_3390_pr8121587 crossref_primary_10_1111_pbi_12703 crossref_primary_10_1007_s00705_025_06274_w crossref_primary_10_1016_j_pep_2018_12_002 crossref_primary_10_3390_antibiotics10101143 crossref_primary_10_3389_fmicb_2025_1606351 crossref_primary_10_1007_s00705_023_05910_7 crossref_primary_10_3390_biom10030440 crossref_primary_10_1042_BCJ20210701 crossref_primary_10_3389_fmicb_2015_01471 crossref_primary_10_3389_fmicb_2023_1170418 crossref_primary_10_3390_v11020096 crossref_primary_10_1002_jobm_202200056 crossref_primary_10_3389_fmicb_2022_854908 crossref_primary_10_3390_antibiotics12061044 crossref_primary_10_3389_fcimb_2017_00055 crossref_primary_10_1016_j_micres_2018_04_007 crossref_primary_10_1016_j_ijbiomac_2023_124239 crossref_primary_10_1111_jam_13251 crossref_primary_10_1007_s10068_022_01089_w crossref_primary_10_1007_s00253_016_7858_0 crossref_primary_10_1007_s00253_025_13513_2 crossref_primary_10_1080_1040841X_2016_1271309 crossref_primary_10_3390_ijms21144894 crossref_primary_10_1038_s41467_020_19124_x crossref_primary_10_1002_mco2_70280 crossref_primary_10_1080_1040841X_2023_2274849 crossref_primary_10_1371_journal_pone_0192507 crossref_primary_10_1016_j_enzmictec_2021_109846 crossref_primary_10_1016_j_ijfoodmicro_2022_109611 crossref_primary_10_3390_jox15010019 crossref_primary_10_3390_biomedicines11020481 crossref_primary_10_4315_0362_028X_JFP_17_144 crossref_primary_10_3390_v15010009 crossref_primary_10_3390_ijms21093119 crossref_primary_10_3390_v14020167 crossref_primary_10_3390_antibiotics10091030 crossref_primary_10_3390_cells12172169 crossref_primary_10_3389_fcimb_2016_00194 crossref_primary_10_1016_j_ijid_2016_09_005 crossref_primary_10_1038_nrmicro_2017_61 crossref_primary_10_1111_jam_15661 crossref_primary_10_3390_microorganisms8050724 crossref_primary_10_1016_j_ijfoodmicro_2025_111110 crossref_primary_10_1038_s41598_022_09865_8 crossref_primary_10_1128_AAC_00342_19 crossref_primary_10_3390_jpm12030371 crossref_primary_10_1128_AEM_01515_21 |
| Cites_doi | 10.1128/AEM.07050-11 10.1080/713610448 10.1073/pnas.1203472109 10.1099/jmm.0.061028-0 10.1111/j.1365-2672.2010.04931.x 10.1007/s00018-004-4301-y 10.1073/pnas.96.2.715 10.1016/S0014-5793(99)00405-6 10.1016/j.jbbm.2006.10.009 10.1111/j.1365-2958.2007.05870.x 10.1021/jf00011a039 10.1093/genetics/77.1.71 10.1128/CMR.19.2.403-434.2006 10.1007/s10561-011-9247-3 10.1111/j.1574-6968.2007.01051.x 10.1016/S0014-5793(98)01238-1 10.1146/annurev.biochem.71.110601.135414 10.1016/S0021-9258(17)37654-8 10.1016/j.bbrc.2009.03.161 10.1126/science.1066869 10.1038/nature01026 10.1271/bbb.56.1361 10.1016/j.bbapap.2008.11.005 10.1371/journal.pgen.1003269 10.1099/00221287-13-3-572 10.1074/jbc.273.4.2059 10.1073/pnas.0604055103 10.1016/S0014-5793(01)02587-X 10.1128/JCM.41.3.1192-1202.2003 10.1093/jac/dkg293 10.1371/journal.pone.0036991 10.1073/pnas.061038398 10.1895/wormbook.1.101.1 10.1007/s00253-012-4294-7 10.1371/journal.pone.0007740 10.1016/B978-0-12-394438-2.00007-4 10.1128/mr.56.3.395-411.1992 10.1128/MMBR.67.4.593-656.2003 10.1021/jf00031a029 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 Briers et al. 2014. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2014 Briers et al. 2014 Briers et al. |
| Copyright_xml | – notice: Copyright © 2014 Briers et al. – notice: 2014. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2014 Briers et al. 2014 Briers et al. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8C1 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1128/mBio.01379-14 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE AGRICOLA Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Public Health |
| DocumentTitleAlternate | Artilysins against Gram-negative Pathogens |
| EISSN | 2150-7511 |
| ExternalDocumentID | oai_doaj_org_article_6284aaa556ed48f3becbb5b06635c93c PMC4161244 24987094 10_1128_mBio_01379_14 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 53G 5VS 8C1 AAFWJ AAGFI AAUOK AAYXX ABUWG ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI BTFSW CCPQU CITATION DIK E3Z EBS EJD FRP FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HYE HZ~ KQ8 M48 M7P O5R O5S O9- OK1 P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB RHI RNS RPM RSF UKHRP CGR CUY CVF ECM EIF M~E NPM RHF 8FE 8FH AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c633t-d43e3be06bbdb3be3110e620ec3132d17d48b7b6934a9761b29160873d74cb6f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 331 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341588100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2161-2129 2150-7511 |
| IngestDate | Mon Nov 10 04:34:09 EST 2025 Tue Nov 04 02:05:52 EST 2025 Fri Jul 11 10:11:23 EDT 2025 Sun Nov 09 13:28:17 EST 2025 Sat Oct 25 01:45:56 EDT 2025 Wed Feb 19 02:31:34 EST 2025 Tue Nov 18 22:23:38 EST 2025 Sat Nov 29 03:10:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Copyright © 2014 Briers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c633t-d43e3be06bbdb3be3110e620ec3132d17d48b7b6934a9761b29160873d74cb6f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Editor Roger Hendrix, University of Pittsburgh Y.B. and M.W. contributed equally to this work. |
| OpenAccessLink | https://doaj.org/article/6284aaa556ed48f3becbb5b06635c93c |
| PMID | 24987094 |
| PQID | 3263479881 |
| PQPubID | 7421146 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6284aaa556ed48f3becbb5b06635c93c pubmedcentral_primary_oai_pubmedcentral_nih_gov_4161244 proquest_miscellaneous_1746406753 proquest_miscellaneous_1542648943 proquest_journals_3263479881 pubmed_primary_24987094 crossref_citationtrail_10_1128_mBio_01379_14 crossref_primary_10_1128_mBio_01379_14 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-07-01 |
| PublicationDateYYYYMMDD | 2014-07-01 |
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
| PublicationTitle | mBio |
| PublicationTitleAlternate | mBio |
| PublicationYear | 2014 |
| Publisher | American Society for Microbiology American Society of Microbiology |
| Publisher_xml | – name: American Society for Microbiology – name: American Society of Microbiology |
| References | e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 Haun RS (e_1_3_2_37_2) 1992; 13 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Gasson MJ (e_1_3_2_26_2) 1991 |
| References_xml | – ident: e_1_3_2_5_2 doi: 10.1128/AEM.07050-11 – ident: e_1_3_2_29_2 doi: 10.1080/713610448 – ident: e_1_3_2_12_2 doi: 10.1073/pnas.1203472109 – ident: e_1_3_2_34_2 doi: 10.1099/jmm.0.061028-0 – ident: e_1_3_2_11_2 doi: 10.1111/j.1365-2672.2010.04931.x – ident: e_1_3_2_38_2 doi: 10.1007/s00018-004-4301-y – ident: e_1_3_2_25_2 doi: 10.1073/pnas.96.2.715 – ident: e_1_3_2_15_2 doi: 10.1016/S0014-5793(99)00405-6 – ident: e_1_3_2_39_2 doi: 10.1016/j.jbbm.2006.10.009 – ident: e_1_3_2_19_2 doi: 10.1111/j.1365-2958.2007.05870.x – volume: 13 start-page: 515 year: 1992 ident: e_1_3_2_37_2 article-title: Rapid, reliable ligation-independent cloning of PCR products using modified plasmid vectors publication-title: BioTechniques – ident: e_1_3_2_30_2 doi: 10.1021/jf00011a039 – ident: e_1_3_2_41_2 doi: 10.1093/genetics/77.1.71 – ident: e_1_3_2_23_2 doi: 10.1128/CMR.19.2.403-434.2006 – ident: e_1_3_2_24_2 doi: 10.1007/s10561-011-9247-3 – ident: e_1_3_2_10_2 doi: 10.1111/j.1574-6968.2007.01051.x – ident: e_1_3_2_16_2 doi: 10.1016/S0014-5793(98)01238-1 – ident: e_1_3_2_22_2 doi: 10.1146/annurev.biochem.71.110601.135414 – ident: e_1_3_2_14_2 doi: 10.1016/S0021-9258(17)37654-8 – ident: e_1_3_2_18_2 doi: 10.1016/j.bbrc.2009.03.161 – ident: e_1_3_2_3_2 doi: 10.1126/science.1066869 – ident: e_1_3_2_4_2 doi: 10.1038/nature01026 – ident: e_1_3_2_31_2 doi: 10.1271/bbb.56.1361 – ident: e_1_3_2_9_2 doi: 10.1016/j.bbapap.2008.11.005 – ident: e_1_3_2_40_2 doi: 10.1371/journal.pgen.1003269 – ident: e_1_3_2_35_2 doi: 10.1099/00221287-13-3-572 – ident: e_1_3_2_17_2 doi: 10.1074/jbc.273.4.2059 – ident: e_1_3_2_43_2 doi: 10.1073/pnas.0604055103 – ident: e_1_3_2_7_2 doi: 10.1016/S0014-5793(01)02587-X – ident: e_1_3_2_20_2 doi: 10.1128/JCM.41.3.1192-1202.2003 – ident: e_1_3_2_33_2 – ident: e_1_3_2_28_2 doi: 10.1093/jac/dkg293 – ident: e_1_3_2_8_2 doi: 10.1371/journal.pone.0036991 – ident: e_1_3_2_2_2 doi: 10.1073/pnas.061038398 – ident: e_1_3_2_42_2 doi: 10.1895/wormbook.1.101.1 – ident: e_1_3_2_21_2 doi: 10.1007/s00253-012-4294-7 – ident: e_1_3_2_36_2 doi: 10.1371/journal.pone.0007740 – ident: e_1_3_2_6_2 doi: 10.1016/B978-0-12-394438-2.00007-4 – volume-title: iral products. year: 1991 ident: e_1_3_2_26_2 – ident: e_1_3_2_27_2 doi: 10.1128/mr.56.3.395-411.1992 – ident: e_1_3_2_13_2 doi: 10.1128/MMBR.67.4.593-656.2003 – ident: e_1_3_2_32_2 doi: 10.1021/jf00031a029 |
| SSID | ssj0000331830 |
| Score | 2.5416272 |
| Snippet | The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to... ABSTRACT The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e01379 |
| SubjectTerms | Acinetobacter baumannii Acinetobacter baumannii - drug effects Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antibiotic resistance Antibiotics bacterial infections bacteriophages Caenorhabditis elegans Cell walls Drug resistance Drug Resistance, Multiple, Bacterial - drug effects E coli endolysin Endopeptidases - chemistry Gram-positive bacteria health services humans Hydrolysis Hydrophobicity Keratinocytes Lipopolysaccharides mechanism of action Microscopy Morbidity mortality Multidrug resistance multiple drug resistance Pathogens Peptides Peptidoglycans probability Protein engineering Proteins Pseudomonas aeruginosa Pseudomonas aeruginosa - drug effects Public health Salmonella Standard deviation |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggISEeJQCCwUZCXHCNIkdJz4hilo4rVaoSL1Ffu2yUjcpSRaJW39I--f6S5hxHrAIeuG2SkarOPP6PBl_Q8gryEhR7rxhJlMpE0lsmDbgj6nSkO-lNnMjwrCJbDrNj4_VrC-4NX1b5RATQ6B2lcUa-R7ADDz0mOfxu9NvDKdG4dfVfoTGdXIDWRJ4aN2bjTWWiKPFYpklAWDDIEqrgWYzyfdWZlm9RcY9xWKxkZYCe__fIOefnZO_paLDe_-7iPvkbg9C6fvOah6Qa77cJre6sZQ_tsmdrpZHuyNKD4keSAu9owelq5DFpGT7kP8cvTw7x78Jl5rLswt6VFGIMUa3NJztdfV6wT77BmFq2dKPtV6xqV8EunE6A_hZgQU3O-TL4cHRh0-sH83ArOS8ZU5wz42PpDHOwA8OKMLLJPIWqSBdnDmRm8xIxYUGwBObBGBolGfcZcIaOeePyFZZlf4JoYCY5h5JedLICuWQf19nXsZWxamWuZiQN4NmCtvzluP4jJMi7F-SvFjB-ymCImEjMyGvR_HTjrDjX4L7qOZRCHm2w4WqXhS92xYSsrfWOk2lhxXNYaXWmNQEnGYVtxOyOyi66J2_KX5peUJejrfBbfFbjC59tW4KQK7YW6gEv0ImE1Lgjg5kHnd2Nz4t7Joh0ipYRbZhkRvL2bxTLr8G-nDc0gKoe3r1oz8jtwEbiq4zeZdstfXaPyc37fd22dQvgp_9BMtQMt8 priority: 102 providerName: ProQuest |
| Title | Engineered Endolysin-Based “Artilysins” To Combat Multidrug-Resistant Gram-Negative Pathogens |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24987094 https://www.proquest.com/docview/3263479881 https://www.proquest.com/docview/1542648943 https://www.proquest.com/docview/1746406753 https://pubmed.ncbi.nlm.nih.gov/PMC4161244 https://doaj.org/article/6284aaa556ed48f3becbb5b06635c93c |
| Volume | 5 |
| WOSCitedRecordID | wos000341588100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2150-7511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331830 issn: 2161-2129 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2150-7511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331830 issn: 2161-2129 databaseCode: M7P dateStart: 20100501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2150-7511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331830 issn: 2161-2129 databaseCode: BENPR dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 2150-7511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331830 issn: 2161-2129 databaseCode: 8C1 dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2150-7511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331830 issn: 2161-2129 databaseCode: PIMPY dateStart: 20100501 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaggNQLKu-FdhUkxAnTJHb8OHarLXBgFVVFWk6RHXvLSjSpNlkkbv0h8Of6S5hxsqvdiseFSxQ5E8WejGe-USbfEPIKIlKsnLfUSp1RniaWGgv7MdMG4r0wdmZ5aDYhJxM1nep8o9UX1oR19MCd4g4F-E9jTJYJ77iaMXimtZkNkbLUrETvC6hnI5kKPpihrcYrUs1UHV6M5vVb5NfTNOFbQShw9f8OYN6sk9wIPCd75H6PGKOjbqYPyC1fPST3uh6S3x8Rs2IU9C4aV65GipGKjiA4uej66gfeFoaa66uf0VkdgQOwpo3Cj7dusTynp75BDFm10buFuaATfx64wKMcsGEN5tU8Jp9OxmfH72nfN4GWgrGWOs486CkW1joLJwxCvBdp7EvkaXSJBEVaaYVm3AAaSWwKGDFWkjnJSytm7AnZqerKPyMRwJmZR8acLC65dkiOb6QXSamTzAjFB-TNSpFF2ZOKY2-Lr0VILlJVoN6LoHfIMgbk9Vr8smPT-JPgCN_KWghJsMMAmEbRm0bxL9MYkP3VOy36ndkUAFfx51mlkgF5ub4Mewo_lJjK18umAFiJhX-as7_ISC44plsg87Qzk_VsIaUFN6hhFXLLgLaWs32lmn8J3N6YbwLiev4_1v-C7AK8411x8T7ZaRdLf0Dult_aebMYkttyquCojpMhuTMaT_LTYdhEQ6x_zWEs__Ax__wLzYgkjA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAgIJ8SivQIFFAk4stb3rtfeAEIWWVi1RhYLUm9lXQiRilzgB9dYfAn-BH9Vfwuw6DgRBbz1ws-yR5bHn8c169huAR5iRotw6TXUmU8qTWFOl0R9TqTDfC6X7modhE1m3m-_vy70l-NHuhfFtlW1MDIHaVsavka8hzPCbHvM8fnHwmfqpUf7vajtCozGLHXf4FUu2-vn2a_y-j5Nkc6P3aovOpgpQIxibUMuZY9pFQmur8YBhAnQiiZzxLIY2zizPdaaFZFxhro51gggqyjNmM2606DO87xk4izAiyUOr4N58TSdi3kP8sk6CQIpiVpAtrWeSr430sHrmGf4kjflCGgzTAv4Gcf_s1Pwt9W1e-d9e2lW4PAPZ5GXjFddgyZUrcL4Zu3m4ApeatUrSbMG6DqolZXSWbJS28iwtJV3H_G7J8dE3f5twqj4--k56FcEYqtWEhL3Ldjwd0Heu9jC8nJA3YzWiXTcIdOpkD-F1hR5a34D3p6LvTVguq9LdBoKIsO886VAaGS6tny-gMidiI-NUiZx34GlrCYWZ8bL78SCfilCfJXkxwvdTBMPBQq0DT-biBw0hyb8E171ZzYU8j3g4UY0HxSwsFQLRiVIqTYVDjfqoqdE61QGHGslMB1Zbwypmwa0ufllVBx7OL2NY8v-aVOmqaV0gMve9k5KzE2QyLrivWFHmVmPn86dNuMRMIlGLbMEDFtRZvFIOPwZ6dF-yI2i9c_KjP4ALW723u8XudnfnLlxEHMybLuxVWJ6Mp-4enDNfJsN6fD_4OIEPp-0fPwE4BY62 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+Endolysin-Based+%E2%80%9CArtilysins%E2%80%9D+To+Combat+Multidrug-Resistant+Gram-Negative+Pathogens&rft.jtitle=mBio&rft.au=Yves+Briers&rft.au=Maarten+Walmagh&rft.au=Victor+Van+Puyenbroeck&rft.au=Anneleen+Cornelissen&rft.date=2014-07-01&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1128%2FmBio.01379-14&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6284aaa556ed48f3becbb5b06635c93c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |