Interaction with Tsg101 Is Necessary for the Efficient Transport and Release of Nucleocapsids in Marburg Virus-Infected Cells
Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late d...
Saved in:
| Published in: | PLoS pathogens Vol. 10; no. 10; p. e1004463 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
01.10.2014
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1553-7374, 1553-7366, 1553-7374 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARV(PSAPmut)). rMARV(PSAPmut) was attenuated by up to one log compared with recombinant wild-type MARV (rMARV(wt)), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARV(PSAPmut)-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARV(wt)-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARV(wt)-infected cells and was co-transported together with nucleocapsids. In contrast, rMARV(PSAPmut) nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission. |
|---|---|
| AbstractList | Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARV(PSAPmut)). rMARV(PSAPmut) was attenuated by up to one log compared with recombinant wild-type MARV (rMARV(wt)), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARV(PSAPmut)-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARV(wt)-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARV(wt)-infected cells and was co-transported together with nucleocapsids. In contrast, rMARV(PSAPmut) nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission. Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain ([rMARV.sub.PSAPmut]). [rMARV.sub.PSAPmut] was attenuated by up to one log compared with recombinant wild-type MARV ([rMARV.sub.wt]), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in [rMARV.sub.PSAPmut]-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in [rMARV.sub.wt]infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of [rMARV.sub.wt]-infected cells and was co-transported together with nucleocapsids. In contrast, [rMARV.sub.PSAPmut] nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission. Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARV(PSAPmut)). rMARV(PSAPmut) was attenuated by up to one log compared with recombinant wild-type MARV (rMARV(wt)), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARV(PSAPmut)-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARV(wt)-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARV(wt)-infected cells and was co-transported together with nucleocapsids. In contrast, rMARV(PSAPmut) nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission.Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARV(PSAPmut)). rMARV(PSAPmut) was attenuated by up to one log compared with recombinant wild-type MARV (rMARV(wt)), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARV(PSAPmut)-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARV(wt)-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARV(wt)-infected cells and was co-transported together with nucleocapsids. In contrast, rMARV(PSAPmut) nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission. Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARVPSAPmut). rMARVPSAPmut was attenuated by up to one log compared with recombinant wild-type MARV (rMARVwt), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARVPSAPmut-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARVwt-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARVwt-infected cells and was co-transported together with nucleocapsids. In contrast, rMARVPSAPmut nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission. Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARVPSAPmut). rMARVPSAPmut was attenuated by up to one log compared with recombinant wild-type MARV (rMARVwt), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARVPSAPmut-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARVwt-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARVwt-infected cells and was co-transported together with nucleocapsids. In contrast, rMARVPSAPmut nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission. Marburg virus (MARV) is endemic in central Africa and causes hemorrhagic fever in humans and non-human primates, with high lethality. Presumably, the disease severity primarily depends on the response of host-cell factors interacting with viral proteins. We generated a recombinant MARV encoding an NP with a mutated PSAP late domain motif, which has previously been shown to mediate interaction with the cellular ESCRT protein Tsg101. We found that the PSAP-mediated interaction with Tsg101 was important at several steps of MARV assembly before viral fission. First, the egress of mature rMARVPSAPmut nucleocapsids from viral inclusions was inhibited. Second, actin-driven transport of rMARVPSAPmut nucleocapsids was impaired, displaying significantly shortened trajectories and reduced movement in the cell periphery. Third, rMARVPSAPmut nucleocapsids accumulated in cell periphery, and the number of filopodia-associated nucleocapsids decreased, indicating that rMARVPSAPmut nucleocapsids were defective to enter filopodia, the major budding sites of MARV. These defects resulted in the attenuated growth of rMARVPSAPmut. Interestingly, IQGAP1, an actin cytoskeleton regulator which interacts with Tsg101, was also recruited to nucleocapsids in dependence of the PSAP late domain. Thus, the interaction of NP with Tsg101 not only impacts viral budding at the plasma membrane but also nucleocapsid transport through the cytoplasm. |
| Audience | Academic |
| Author | Kolesnikova, Larissa Strecker, Thomas Schudt, Gordian Welsch, Sonja Dolnik, Olga Becker, Stephan |
| AuthorAffiliation | Mount Sinai School of Medicine, United States of America 2 EMBL Structural and Computational Biology Unit, Heidelberg, Germany 1 Institut für Virologie, Philipps Universität Marburg, Marburg, Germany 3 DZIF, Deutsches Zentrum für Infektionsforschung, Marburg, Germany |
| AuthorAffiliation_xml | – name: 3 DZIF, Deutsches Zentrum für Infektionsforschung, Marburg, Germany – name: Mount Sinai School of Medicine, United States of America – name: 1 Institut für Virologie, Philipps Universität Marburg, Marburg, Germany – name: 2 EMBL Structural and Computational Biology Unit, Heidelberg, Germany |
| Author_xml | – sequence: 1 givenname: Olga surname: Dolnik fullname: Dolnik, Olga – sequence: 2 givenname: Larissa surname: Kolesnikova fullname: Kolesnikova, Larissa – sequence: 3 givenname: Sonja surname: Welsch fullname: Welsch, Sonja – sequence: 4 givenname: Thomas surname: Strecker fullname: Strecker, Thomas – sequence: 5 givenname: Gordian surname: Schudt fullname: Schudt, Gordian – sequence: 6 givenname: Stephan surname: Becker fullname: Becker, Stephan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25330247$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkl2LEzEUhgdZcT_0H4gGvNGL1mTyMTN7ISzLqoW1wlq9DWly0qZMk5pk_Ljwv5varmxFBJmLDMlz3pzz5j2tjnzwUFWPCR4T2pCXqzBEr_rxZqPymGDMmKD3qhPCOR01tGFHd_6Pq9OUVoUhlIgH1XHNKcU1a06qHxOfISqdXfDoq8tLNEsLggmaJDQFDSmp-B3ZEFFeArqy1mkHPqNZVD5tQsxIeYNuoAeVAAWLpoPuIWi1Sc4k5Dx6p-J8iAv0ycUhjSbegs5g0CX0fXpY3beqT_Bov55VH19fzS7fjq7fv5lcXlyPtKA0j7TmXDNsuJkDY7RtcN0J1inBheAGTBlTca4sZ0KzOcYFI5p2RnAMCpihZ9XTne6mD0nunUuSiJbXjHWsLcRkR5igVnIT3brMLYNy8tdGiAupYnZlNmkY1XWHBQg7Z21tu1ZT3lis2qZlc8KL1qv9bcN8DUYXv6LqD0QPT7xbykX4IhnpuqahReD5XiCGzwOkLNcu6WKY8hCGbd-E1wJ3BBf02Q5dqNKa8zYURb3F5QXtyoPXNesKNf4LVT4Da6dLrqwr-wcFLw4KCpPhW16oISU5-XDzH-z0kH1y15rfntwGsgDnO0DHkFIEK7XLapvO0rHrJcFym_7bN5Tb9Mt9-ksx-6P4Vv-fZT8BRVoJ4w |
| CitedBy_id | crossref_primary_10_3390_ijms241713104 crossref_primary_10_1093_infdis_jiv083 crossref_primary_10_1007_s00203_025_04277_4 crossref_primary_10_1128_JVI_01850_18 crossref_primary_10_1371_journal_ppat_1012103 crossref_primary_10_3390_pathogens11010056 crossref_primary_10_1002_jmv_28834 crossref_primary_10_3390_cells9071728 crossref_primary_10_1074_jbc_M116_752121 crossref_primary_10_3389_fmicb_2023_1261651 crossref_primary_10_1128_JVI_01282_17 crossref_primary_10_12688_f1000research_17573_1 crossref_primary_10_2174_0122113525341920241015041123 crossref_primary_10_3389_fmicb_2015_00517 crossref_primary_10_1128_jvi_01047_24 crossref_primary_10_3390_v11030275 crossref_primary_10_3390_v11010025 crossref_primary_10_1038_s41416_020_0970_z crossref_primary_10_1016_j_jmb_2019_06_029 crossref_primary_10_1371_journal_ppat_1010616 crossref_primary_10_3390_v14030478 crossref_primary_10_1007_s12104_023_10119_5 crossref_primary_10_1038_s41467_024_54431_7 crossref_primary_10_1128_JVI_02670_15 crossref_primary_10_1371_journal_ppat_1007047 crossref_primary_10_15252_embj_2022110780 crossref_primary_10_1128_jvi_00005_22 crossref_primary_10_3390_v15020554 crossref_primary_10_1093_infdis_jiy424 crossref_primary_10_1016_j_antiviral_2022_105426 crossref_primary_10_3390_cells10061460 crossref_primary_10_1016_j_antiviral_2017_12_022 crossref_primary_10_1016_j_antiviral_2023_105786 crossref_primary_10_1128_JVI_02170_19 crossref_primary_10_1016_j_ejcb_2015_05_006 crossref_primary_10_1128_jvi_01899_23 crossref_primary_10_1371_journal_ppat_1005960 crossref_primary_10_1016_j_jhep_2016_06_028 crossref_primary_10_1128_mbio_01557_25 crossref_primary_10_3390_v8060178 crossref_primary_10_1016_j_heliyon_2023_e19613 crossref_primary_10_1371_journal_pntd_0004456 crossref_primary_10_15252_embr_201439834 |
| Cites_doi | 10.1074/jbc.M111.258772 10.1091/mbc.E07-09-0957 10.1016/j.virol.2010.12.060 10.1371/journal.pone.0032030 10.1128/JVI.74.8.3899-3904.2000 10.1038/sj.embor.7401089 10.1371/journal.pntd.0000802 10.1006/viro.1998.9328 10.1016/j.tcb.2006.04.004 10.1016/j.virol.2007.11.008 10.1128/JVI.02829-06 10.1016/j.tibs.2010.10.002 10.1371/journal.pone.0034308 10.1016/j.febslet.2007.03.060 10.1101/gad.294904 10.1111/cmi.12076 10.1083/jcb.200503059 10.1073/pnas.88.8.3195 10.1016/j.virol.2005.09.044 10.1042/BST0370195 10.1099/0022-1317-82-12-2839 10.1128/JVI.02045-10 10.1128/JVI.01525-12 10.1111/j.1462-5822.2011.01709.x 10.1073/pnas.1009471107 10.1111/j.1600-0854.2011.01220.x 10.4161/hv.7.6.15398 10.1038/ncb1544 10.1073/pnas.1200448109 10.1007/s00018-007-7406-2 10.1128/JVI.00476-10 10.1038/sj.emboj.7601850 10.1371/journal.ppat.1002762 10.1016/B978-012465330-6/50003-8 10.1016/j.str.2010.08.010 10.1016/0168-1702(95)00080-1 10.1083/jcb.30.1.23 10.1128/JVI.00470-13 10.1099/vir.0.015495-0 10.1016/j.chom.2013.08.012 10.1128/JVI.78.5.2382-2393.2004 10.1038/nchembio790 10.1128/JVI.74.21.9818-9827.2000 10.1128/JVI.78.22.12277-12287.2004 10.1128/JVI.00889-08 10.1091/mbc.E06-09-0787 10.1016/j.jsb.2005.07.007 10.1371/journal.pbio.1001196 10.1074/jbc.M109535200 10.1111/j.1600-0854.2011.01208.x 10.1006/jsbi.1996.0013 10.1016/j.bbadis.2009.08.009 10.1128/JVI.72.11.8756-8764.1998 10.1128/JVI.02184-08 10.1073/pnas.1307681110 10.1111/j.1462-5822.2006.00842.x 10.1371/journal.ppat.1000875 10.1371/journal.ppat.1000339 10.1038/sj.emboj.7601097 10.1073/pnas.032511899 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2014 Public Library of Science 2014 Dolnik et al 2014 Dolnik et al 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Dolnik O, Kolesnikova L, Welsch S, Strecker T, Schudt G, Becker S (2014) Interaction with Tsg101 Is Necessary for the Efficient Transport and Release of Nucleocapsids in Marburg Virus-Infected Cells. PLoS Pathog 10(10): e1004463. doi:10.1371/journal.ppat.1004463 |
| Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Dolnik et al 2014 Dolnik et al – notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Dolnik O, Kolesnikova L, Welsch S, Strecker T, Schudt G, Becker S (2014) Interaction with Tsg101 Is Necessary for the Efficient Transport and Release of Nucleocapsids in Marburg Virus-Infected Cells. PLoS Pathog 10(10): e1004463. doi:10.1371/journal.ppat.1004463 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
| DOI | 10.1371/journal.ppat.1004463 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Marburg Virus NP Late Domain Phenotype |
| EISSN | 1553-7374 |
| ExternalDocumentID | 1685244948 oai_doaj_org_article_d43c2906e6fb482f98c357f0a8784b15 PMC4199773 A390412249 25330247 10_1371_journal_ppat_1004463 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 RIG RZL WOQ 7X8 PUEGO 5PM - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c633t-cc55c40d5dbe44387029649a65665ded553a55af546c4b00dbe1c39d650eae4d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344548800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7374 1553-7366 |
| IngestDate | Fri Nov 26 17:14:16 EST 2021 Fri Oct 03 12:50:42 EDT 2025 Tue Nov 04 02:00:48 EST 2025 Thu Sep 04 18:51:23 EDT 2025 Tue Nov 11 10:38:55 EST 2025 Tue Nov 04 17:34:10 EST 2025 Thu Nov 13 15:45:54 EST 2025 Thu Nov 13 15:20:33 EST 2025 Mon Jul 21 06:07:08 EDT 2025 Sat Nov 29 03:58:02 EST 2025 Tue Nov 18 22:13:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c633t-cc55c40d5dbe44387029649a65665ded553a55af546c4b00dbe1c39d650eae4d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. Conceived and designed the experiments: OD LK SW SB. Performed the experiments: OD LK SW. Analyzed the data: OD LK SW SB. Contributed reagents/materials/analysis tools: OD LK SW SB TS GS. Wrote the paper: OD LK SW SB TS. |
| OpenAccessLink | https://doaj.org/article/d43c2906e6fb482f98c357f0a8784b15 |
| PMID | 25330247 |
| PQID | 1615260910 |
| PQPubID | 23479 |
| ParticipantIDs | plos_journals_1685244948 doaj_primary_oai_doaj_org_article_d43c2906e6fb482f98c357f0a8784b15 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4199773 proquest_miscellaneous_1615260910 gale_infotracmisc_A390412249 gale_infotracacademiconefile_A390412249 gale_incontextgauss_ISR_A390412249 gale_incontextgauss_ISN_A390412249 pubmed_primary_25330247 crossref_citationtrail_10_1371_journal_ppat_1004463 crossref_primary_10_1371_journal_ppat_1004463 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-01 |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, USA |
| PublicationTitle | PLoS pathogens |
| PublicationTitleAlternate | PLoS Pathog |
| PublicationYear | 2014 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | I Amit (ref10) 2004; 18 O Dolnik (ref31) 2010; 84 DP Gladue (ref48) 2011; 412 J Leung (ref49) 2006; 25 JR Kremer (ref64) 1996; 116 A Aggarwal (ref43) 2012; 8 MJ Lehmann (ref44) 2005; 170 CR Morris (ref32) 2012; 7 A Pelikan-Conchaudron (ref47) 2011; 286 DT Brandt (ref46) 2007; 8 E Morita (ref8) 2007; 26 ref16 NM Sherer (ref45) 2007; 9 L Obiang (ref40) 2011 SC Mateer (ref58) 2002; 277 NE Davey (ref57) 2011; 36 DG Demirov (ref55) 2002; 99 T Slagsvold (ref1) 2006; 16 HR Jayakar (ref39) 2000; 74 S Urata (ref53); 91 X Ren (ref52) 2011; 12 Y Liu (ref51) 2011; 2011 HG Gottlinger (ref38) 1991; 88 L Kolesnikova (ref29) 2009; 83 ER Weibel (ref65) 1966; 30 TA Bharat (ref18) 2011; 9 E Mühlberger (ref19) 1998; 72 L Kolesnikova (ref25) 2004; 78 V Krahling (ref60) 2010; 4 V Dussupt (ref37) 2009; 5 J Votteler (ref5) 2013; 14 SB Bradfute (ref17) 2011; 7 G Schudt (ref26) 2013; 110 H Feldmann (ref20) 2001; 82 T Hoenen (ref23) 2012; 86 J Lu (ref50) 2013; 87 L Malerod (ref15) 2011; 12 S Welsch (ref28) 2010; 6 JF Nabhan (ref59) 2012; 109 JG Carlton (ref3) 2009; 37 DN Mastronarde (ref63) 2005; 152 L Kolesnikova (ref42) 2012; 14 YJ Im (ref56) 2010; 18 TW Geisbert (ref21) 1995; 39 BY Kim (ref13) 2007; 18 S Urata (ref30) 2007; 81 L Kolesnikova (ref22) 2000; 74 E Mittler (ref33) 2013; 15 BJ Chen (ref4) 2008; 372 S Welsch (ref6) 2007; 581 C Wirblich (ref41) 2008; 82 CP Horgan (ref7) 2012; 7 L Kolesnikova (ref62) 2004; 78 GH Feng (ref11) 2000; 60 L Kolesnikova (ref27) 2007; 9 ML MacDonald (ref36) 2006; 2 S Rauch (ref54) 2011; 85 C Tu (ref9) 2010; 107 S Becker (ref34) 1998; 249 B McDonald (ref14) 2008; 19 J Jiao (ref12) 2009; 1792 O Dolnik (ref24) 2008; 65 I Remy (ref35) 2002; 185 PD Bieniasz (ref2) 2006; 344 ref61 19091859 - J Virol. 2009 Mar;83(5):2327-37 9765419 - J Virol. 1998 Nov;72(11):8756-64 15507615 - J Virol. 2004 Nov;78(22):12277-87 17434167 - FEBS Lett. 2007 May 22;581(11):2089-97 15256501 - Genes Dev. 2004 Jul 15;18(14):1737-52 22102845 - Adv Virol. 2011 Jan 1;2011:null 11024108 - J Virol. 2000 Nov;74(21):9818-27 11809768 - J Biol Chem. 2002 Apr 5;277(14):12324-33 21146412 - Trends Biochem Sci. 2011 Mar;36(3):159-69 16680159 - Nat Chem Biol. 2006 Jun;2(6):329-37 11805336 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):955-60 21070952 - Structure. 2010 Nov 10;18(11):1536-47 17301151 - J Virol. 2007 May;81(9):4895-9 11769008 - Methods Mol Biol. 2002;185:447-59 21191027 - J Virol. 2011 Apr;85(7):3546-56 19703557 - Biochim Biophys Acta. 2009 Oct;1792(10):1027-35 19282983 - PLoS Pathog. 2009 Mar;5(3):e1000339 21564451 - Traffic. 2011 Sep;12(9):1211-26 18063004 - Virology. 2008 Mar 15;372(2):221-32 14963134 - J Virol. 2004 Mar;78(5):2382-93 20805499 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16107-12 20504928 - J Virol. 2010 Aug;84(15):7847-56 17140405 - Cell Microbiol. 2007 Apr;9(4):939-51 9791031 - Virology. 1998 Sep 30;249(2):406-17 8742726 - J Struct Biol. 1996 Jan-Feb;116(1):71-6 10749147 - Cancer Res. 2000 Mar 15;60(6):1736-41 21981045 - Cell Microbiol. 2012 Feb;14(2):182-97 18667490 - J Virol. 2008 Oct;82(19):9730-8 23940347 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14402-7 16628219 - EMBO J. 2006 May 17;25(10):2155-66 23186212 - Cell Microbiol. 2013 Feb;15(2):270-84 17293854 - Nat Cell Biol. 2007 Mar;9(3):310-5 22915810 - J Virol. 2012 Nov;86(21):11779-88 21262517 - Virology. 2011 Mar 30;412(1):68-74 21730051 - J Biol Chem. 2011 Oct 7;286(40):35119-28 17229889 - Mol Biol Cell. 2007 Apr;18(4):1129-42 16364736 - Virology. 2006 Jan 5;344(1):55-63 22315426 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4146-51 8837880 - Virus Res. 1995 Dec;39(2-3):129-50 16182563 - J Struct Biol. 2005 Oct;152(1):36-51 16716591 - Trends Cell Biol. 2006 Jun;16(6):317-26 20808767 - PLoS Negl Trop Dis. 2010;4(8):e802 22190013 - J Gen Virol. 2012 Apr;93(Pt 4):857-65 5338131 - J Cell Biol. 1966 Jul;30(1):23-38 17853893 - EMBO J. 2007 Oct 3;26(19):4215-27 17972901 - EMBO Rep. 2007 Nov;8(11):1019-23 20442788 - PLoS Pathog. 2010 Apr;6(4):e1000875 2014240 - Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3195-9 22110401 - PLoS Biol. 2011 Nov;9(11):e1001196 18158582 - Cell Mol Life Sci. 2008 Mar;65(5):756-76 21519188 - Hum Vaccin. 2011 Jun;7(6):701-11 23637409 - J Virol. 2013 Jul;87(13):7777-80 22479596 - PLoS One. 2012;7(3):e34308 22685410 - PLoS Pathog. 2012;8(6):e1002762 10729166 - J Virol. 2000 Apr;74(8):3899-904 16027225 - J Cell Biol. 2005 Jul 18;170(2):317-25 18077552 - Mol Biol Cell. 2008 Feb;19(2):754-63 11714958 - J Gen Virol. 2001 Dec;82(Pt 12):2839-48 21518163 - Traffic. 2011 Oct;12(10):1282-90 19143630 - Biochem Soc Trans. 2009 Feb;37(Pt 1):195-9 24034610 - Cell Host Microbe. 2013 Sep 11;14(3):232-41 22348143 - PLoS One. 2012;7(2):e32030 19812267 - J Gen Virol. 2010 Jan;91(Pt 1):228-34 |
| References_xml | – volume: 286 start-page: 35119 year: 2011 ident: ref47 article-title: The IQGAP1 protein is a calmodulin-regulated barbed end capper of actin filaments: possible implications in its function in cell migration publication-title: J Biol Chem doi: 10.1074/jbc.M111.258772 – volume: 19 start-page: 754 year: 2008 ident: ref14 article-title: Regulation of Tsg101 expression by the steadiness box: a role of Tsg101-associated ligase publication-title: Mol Biol Cell doi: 10.1091/mbc.E07-09-0957 – volume: 2011 year: 2011 ident: ref51 article-title: Bimolecular Complementation to Visualize Filovirus VP40-Host Complexes in Live Mammalian Cells: Toward the Identification of Budding Inhibitors publication-title: Adv Virol – volume: 412 start-page: 68 year: 2011 ident: ref48 article-title: Interaction between Core protein of classical swine fever virus with cellular IQGAP1 protein appears essential for virulence in swine publication-title: Virology doi: 10.1016/j.virol.2010.12.060 – volume: 7 start-page: e32030 year: 2012 ident: ref7 article-title: Tumor susceptibility gene 101 (TSG101) is a novel binding-partner for the class II Rab11-FIPs publication-title: PLoS One doi: 10.1371/journal.pone.0032030 – volume: 74 start-page: 3899 year: 2000 ident: ref22 article-title: Ultrastructural organization of recombinant Marburg virus nucleoprotein: comparison with Marburg virus inclusions publication-title: J Virol doi: 10.1128/JVI.74.8.3899-3904.2000 – volume: 8 start-page: 1019 year: 2007 ident: ref46 article-title: Get to grips: steering local actin dynamics with IQGAPs publication-title: EMBO Rep doi: 10.1038/sj.embor.7401089 – volume: 4 start-page: e802 year: 2010 ident: ref60 article-title: Establishment of fruit bat cells (Rousettus aegyptiacus) as a model system for the investigation of filoviral infection publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000802 – volume: 249 start-page: 406 year: 1998 ident: ref34 article-title: Interactions of Marburg virus nucleocapsid proteins publication-title: Virology doi: 10.1006/viro.1998.9328 – volume: 16 start-page: 317 year: 2006 ident: ref1 article-title: Endosomal and non-endosomal functions of ESCRT proteins publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2006.04.004 – volume: 372 start-page: 221 year: 2008 ident: ref4 article-title: Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? publication-title: Virology doi: 10.1016/j.virol.2007.11.008 – volume: 81 start-page: 4895 year: 2007 ident: ref30 article-title: Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP publication-title: J Virol doi: 10.1128/JVI.02829-06 – volume: 36 start-page: 159 year: 2011 ident: ref57 article-title: How viruses hijack cell regulation publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2010.10.002 – volume: 7 start-page: e34308 year: 2012 ident: ref32 article-title: A knockout of the Tsg101 gene leads to decreased expression of ErbB receptor tyrosine kinases and induction of autophagy prior to cell death publication-title: PLoS One doi: 10.1371/journal.pone.0034308 – volume: 581 start-page: 2089 year: 2007 ident: ref6 article-title: More than one door - Budding of enveloped viruses through cellular membranes publication-title: FEBS Lett doi: 10.1016/j.febslet.2007.03.060 – volume: 18 start-page: 1737 year: 2004 ident: ref10 article-title: Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding publication-title: Genes Dev doi: 10.1101/gad.294904 – volume: 15 start-page: 270 year: 2013 ident: ref33 article-title: Assembly of the Marburg virus envelope publication-title: Cell Microbiol doi: 10.1111/cmi.12076 – volume: 170 start-page: 317 year: 2005 ident: ref44 article-title: Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells publication-title: J Cell Biol doi: 10.1083/jcb.200503059 – volume: 88 start-page: 3195 year: 1991 ident: ref38 article-title: Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.88.8.3195 – volume: 344 start-page: 55 year: 2006 ident: ref2 article-title: Late budding domains and host proteins in enveloped virus release publication-title: Virology doi: 10.1016/j.virol.2005.09.044 – volume: 37 start-page: 195 year: 2009 ident: ref3 article-title: The ESCRT machinery: new functions in viral and cellular biology publication-title: Biochem Soc Trans doi: 10.1042/BST0370195 – volume: 82 start-page: 2839 year: 2001 ident: ref20 article-title: Biosynthesis and role of filoviral glycoproteins publication-title: J Gen Virol doi: 10.1099/0022-1317-82-12-2839 – volume: 85 start-page: 3546 year: 2011 ident: ref54 article-title: Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding publication-title: J Virol doi: 10.1128/JVI.02045-10 – volume: 86 start-page: 11779 year: 2012 ident: ref23 article-title: Inclusion bodies are a site of ebolavirus replication publication-title: J Virol doi: 10.1128/JVI.01525-12 – volume: 14 start-page: 182 year: 2012 ident: ref42 article-title: Phosphorylation of Marburg virus matrix protein VP40 triggers assembly of nucleocapsids with the viral envelope at the plasma membrane publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2011.01709.x – volume: 107 start-page: 16107 year: 2010 ident: ref9 article-title: Endosomal-sorting complexes required for transport (ESCRT) pathway-dependent endosomal traffic regulates the localization of active Src at focal adhesions publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1009471107 – volume: 12 start-page: 1211 year: 2011 ident: ref15 article-title: Cargo-dependent degradation of ESCRT-I as a feedback mechanism to modulate endosomal sorting publication-title: Traffic doi: 10.1111/j.1600-0854.2011.01220.x – volume: 7 start-page: 701 year: 2011 ident: ref17 article-title: Filovirus vaccines publication-title: Hum Vaccin doi: 10.4161/hv.7.6.15398 – volume: 9 start-page: 310 year: 2007 ident: ref45 article-title: Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission publication-title: Nat Cell Biol doi: 10.1038/ncb1544 – volume: 109 start-page: 4146 year: 2012 ident: ref59 article-title: Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1200448109 – volume: 65 start-page: 756 year: 2008 ident: ref24 article-title: Filoviruses: Interactions with the host cell publication-title: Cell Mol Life Sci doi: 10.1007/s00018-007-7406-2 – volume: 84 start-page: 7847 year: 2010 ident: ref31 article-title: Tsg101 is recruited by a late domain of the nucleocapsid protein to support budding of Marburg virus-like particles publication-title: J Virol doi: 10.1128/JVI.00476-10 – volume: 26 start-page: 4215 year: 2007 ident: ref8 article-title: Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis publication-title: EMBO J doi: 10.1038/sj.emboj.7601850 – volume: 8 start-page: e1002762 year: 2012 ident: ref43 article-title: Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002762 – ident: ref61 doi: 10.1016/B978-012465330-6/50003-8 – volume: 185 start-page: 447 year: 2002 ident: ref35 article-title: Detection and visualization of protein interactions with protein fragment complementation assays publication-title: Methods Mol Biol – volume: 18 start-page: 1536 year: 2010 ident: ref56 article-title: Crystallographic and functional analysis of the ESCRT-I/HIV-1 Gag PTAP interaction publication-title: Structure doi: 10.1016/j.str.2010.08.010 – volume: 39 start-page: 129 year: 1995 ident: ref21 article-title: Differentiation of filoviruses by electron microscopy publication-title: Virus Res doi: 10.1016/0168-1702(95)00080-1 – volume: 30 start-page: 23 year: 1966 ident: ref65 article-title: Practical stereological methods for morphometric cytology publication-title: J Cell Biol doi: 10.1083/jcb.30.1.23 – ident: ref16 – volume: 87 start-page: 7777 year: 2013 ident: ref50 article-title: Host IQGAP1 and Ebola virus VP40 interactions facilitate virus-like particle egress publication-title: J Virol doi: 10.1128/JVI.00470-13 – volume: 91 start-page: 228 ident: ref53 article-title: Regulation of Marburg virus (MARV) budding by Nedd4.1: a different WW domain of Nedd4.1 is critical for binding to MARV and Ebola virus VP40 publication-title: J Gen Virol doi: 10.1099/vir.0.015495-0 – volume: 14 start-page: 232 year: 2013 ident: ref5 article-title: Virus budding and the ESCRT pathway publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.08.012 – volume: 78 start-page: 2382 year: 2004 ident: ref62 article-title: The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway publication-title: J Virol doi: 10.1128/JVI.78.5.2382-2393.2004 – volume: 2 start-page: 329 year: 2006 ident: ref36 article-title: Identifying off-target effects and hidden phenotypes of drugs in human cells publication-title: Nat Chem Biol doi: 10.1038/nchembio790 – volume: 74 start-page: 9818 year: 2000 ident: ref39 article-title: Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release publication-title: J Virol doi: 10.1128/JVI.74.21.9818-9827.2000 – volume: 78 start-page: 12277 year: 2004 ident: ref25 article-title: Multivesicular bodies as a platform for formation of the Marburg virus envelope publication-title: J Virol doi: 10.1128/JVI.78.22.12277-12287.2004 – year: 2011 ident: ref40 article-title: Phenotypes of vesicular stomatitis virus mutants with mutations in the PSAP motif of the matrix protein publication-title: J Gen Virol – volume: 82 start-page: 9730 year: 2008 ident: ref41 article-title: PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity publication-title: J Virol doi: 10.1128/JVI.00889-08 – volume: 18 start-page: 1129 year: 2007 ident: ref13 article-title: Spongiform neurodegeneration-associated E3 ligase Mahogunin ubiquitylates TSG101 and regulates endosomal trafficking publication-title: Mol Biol Cell doi: 10.1091/mbc.E06-09-0787 – volume: 152 start-page: 36 year: 2005 ident: ref63 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J Struct Biol doi: 10.1016/j.jsb.2005.07.007 – volume: 9 start-page: e1001196 year: 2011 ident: ref18 article-title: Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001196 – volume: 277 start-page: 12324 year: 2002 ident: ref58 article-title: The mechanism for regulation of the F-actin binding activity of IQGAP1 by calcium/calmodulin publication-title: J Biol Chem doi: 10.1074/jbc.M109535200 – volume: 12 start-page: 1282 year: 2011 ident: ref52 article-title: Proline-rich regions and motifs in trafficking: from ESCRT interaction to viral exploitation publication-title: Traffic doi: 10.1111/j.1600-0854.2011.01208.x – volume: 116 start-page: 71 year: 1996 ident: ref64 article-title: Computer visualization of three-dimensional image data using IMOD publication-title: J Struct Biol doi: 10.1006/jsbi.1996.0013 – volume: 1792 start-page: 1027 year: 2009 ident: ref12 article-title: Abnormal regulation of TSG101 in mice with spongiform neurodegeneration publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2009.08.009 – volume: 72 start-page: 8756 year: 1998 ident: ref19 article-title: Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes publication-title: J Virol doi: 10.1128/JVI.72.11.8756-8764.1998 – volume: 83 start-page: 2327 year: 2009 ident: ref29 article-title: Vacuolar protein sorting pathway contributes to the release of Marburg virus publication-title: J Virol doi: 10.1128/JVI.02184-08 – volume: 110 start-page: 14402 year: 2013 ident: ref26 article-title: Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1307681110 – volume: 9 start-page: 939 year: 2007 ident: ref27 article-title: Budding of Marburgvirus is associated with filopodia publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2006.00842.x – volume: 6 start-page: e1000875 year: 2010 ident: ref28 article-title: Electron tomography reveals the steps in filovirus budding publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000875 – volume: 5 start-page: e1000339 year: 2009 ident: ref37 article-title: The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000339 – volume: 25 start-page: 2155 year: 2006 ident: ref49 article-title: Interaction of Moloney murine leukemia virus matrix protein with IQGAP publication-title: EMBO J doi: 10.1038/sj.emboj.7601097 – volume: 60 start-page: 1736 year: 2000 ident: ref11 article-title: TSG101 protein steady-state level is regulated posttranslationally by an evolutionarily conserved COOH-terminal sequence publication-title: Cancer Res – volume: 99 start-page: 955 year: 2002 ident: ref55 article-title: Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.032511899 – reference: 19143630 - Biochem Soc Trans. 2009 Feb;37(Pt 1):195-9 – reference: 5338131 - J Cell Biol. 1966 Jul;30(1):23-38 – reference: 9765419 - J Virol. 1998 Nov;72(11):8756-64 – reference: 17972901 - EMBO Rep. 2007 Nov;8(11):1019-23 – reference: 11809768 - J Biol Chem. 2002 Apr 5;277(14):12324-33 – reference: 18667490 - J Virol. 2008 Oct;82(19):9730-8 – reference: 17293854 - Nat Cell Biol. 2007 Mar;9(3):310-5 – reference: 21519188 - Hum Vaccin. 2011 Jun;7(6):701-11 – reference: 22348143 - PLoS One. 2012;7(2):e32030 – reference: 21262517 - Virology. 2011 Mar 30;412(1):68-74 – reference: 19812267 - J Gen Virol. 2010 Jan;91(Pt 1):228-34 – reference: 16027225 - J Cell Biol. 2005 Jul 18;170(2):317-25 – reference: 24034610 - Cell Host Microbe. 2013 Sep 11;14(3):232-41 – reference: 18158582 - Cell Mol Life Sci. 2008 Mar;65(5):756-76 – reference: 17229889 - Mol Biol Cell. 2007 Apr;18(4):1129-42 – reference: 17434167 - FEBS Lett. 2007 May 22;581(11):2089-97 – reference: 21146412 - Trends Biochem Sci. 2011 Mar;36(3):159-69 – reference: 10729166 - J Virol. 2000 Apr;74(8):3899-904 – reference: 10749147 - Cancer Res. 2000 Mar 15;60(6):1736-41 – reference: 23186212 - Cell Microbiol. 2013 Feb;15(2):270-84 – reference: 17301151 - J Virol. 2007 May;81(9):4895-9 – reference: 22102845 - Adv Virol. 2011 Jan 1;2011:null – reference: 15507615 - J Virol. 2004 Nov;78(22):12277-87 – reference: 15256501 - Genes Dev. 2004 Jul 15;18(14):1737-52 – reference: 17140405 - Cell Microbiol. 2007 Apr;9(4):939-51 – reference: 23940347 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14402-7 – reference: 2014240 - Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3195-9 – reference: 21981045 - Cell Microbiol. 2012 Feb;14(2):182-97 – reference: 22915810 - J Virol. 2012 Nov;86(21):11779-88 – reference: 22190013 - J Gen Virol. 2012 Apr;93(Pt 4):857-65 – reference: 18077552 - Mol Biol Cell. 2008 Feb;19(2):754-63 – reference: 21730051 - J Biol Chem. 2011 Oct 7;286(40):35119-28 – reference: 23637409 - J Virol. 2013 Jul;87(13):7777-80 – reference: 17853893 - EMBO J. 2007 Oct 3;26(19):4215-27 – reference: 9791031 - Virology. 1998 Sep 30;249(2):406-17 – reference: 8837880 - Virus Res. 1995 Dec;39(2-3):129-50 – reference: 11714958 - J Gen Virol. 2001 Dec;82(Pt 12):2839-48 – reference: 16716591 - Trends Cell Biol. 2006 Jun;16(6):317-26 – reference: 21564451 - Traffic. 2011 Sep;12(9):1211-26 – reference: 20442788 - PLoS Pathog. 2010 Apr;6(4):e1000875 – reference: 8742726 - J Struct Biol. 1996 Jan-Feb;116(1):71-6 – reference: 20805499 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16107-12 – reference: 20808767 - PLoS Negl Trop Dis. 2010;4(8):e802 – reference: 16182563 - J Struct Biol. 2005 Oct;152(1):36-51 – reference: 22315426 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4146-51 – reference: 21518163 - Traffic. 2011 Oct;12(10):1282-90 – reference: 19703557 - Biochim Biophys Acta. 2009 Oct;1792(10):1027-35 – reference: 20504928 - J Virol. 2010 Aug;84(15):7847-56 – reference: 19091859 - J Virol. 2009 Mar;83(5):2327-37 – reference: 16364736 - Virology. 2006 Jan 5;344(1):55-63 – reference: 11805336 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):955-60 – reference: 21070952 - Structure. 2010 Nov 10;18(11):1536-47 – reference: 19282983 - PLoS Pathog. 2009 Mar;5(3):e1000339 – reference: 22685410 - PLoS Pathog. 2012;8(6):e1002762 – reference: 11024108 - J Virol. 2000 Nov;74(21):9818-27 – reference: 11769008 - Methods Mol Biol. 2002;185:447-59 – reference: 22479596 - PLoS One. 2012;7(3):e34308 – reference: 21191027 - J Virol. 2011 Apr;85(7):3546-56 – reference: 14963134 - J Virol. 2004 Mar;78(5):2382-93 – reference: 22110401 - PLoS Biol. 2011 Nov;9(11):e1001196 – reference: 18063004 - Virology. 2008 Mar 15;372(2):221-32 – reference: 16680159 - Nat Chem Biol. 2006 Jun;2(6):329-37 – reference: 16628219 - EMBO J. 2006 May 17;25(10):2155-66 |
| SSID | ssj0041316 |
| Score | 2.349639 |
| Snippet | Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses.... Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses.... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1004463 |
| SubjectTerms | Actin Cytoskeleton - metabolism Animals Biology and Life Sciences Cytoskeleton DNA-Binding Proteins - metabolism Endosomal Sorting Complexes Required for Transport - metabolism Fever Health aspects Host-parasite relationships Humans Marburgvirus Medicine and Health Sciences Microscopy Mortality Nucleocapsid - metabolism Plasma Plasmids Protein Transport - physiology Proteins Ribonucleoproteins - metabolism RNA viruses Transcription Factors - metabolism Viral Proteins - metabolism Virus Release - physiology Virus research Viruses |
| SummonAdditionalLinks | – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-6Kvjit171lCiCT_W2zUfbx_O4xQUtx3nKvYU0SdeFpS2bXeEe_N-dabvVHi7iazuBdD4yvzQzvxDyNo2NxU7lsMwiF3JIQWERTU3IYpZoSIiRMGl72USS5-nlZXb2e6N47QSfJdFRr9P3TaOR7hkPINlNcitmUmIJ1-zs027lhfU4kn173L6Ro_TTsvQPa_GkWdX-b0Dzer3kHwlodv9_p_6A3OuhJj3ufOMhueGqR-ROd_nk1WPys_0Z2PU1UPwdSy_8AkKHzj3NHXYP6PUVBUxLASPS05ZqAmZGBzp0qitLzyFtQSKkdUlzpEaG1NiAg3u6rOhnjSZb0G_L9daH87bsy1l64lYr_4R8nZ1enHwM-8sYQiMZ24TGCGH41ApbOM4ZhDke2GYa8aCwzgrBtBC6FFwaDrEMYpFhmQUE6LTjlj0lk6qu3AGhABlt6RwgA6k57OwLacGaWsD6EtuEsYCwnY2U6ZnK8cKMlWqP3xLYsXQaVKhY1Ss2IOEwqumYOv4h_wHNP8giz3b7ACyo-rBVljODhPhOlgU4cpmlhomknOo0SXkRiYC8QedRyKRRYanOQm-9V_MvuTpmGXKZwfZ2r9D5SOhdL1TW8LFG9-0RoDJk6BpJHo4kYT0wo9cH6Mi7b_YqkqkAEJfxNCCvd86tcBTW11Wu3qIM4DiJ2DEgzzpnHxQTYwFyzJOAJKMwGGlu_KZafm-ZyjmWMSXs-f4pvSB3AYLyrjzykEw26617SW6bH5ulX79qw_sXjXJPFw priority: 102 providerName: Public Library of Science |
| Title | Interaction with Tsg101 Is Necessary for the Efficient Transport and Release of Nucleocapsids in Marburg Virus-Infected Cells |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25330247 https://www.proquest.com/docview/1615260910 https://pubmed.ncbi.nlm.nih.gov/PMC4199773 https://doaj.org/article/d43c2906e6fb482f98c357f0a8784b15 http://dx.doi.org/10.1371/journal.ppat.1004463 |
| Volume | 10 |
| WOSCitedRecordID | wos000344548800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: M7P dateStart: 20050901 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: 7X7 dateStart: 20050901 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: BENPR dateStart: 20050901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: PIMPY dateStart: 20050901 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELaggMTLxO8FRmUQEk9hTWzHyeOGVjEJqmgMqTxZru10lUZSNe2kPex_585OqwWB9sJLHuJLIp_Pvs_x3XeEfMhTYzFTOa6KxMUcXFA8S0YmZimTGhxiIkzui03IySSfTovyVqkvjAkL9MBBcYeWM4OU5C6rZvCqqsgNE7Ia6VzmfObTy1NAPdvNVFiDYWX2RU-xKE4sWZZ1SXNMJofdGH1aLjXSR-OBJus5Jc_dv1uhB8vLpv0b_PwzivKWWxo_IXsdnqRHoR9PyT1XPyOPQoXJ6-fkxv_xC8kLFP-50vN2DvODLlpaO0wR0KtrCsCVAhCkzvNJwIfoest5TnVtKRZWAW9Hm4rWyH8M_m8JVtzSRU1_aRyXOb1arDZtHGK7nKV4INC-ID_GJ-efv8RdxYXYZIytY2OEMHxkhZ05zhnMZTyVLTSCPmGdBXVqIXQleGY4TFgQSwwrLMA8px237CUZ1E3t9gkFXGgr58D9Z5rD9n2W2ZRlWsAiklrJWETYVuXKdHTkWBXjUvkzNgnbkqBBhQOluoGKSLx7ahnoOO6QP8bR3Mkimba_ASamOhNTd5lYRN6jLSiky6gxHmeuN22rTr9P1BErkLAM9rD_FDrrCX3shKoGOmt0lwMBKkMarp7kQU8SJr3pNe-jXW773KokywUgtYLnEXm3tVWFT2EQXe2aDcoAWMsQIEbkVbDdnWJSjDJOuYyI7Fl1T3P9lnpx4enIOcYqSfb6f6j6DXkMiJSHaMkDMlivNu4teWiu1ot2NST35VT6az4kD45PJuXZ0M97uI7Lr0MM3C2hpTz9Vv78DbZxXFg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELaggOCF37DAAIOQeMpoYjtOHse0ahVdNI2C9mY5tlMqVUnVtEh74H_nLnErgqh44S1KzpJ9tu8-5-4-E_I-jY3FSuWwzCIXcnBBYRENTchiJjU4xEiYtL1sQuZ5enWVXXhKIayF8RqEM-KibtpIPj7UlfvoNdkFTo8iJqOt8NFyqZEJGmOT7Ca5JbMoxeyu0cVka5TBVEeJr5zb17LnmVoC_52ZHmAn_oZB_0yl_M03jR78x1E9JPc9QKXHXYtH5IarHpM73ZWV10_Iz_YXYlcNQfEnLp02M9hwdNzQ3GHNgV5dU0DCFJAlPW0JKqDTdEeiTnVl6SU4O3CftC5pjoTK4FCXsC0aOq_oucaJntFv89WmCcdtspiz9MQtFs1T8nV0Oj05C_0VDqFJGFuHxghh-NAKWzjOGRgHDPNmGlGksM4KwbQQuhQ8MRwsAIhFhmUWcKPTjlv2jAwq0NMBoQA0bekc4IlEc1fERWJjlmgBVim2krGAsO30KeP5zfGajYVqg3YSzjmdBhUqVnnFBiTctVp2_B7_kP-EK2Mni-zc7QuYVOUnU1nODNLou6QsYPmXWWqYkOVQpzLlRSQC8g7XlUL-jQoTfGZ60zRq_CVXxyxDBjQ4FO8VuuwJffBCZQ2DNdoXVYDKkNerJ3nYkwQrYnqfD3BJbsfcqChJBUC_jKcBebtd9wpbYVZe5eoNygD6SxBxBuR5tw92iokxbTnmMiCyt0N6mut_qebfW35zjslPkr3Y36U35O7Z9HyiJuP880tyD0As7xIsD8lgvdq4V-S2-bGeN6vXrRX4Ba0VaAU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG-RAvfMMCAwxC8JStie04eRxjFRUjqsZAe5ksx3ZKpSqtmhZpD_zv3DlJRRATT7xVzTmKz767n-27nwl5k8bGYqVyWGaRCzmEoLCIhiZkMZMaAmIkTOovm5B5np6fZ5MdctHVwrQahDXifFH7k3z8sajcQavJA-Qrak5P9yMmo67F_nKpkQ4aDyjZW884hDtjayxAukauyyxKcW02mpx0jhrcd5S01XRXvagXrTyp_9Z1D_DD_oZL_0yv_C1eje7-557eI3daIEsPm7fcJzuuekBuNldbXj4kP_1WY1M1QXGzl57VUzBMOq5p7rA2Qa8uKSBmCgiUHnsiC-gI3ZKtU11ZegpBEcIsXZQ0R-JlCLxLMJ-azir6WeOEmNJvs9WmDsc-qcxZeuTm8_oR-To6Pjv6GLZXPYQmYWwdGiOE4UMrbOE4Z-BE8Dg404g2hXVWCKaF0KXgieHgKUAsMiyzgC-ddtyyx2RQge52CQVAakvnAHckmrsiLhIbs0QL8F6xlYwFhHVDqkzLg47XccyVP9yTsB5qNKhQz6rVc0DCbatlwwPyD_n3OFu2ssji7f-AgVbtACvLmUG6fZeUBZhJmaWGCVkOdSpTXkQiIK9xrink6agwEWiqN3Wtxl9ydcgyZEqDxfOVQqc9oXetULmAzhrdFl-AynCW9ST3epLgbUzv8S5O067PtYqSVABEzHgakFedLShshdl7lVtsUAZQYoLINCBPGtvYKibG9OaYy4DIntX0NNd_Us2-ex50jklSkj29-pNekluTDyN1Ms4_PSO3AevyJg9zjwzWq417Tm6YH-tZvXrhHcMv_313Og |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+with+Tsg101+is+necessary+for+the+efficient+transport+and+release+of+nucleocapsids+in+marburg+virus-infected+cells&rft.jtitle=PLoS+pathogens&rft.au=Olga+Dolnik&rft.au=Larissa+Kolesnikova&rft.au=Sonja+Welsch&rft.au=Thomas+Strecker&rft.date=2014-10-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=10&rft.issue=10&rft.spage=e1004463&rft_id=info:doi/10.1371%2Fjournal.ppat.1004463&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d43c2906e6fb482f98c357f0a8784b15 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |