Interaction with Tsg101 Is Necessary for the Efficient Transport and Release of Nucleocapsids in Marburg Virus-Infected Cells

Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS pathogens Ročník 10; číslo 10; s. e1004463
Hlavní autoři: Dolnik, Olga, Kolesnikova, Larissa, Welsch, Sonja, Strecker, Thomas, Schudt, Gordian, Becker, Stephan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 01.10.2014
Public Library of Science (PLoS)
Témata:
ISSN:1553-7374, 1553-7366, 1553-7374
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARV(PSAPmut)). rMARV(PSAPmut) was attenuated by up to one log compared with recombinant wild-type MARV (rMARV(wt)), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARV(PSAPmut)-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARV(wt)-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARV(wt)-infected cells and was co-transported together with nucleocapsids. In contrast, rMARV(PSAPmut) nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission.
AbstractList Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARV(PSAPmut)). rMARV(PSAPmut) was attenuated by up to one log compared with recombinant wild-type MARV (rMARV(wt)), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARV(PSAPmut)-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARV(wt)-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARV(wt)-infected cells and was co-transported together with nucleocapsids. In contrast, rMARV(PSAPmut) nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission.Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARV(PSAPmut)). rMARV(PSAPmut) was attenuated by up to one log compared with recombinant wild-type MARV (rMARV(wt)), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARV(PSAPmut)-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARV(wt)-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARV(wt)-infected cells and was co-transported together with nucleocapsids. In contrast, rMARV(PSAPmut) nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission.
Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARV(PSAPmut)). rMARV(PSAPmut) was attenuated by up to one log compared with recombinant wild-type MARV (rMARV(wt)), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARV(PSAPmut)-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARV(wt)-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARV(wt)-infected cells and was co-transported together with nucleocapsids. In contrast, rMARV(PSAPmut) nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission.
  Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARVPSAPmut). rMARVPSAPmut was attenuated by up to one log compared with recombinant wild-type MARV (rMARVwt), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARVPSAPmut-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARVwt-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARVwt-infected cells and was co-transported together with nucleocapsids. In contrast, rMARVPSAPmut nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission.
Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARVPSAPmut). rMARVPSAPmut was attenuated by up to one log compared with recombinant wild-type MARV (rMARVwt), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARVPSAPmut-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARVwt-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARVwt-infected cells and was co-transported together with nucleocapsids. In contrast, rMARVPSAPmut nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission. Marburg virus (MARV) is endemic in central Africa and causes hemorrhagic fever in humans and non-human primates, with high lethality. Presumably, the disease severity primarily depends on the response of host-cell factors interacting with viral proteins. We generated a recombinant MARV encoding an NP with a mutated PSAP late domain motif, which has previously been shown to mediate interaction with the cellular ESCRT protein Tsg101. We found that the PSAP-mediated interaction with Tsg101 was important at several steps of MARV assembly before viral fission. First, the egress of mature rMARVPSAPmut nucleocapsids from viral inclusions was inhibited. Second, actin-driven transport of rMARVPSAPmut nucleocapsids was impaired, displaying significantly shortened trajectories and reduced movement in the cell periphery. Third, rMARVPSAPmut nucleocapsids accumulated in cell periphery, and the number of filopodia-associated nucleocapsids decreased, indicating that rMARVPSAPmut nucleocapsids were defective to enter filopodia, the major budding sites of MARV. These defects resulted in the attenuated growth of rMARVPSAPmut. Interestingly, IQGAP1, an actin cytoskeleton regulator which interacts with Tsg101, was also recruited to nucleocapsids in dependence of the PSAP late domain. Thus, the interaction of NP with Tsg101 not only impacts viral budding at the plasma membrane but also nucleocapsid transport through the cytoplasm.
Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain ([rMARV.sub.PSAPmut]). [rMARV.sub.PSAPmut] was attenuated by up to one log compared with recombinant wild-type MARV ([rMARV.sub.wt]), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in [rMARV.sub.PSAPmut]-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in [rMARV.sub.wt]infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of [rMARV.sub.wt]-infected cells and was co-transported together with nucleocapsids. In contrast, [rMARV.sub.PSAPmut] nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission.
Audience Academic
Author Kolesnikova, Larissa
Strecker, Thomas
Schudt, Gordian
Welsch, Sonja
Dolnik, Olga
Becker, Stephan
AuthorAffiliation Mount Sinai School of Medicine, United States of America
2 EMBL Structural and Computational Biology Unit, Heidelberg, Germany
1 Institut für Virologie, Philipps Universität Marburg, Marburg, Germany
3 DZIF, Deutsches Zentrum für Infektionsforschung, Marburg, Germany
AuthorAffiliation_xml – name: 3 DZIF, Deutsches Zentrum für Infektionsforschung, Marburg, Germany
– name: Mount Sinai School of Medicine, United States of America
– name: 1 Institut für Virologie, Philipps Universität Marburg, Marburg, Germany
– name: 2 EMBL Structural and Computational Biology Unit, Heidelberg, Germany
Author_xml – sequence: 1
  givenname: Olga
  surname: Dolnik
  fullname: Dolnik, Olga
– sequence: 2
  givenname: Larissa
  surname: Kolesnikova
  fullname: Kolesnikova, Larissa
– sequence: 3
  givenname: Sonja
  surname: Welsch
  fullname: Welsch, Sonja
– sequence: 4
  givenname: Thomas
  surname: Strecker
  fullname: Strecker, Thomas
– sequence: 5
  givenname: Gordian
  surname: Schudt
  fullname: Schudt, Gordian
– sequence: 6
  givenname: Stephan
  surname: Becker
  fullname: Becker, Stephan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25330247$$D View this record in MEDLINE/PubMed
BookMark eNqVkl2LEzEUhgdZcT_0H4gGvNGL1mTyMTN7ISzLqoW1wlq9DWly0qZMk5pk_Ljwv5varmxFBJmLDMlz3pzz5j2tjnzwUFWPCR4T2pCXqzBEr_rxZqPymGDMmKD3qhPCOR01tGFHd_6Pq9OUVoUhlIgH1XHNKcU1a06qHxOfISqdXfDoq8tLNEsLggmaJDQFDSmp-B3ZEFFeArqy1mkHPqNZVD5tQsxIeYNuoAeVAAWLpoPuIWi1Sc4k5Dx6p-J8iAv0ycUhjSbegs5g0CX0fXpY3beqT_Bov55VH19fzS7fjq7fv5lcXlyPtKA0j7TmXDNsuJkDY7RtcN0J1inBheAGTBlTca4sZ0KzOcYFI5p2RnAMCpihZ9XTne6mD0nunUuSiJbXjHWsLcRkR5igVnIT3brMLYNy8tdGiAupYnZlNmkY1XWHBQg7Z21tu1ZT3lis2qZlc8KL1qv9bcN8DUYXv6LqD0QPT7xbykX4IhnpuqahReD5XiCGzwOkLNcu6WKY8hCGbd-E1wJ3BBf02Q5dqNKa8zYURb3F5QXtyoPXNesKNf4LVT4Da6dLrqwr-wcFLw4KCpPhW16oISU5-XDzH-z0kH1y15rfntwGsgDnO0DHkFIEK7XLapvO0rHrJcFym_7bN5Tb9Mt9-ksx-6P4Vv-fZT8BRVoJ4w
CitedBy_id crossref_primary_10_3390_ijms241713104
crossref_primary_10_1093_infdis_jiv083
crossref_primary_10_1007_s00203_025_04277_4
crossref_primary_10_1128_JVI_01850_18
crossref_primary_10_1371_journal_ppat_1012103
crossref_primary_10_3390_pathogens11010056
crossref_primary_10_1002_jmv_28834
crossref_primary_10_3390_cells9071728
crossref_primary_10_1074_jbc_M116_752121
crossref_primary_10_3389_fmicb_2023_1261651
crossref_primary_10_1128_JVI_01282_17
crossref_primary_10_12688_f1000research_17573_1
crossref_primary_10_2174_0122113525341920241015041123
crossref_primary_10_3389_fmicb_2015_00517
crossref_primary_10_1128_jvi_01047_24
crossref_primary_10_3390_v11030275
crossref_primary_10_3390_v11010025
crossref_primary_10_1038_s41416_020_0970_z
crossref_primary_10_1016_j_jmb_2019_06_029
crossref_primary_10_1371_journal_ppat_1010616
crossref_primary_10_3390_v14030478
crossref_primary_10_1007_s12104_023_10119_5
crossref_primary_10_1038_s41467_024_54431_7
crossref_primary_10_1128_JVI_02670_15
crossref_primary_10_1371_journal_ppat_1007047
crossref_primary_10_15252_embj_2022110780
crossref_primary_10_1128_jvi_00005_22
crossref_primary_10_3390_v15020554
crossref_primary_10_1093_infdis_jiy424
crossref_primary_10_1016_j_antiviral_2022_105426
crossref_primary_10_3390_cells10061460
crossref_primary_10_1016_j_antiviral_2017_12_022
crossref_primary_10_1016_j_antiviral_2023_105786
crossref_primary_10_1128_JVI_02170_19
crossref_primary_10_1016_j_ejcb_2015_05_006
crossref_primary_10_1128_jvi_01899_23
crossref_primary_10_1371_journal_ppat_1005960
crossref_primary_10_1016_j_jhep_2016_06_028
crossref_primary_10_1128_mbio_01557_25
crossref_primary_10_3390_v8060178
crossref_primary_10_1016_j_heliyon_2023_e19613
crossref_primary_10_1371_journal_pntd_0004456
crossref_primary_10_15252_embr_201439834
Cites_doi 10.1074/jbc.M111.258772
10.1091/mbc.E07-09-0957
10.1016/j.virol.2010.12.060
10.1371/journal.pone.0032030
10.1128/JVI.74.8.3899-3904.2000
10.1038/sj.embor.7401089
10.1371/journal.pntd.0000802
10.1006/viro.1998.9328
10.1016/j.tcb.2006.04.004
10.1016/j.virol.2007.11.008
10.1128/JVI.02829-06
10.1016/j.tibs.2010.10.002
10.1371/journal.pone.0034308
10.1016/j.febslet.2007.03.060
10.1101/gad.294904
10.1111/cmi.12076
10.1083/jcb.200503059
10.1073/pnas.88.8.3195
10.1016/j.virol.2005.09.044
10.1042/BST0370195
10.1099/0022-1317-82-12-2839
10.1128/JVI.02045-10
10.1128/JVI.01525-12
10.1111/j.1462-5822.2011.01709.x
10.1073/pnas.1009471107
10.1111/j.1600-0854.2011.01220.x
10.4161/hv.7.6.15398
10.1038/ncb1544
10.1073/pnas.1200448109
10.1007/s00018-007-7406-2
10.1128/JVI.00476-10
10.1038/sj.emboj.7601850
10.1371/journal.ppat.1002762
10.1016/B978-012465330-6/50003-8
10.1016/j.str.2010.08.010
10.1016/0168-1702(95)00080-1
10.1083/jcb.30.1.23
10.1128/JVI.00470-13
10.1099/vir.0.015495-0
10.1016/j.chom.2013.08.012
10.1128/JVI.78.5.2382-2393.2004
10.1038/nchembio790
10.1128/JVI.74.21.9818-9827.2000
10.1128/JVI.78.22.12277-12287.2004
10.1128/JVI.00889-08
10.1091/mbc.E06-09-0787
10.1016/j.jsb.2005.07.007
10.1371/journal.pbio.1001196
10.1074/jbc.M109535200
10.1111/j.1600-0854.2011.01208.x
10.1006/jsbi.1996.0013
10.1016/j.bbadis.2009.08.009
10.1128/JVI.72.11.8756-8764.1998
10.1128/JVI.02184-08
10.1073/pnas.1307681110
10.1111/j.1462-5822.2006.00842.x
10.1371/journal.ppat.1000875
10.1371/journal.ppat.1000339
10.1038/sj.emboj.7601097
10.1073/pnas.032511899
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Dolnik et al 2014 Dolnik et al
2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Dolnik O, Kolesnikova L, Welsch S, Strecker T, Schudt G, Becker S (2014) Interaction with Tsg101 Is Necessary for the Efficient Transport and Release of Nucleocapsids in Marburg Virus-Infected Cells. PLoS Pathog 10(10): e1004463. doi:10.1371/journal.ppat.1004463
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Dolnik et al 2014 Dolnik et al
– notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Dolnik O, Kolesnikova L, Welsch S, Strecker T, Schudt G, Becker S (2014) Interaction with Tsg101 Is Necessary for the Efficient Transport and Release of Nucleocapsids in Marburg Virus-Infected Cells. PLoS Pathog 10(10): e1004463. doi:10.1371/journal.ppat.1004463
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1004463
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Science in Context
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Marburg Virus NP Late Domain Phenotype
EISSN 1553-7374
ExternalDocumentID 1685244948
oai_doaj_org_article_d43c2906e6fb482f98c357f0a8784b15
PMC4199773
A390412249
25330247
10_1371_journal_ppat_1004463
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PV9
RIG
RZL
WOQ
7X8
PUEGO
5PM
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c633t-cc55c40d5dbe44387029649a65665ded553a55af546c4b00dbe1c39d650eae4d3
IEDL.DBID DOA
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344548800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7374
1553-7366
IngestDate Fri Nov 26 17:14:16 EST 2021
Fri Oct 03 12:50:42 EDT 2025
Tue Nov 04 02:00:48 EST 2025
Thu Sep 04 18:51:23 EDT 2025
Tue Nov 11 10:38:55 EST 2025
Tue Nov 04 17:34:10 EST 2025
Thu Nov 13 15:45:54 EST 2025
Thu Nov 13 15:20:33 EST 2025
Mon Jul 21 06:07:08 EDT 2025
Sat Nov 29 03:58:02 EST 2025
Tue Nov 18 22:13:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-cc55c40d5dbe44387029649a65665ded553a55af546c4b00dbe1c39d650eae4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
Conceived and designed the experiments: OD LK SW SB. Performed the experiments: OD LK SW. Analyzed the data: OD LK SW SB. Contributed reagents/materials/analysis tools: OD LK SW SB TS GS. Wrote the paper: OD LK SW SB TS.
OpenAccessLink https://doaj.org/article/d43c2906e6fb482f98c357f0a8784b15
PMID 25330247
PQID 1615260910
PQPubID 23479
ParticipantIDs plos_journals_1685244948
doaj_primary_oai_doaj_org_article_d43c2906e6fb482f98c357f0a8784b15
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4199773
proquest_miscellaneous_1615260910
gale_infotracmisc_A390412249
gale_infotracacademiconefile_A390412249
gale_incontextgauss_ISR_A390412249
gale_incontextgauss_ISN_A390412249
pubmed_primary_25330247
crossref_citationtrail_10_1371_journal_ppat_1004463
crossref_primary_10_1371_journal_ppat_1004463
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References I Amit (ref10) 2004; 18
O Dolnik (ref31) 2010; 84
DP Gladue (ref48) 2011; 412
J Leung (ref49) 2006; 25
JR Kremer (ref64) 1996; 116
A Aggarwal (ref43) 2012; 8
MJ Lehmann (ref44) 2005; 170
CR Morris (ref32) 2012; 7
A Pelikan-Conchaudron (ref47) 2011; 286
DT Brandt (ref46) 2007; 8
E Morita (ref8) 2007; 26
ref16
NM Sherer (ref45) 2007; 9
L Obiang (ref40) 2011
SC Mateer (ref58) 2002; 277
NE Davey (ref57) 2011; 36
DG Demirov (ref55) 2002; 99
T Slagsvold (ref1) 2006; 16
HR Jayakar (ref39) 2000; 74
S Urata (ref53); 91
X Ren (ref52) 2011; 12
Y Liu (ref51) 2011; 2011
HG Gottlinger (ref38) 1991; 88
L Kolesnikova (ref29) 2009; 83
ER Weibel (ref65) 1966; 30
TA Bharat (ref18) 2011; 9
E Mühlberger (ref19) 1998; 72
L Kolesnikova (ref25) 2004; 78
V Krahling (ref60) 2010; 4
V Dussupt (ref37) 2009; 5
J Votteler (ref5) 2013; 14
SB Bradfute (ref17) 2011; 7
G Schudt (ref26) 2013; 110
H Feldmann (ref20) 2001; 82
T Hoenen (ref23) 2012; 86
J Lu (ref50) 2013; 87
L Malerod (ref15) 2011; 12
S Welsch (ref28) 2010; 6
JF Nabhan (ref59) 2012; 109
JG Carlton (ref3) 2009; 37
DN Mastronarde (ref63) 2005; 152
L Kolesnikova (ref42) 2012; 14
YJ Im (ref56) 2010; 18
TW Geisbert (ref21) 1995; 39
BY Kim (ref13) 2007; 18
S Urata (ref30) 2007; 81
L Kolesnikova (ref22) 2000; 74
E Mittler (ref33) 2013; 15
BJ Chen (ref4) 2008; 372
S Welsch (ref6) 2007; 581
C Wirblich (ref41) 2008; 82
CP Horgan (ref7) 2012; 7
L Kolesnikova (ref62) 2004; 78
GH Feng (ref11) 2000; 60
L Kolesnikova (ref27) 2007; 9
ML MacDonald (ref36) 2006; 2
S Rauch (ref54) 2011; 85
C Tu (ref9) 2010; 107
S Becker (ref34) 1998; 249
B McDonald (ref14) 2008; 19
J Jiao (ref12) 2009; 1792
O Dolnik (ref24) 2008; 65
I Remy (ref35) 2002; 185
PD Bieniasz (ref2) 2006; 344
ref61
19091859 - J Virol. 2009 Mar;83(5):2327-37
9765419 - J Virol. 1998 Nov;72(11):8756-64
15507615 - J Virol. 2004 Nov;78(22):12277-87
17434167 - FEBS Lett. 2007 May 22;581(11):2089-97
15256501 - Genes Dev. 2004 Jul 15;18(14):1737-52
22102845 - Adv Virol. 2011 Jan 1;2011:null
11024108 - J Virol. 2000 Nov;74(21):9818-27
11809768 - J Biol Chem. 2002 Apr 5;277(14):12324-33
21146412 - Trends Biochem Sci. 2011 Mar;36(3):159-69
16680159 - Nat Chem Biol. 2006 Jun;2(6):329-37
11805336 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):955-60
21070952 - Structure. 2010 Nov 10;18(11):1536-47
17301151 - J Virol. 2007 May;81(9):4895-9
11769008 - Methods Mol Biol. 2002;185:447-59
21191027 - J Virol. 2011 Apr;85(7):3546-56
19703557 - Biochim Biophys Acta. 2009 Oct;1792(10):1027-35
19282983 - PLoS Pathog. 2009 Mar;5(3):e1000339
21564451 - Traffic. 2011 Sep;12(9):1211-26
18063004 - Virology. 2008 Mar 15;372(2):221-32
14963134 - J Virol. 2004 Mar;78(5):2382-93
20805499 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16107-12
20504928 - J Virol. 2010 Aug;84(15):7847-56
17140405 - Cell Microbiol. 2007 Apr;9(4):939-51
9791031 - Virology. 1998 Sep 30;249(2):406-17
8742726 - J Struct Biol. 1996 Jan-Feb;116(1):71-6
10749147 - Cancer Res. 2000 Mar 15;60(6):1736-41
21981045 - Cell Microbiol. 2012 Feb;14(2):182-97
18667490 - J Virol. 2008 Oct;82(19):9730-8
23940347 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14402-7
16628219 - EMBO J. 2006 May 17;25(10):2155-66
23186212 - Cell Microbiol. 2013 Feb;15(2):270-84
17293854 - Nat Cell Biol. 2007 Mar;9(3):310-5
22915810 - J Virol. 2012 Nov;86(21):11779-88
21262517 - Virology. 2011 Mar 30;412(1):68-74
21730051 - J Biol Chem. 2011 Oct 7;286(40):35119-28
17229889 - Mol Biol Cell. 2007 Apr;18(4):1129-42
16364736 - Virology. 2006 Jan 5;344(1):55-63
22315426 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4146-51
8837880 - Virus Res. 1995 Dec;39(2-3):129-50
16182563 - J Struct Biol. 2005 Oct;152(1):36-51
16716591 - Trends Cell Biol. 2006 Jun;16(6):317-26
20808767 - PLoS Negl Trop Dis. 2010;4(8):e802
22190013 - J Gen Virol. 2012 Apr;93(Pt 4):857-65
5338131 - J Cell Biol. 1966 Jul;30(1):23-38
17853893 - EMBO J. 2007 Oct 3;26(19):4215-27
17972901 - EMBO Rep. 2007 Nov;8(11):1019-23
20442788 - PLoS Pathog. 2010 Apr;6(4):e1000875
2014240 - Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3195-9
22110401 - PLoS Biol. 2011 Nov;9(11):e1001196
18158582 - Cell Mol Life Sci. 2008 Mar;65(5):756-76
21519188 - Hum Vaccin. 2011 Jun;7(6):701-11
23637409 - J Virol. 2013 Jul;87(13):7777-80
22479596 - PLoS One. 2012;7(3):e34308
22685410 - PLoS Pathog. 2012;8(6):e1002762
10729166 - J Virol. 2000 Apr;74(8):3899-904
16027225 - J Cell Biol. 2005 Jul 18;170(2):317-25
18077552 - Mol Biol Cell. 2008 Feb;19(2):754-63
11714958 - J Gen Virol. 2001 Dec;82(Pt 12):2839-48
21518163 - Traffic. 2011 Oct;12(10):1282-90
19143630 - Biochem Soc Trans. 2009 Feb;37(Pt 1):195-9
24034610 - Cell Host Microbe. 2013 Sep 11;14(3):232-41
22348143 - PLoS One. 2012;7(2):e32030
19812267 - J Gen Virol. 2010 Jan;91(Pt 1):228-34
References_xml – volume: 286
  start-page: 35119
  year: 2011
  ident: ref47
  article-title: The IQGAP1 protein is a calmodulin-regulated barbed end capper of actin filaments: possible implications in its function in cell migration
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.258772
– volume: 19
  start-page: 754
  year: 2008
  ident: ref14
  article-title: Regulation of Tsg101 expression by the steadiness box: a role of Tsg101-associated ligase
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E07-09-0957
– volume: 2011
  year: 2011
  ident: ref51
  article-title: Bimolecular Complementation to Visualize Filovirus VP40-Host Complexes in Live Mammalian Cells: Toward the Identification of Budding Inhibitors
  publication-title: Adv Virol
– volume: 412
  start-page: 68
  year: 2011
  ident: ref48
  article-title: Interaction between Core protein of classical swine fever virus with cellular IQGAP1 protein appears essential for virulence in swine
  publication-title: Virology
  doi: 10.1016/j.virol.2010.12.060
– volume: 7
  start-page: e32030
  year: 2012
  ident: ref7
  article-title: Tumor susceptibility gene 101 (TSG101) is a novel binding-partner for the class II Rab11-FIPs
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0032030
– volume: 74
  start-page: 3899
  year: 2000
  ident: ref22
  article-title: Ultrastructural organization of recombinant Marburg virus nucleoprotein: comparison with Marburg virus inclusions
  publication-title: J Virol
  doi: 10.1128/JVI.74.8.3899-3904.2000
– volume: 8
  start-page: 1019
  year: 2007
  ident: ref46
  article-title: Get to grips: steering local actin dynamics with IQGAPs
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7401089
– volume: 4
  start-page: e802
  year: 2010
  ident: ref60
  article-title: Establishment of fruit bat cells (Rousettus aegyptiacus) as a model system for the investigation of filoviral infection
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0000802
– volume: 249
  start-page: 406
  year: 1998
  ident: ref34
  article-title: Interactions of Marburg virus nucleocapsid proteins
  publication-title: Virology
  doi: 10.1006/viro.1998.9328
– volume: 16
  start-page: 317
  year: 2006
  ident: ref1
  article-title: Endosomal and non-endosomal functions of ESCRT proteins
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2006.04.004
– volume: 372
  start-page: 221
  year: 2008
  ident: ref4
  article-title: Mechanisms for enveloped virus budding: can some viruses do without an ESCRT?
  publication-title: Virology
  doi: 10.1016/j.virol.2007.11.008
– volume: 81
  start-page: 4895
  year: 2007
  ident: ref30
  article-title: Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP
  publication-title: J Virol
  doi: 10.1128/JVI.02829-06
– volume: 36
  start-page: 159
  year: 2011
  ident: ref57
  article-title: How viruses hijack cell regulation
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2010.10.002
– volume: 7
  start-page: e34308
  year: 2012
  ident: ref32
  article-title: A knockout of the Tsg101 gene leads to decreased expression of ErbB receptor tyrosine kinases and induction of autophagy prior to cell death
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0034308
– volume: 581
  start-page: 2089
  year: 2007
  ident: ref6
  article-title: More than one door - Budding of enveloped viruses through cellular membranes
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2007.03.060
– volume: 18
  start-page: 1737
  year: 2004
  ident: ref10
  article-title: Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding
  publication-title: Genes Dev
  doi: 10.1101/gad.294904
– volume: 15
  start-page: 270
  year: 2013
  ident: ref33
  article-title: Assembly of the Marburg virus envelope
  publication-title: Cell Microbiol
  doi: 10.1111/cmi.12076
– volume: 170
  start-page: 317
  year: 2005
  ident: ref44
  article-title: Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200503059
– volume: 88
  start-page: 3195
  year: 1991
  ident: ref38
  article-title: Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.88.8.3195
– volume: 344
  start-page: 55
  year: 2006
  ident: ref2
  article-title: Late budding domains and host proteins in enveloped virus release
  publication-title: Virology
  doi: 10.1016/j.virol.2005.09.044
– volume: 37
  start-page: 195
  year: 2009
  ident: ref3
  article-title: The ESCRT machinery: new functions in viral and cellular biology
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST0370195
– volume: 82
  start-page: 2839
  year: 2001
  ident: ref20
  article-title: Biosynthesis and role of filoviral glycoproteins
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-82-12-2839
– volume: 85
  start-page: 3546
  year: 2011
  ident: ref54
  article-title: Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding
  publication-title: J Virol
  doi: 10.1128/JVI.02045-10
– volume: 86
  start-page: 11779
  year: 2012
  ident: ref23
  article-title: Inclusion bodies are a site of ebolavirus replication
  publication-title: J Virol
  doi: 10.1128/JVI.01525-12
– volume: 14
  start-page: 182
  year: 2012
  ident: ref42
  article-title: Phosphorylation of Marburg virus matrix protein VP40 triggers assembly of nucleocapsids with the viral envelope at the plasma membrane
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2011.01709.x
– volume: 107
  start-page: 16107
  year: 2010
  ident: ref9
  article-title: Endosomal-sorting complexes required for transport (ESCRT) pathway-dependent endosomal traffic regulates the localization of active Src at focal adhesions
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1009471107
– volume: 12
  start-page: 1211
  year: 2011
  ident: ref15
  article-title: Cargo-dependent degradation of ESCRT-I as a feedback mechanism to modulate endosomal sorting
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2011.01220.x
– volume: 7
  start-page: 701
  year: 2011
  ident: ref17
  article-title: Filovirus vaccines
  publication-title: Hum Vaccin
  doi: 10.4161/hv.7.6.15398
– volume: 9
  start-page: 310
  year: 2007
  ident: ref45
  article-title: Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1544
– volume: 109
  start-page: 4146
  year: 2012
  ident: ref59
  article-title: Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1200448109
– volume: 65
  start-page: 756
  year: 2008
  ident: ref24
  article-title: Filoviruses: Interactions with the host cell
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-007-7406-2
– volume: 84
  start-page: 7847
  year: 2010
  ident: ref31
  article-title: Tsg101 is recruited by a late domain of the nucleocapsid protein to support budding of Marburg virus-like particles
  publication-title: J Virol
  doi: 10.1128/JVI.00476-10
– volume: 26
  start-page: 4215
  year: 2007
  ident: ref8
  article-title: Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601850
– volume: 8
  start-page: e1002762
  year: 2012
  ident: ref43
  article-title: Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002762
– ident: ref61
  doi: 10.1016/B978-012465330-6/50003-8
– volume: 185
  start-page: 447
  year: 2002
  ident: ref35
  article-title: Detection and visualization of protein interactions with protein fragment complementation assays
  publication-title: Methods Mol Biol
– volume: 18
  start-page: 1536
  year: 2010
  ident: ref56
  article-title: Crystallographic and functional analysis of the ESCRT-I/HIV-1 Gag PTAP interaction
  publication-title: Structure
  doi: 10.1016/j.str.2010.08.010
– volume: 39
  start-page: 129
  year: 1995
  ident: ref21
  article-title: Differentiation of filoviruses by electron microscopy
  publication-title: Virus Res
  doi: 10.1016/0168-1702(95)00080-1
– volume: 30
  start-page: 23
  year: 1966
  ident: ref65
  article-title: Practical stereological methods for morphometric cytology
  publication-title: J Cell Biol
  doi: 10.1083/jcb.30.1.23
– ident: ref16
– volume: 87
  start-page: 7777
  year: 2013
  ident: ref50
  article-title: Host IQGAP1 and Ebola virus VP40 interactions facilitate virus-like particle egress
  publication-title: J Virol
  doi: 10.1128/JVI.00470-13
– volume: 91
  start-page: 228
  ident: ref53
  article-title: Regulation of Marburg virus (MARV) budding by Nedd4.1: a different WW domain of Nedd4.1 is critical for binding to MARV and Ebola virus VP40
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.015495-0
– volume: 14
  start-page: 232
  year: 2013
  ident: ref5
  article-title: Virus budding and the ESCRT pathway
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.08.012
– volume: 78
  start-page: 2382
  year: 2004
  ident: ref62
  article-title: The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway
  publication-title: J Virol
  doi: 10.1128/JVI.78.5.2382-2393.2004
– volume: 2
  start-page: 329
  year: 2006
  ident: ref36
  article-title: Identifying off-target effects and hidden phenotypes of drugs in human cells
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio790
– volume: 74
  start-page: 9818
  year: 2000
  ident: ref39
  article-title: Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release
  publication-title: J Virol
  doi: 10.1128/JVI.74.21.9818-9827.2000
– volume: 78
  start-page: 12277
  year: 2004
  ident: ref25
  article-title: Multivesicular bodies as a platform for formation of the Marburg virus envelope
  publication-title: J Virol
  doi: 10.1128/JVI.78.22.12277-12287.2004
– year: 2011
  ident: ref40
  article-title: Phenotypes of vesicular stomatitis virus mutants with mutations in the PSAP motif of the matrix protein
  publication-title: J Gen Virol
– volume: 82
  start-page: 9730
  year: 2008
  ident: ref41
  article-title: PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity
  publication-title: J Virol
  doi: 10.1128/JVI.00889-08
– volume: 18
  start-page: 1129
  year: 2007
  ident: ref13
  article-title: Spongiform neurodegeneration-associated E3 ligase Mahogunin ubiquitylates TSG101 and regulates endosomal trafficking
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E06-09-0787
– volume: 152
  start-page: 36
  year: 2005
  ident: ref63
  article-title: Automated electron microscope tomography using robust prediction of specimen movements
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2005.07.007
– volume: 9
  start-page: e1001196
  year: 2011
  ident: ref18
  article-title: Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001196
– volume: 277
  start-page: 12324
  year: 2002
  ident: ref58
  article-title: The mechanism for regulation of the F-actin binding activity of IQGAP1 by calcium/calmodulin
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109535200
– volume: 12
  start-page: 1282
  year: 2011
  ident: ref52
  article-title: Proline-rich regions and motifs in trafficking: from ESCRT interaction to viral exploitation
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2011.01208.x
– volume: 116
  start-page: 71
  year: 1996
  ident: ref64
  article-title: Computer visualization of three-dimensional image data using IMOD
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.1996.0013
– volume: 1792
  start-page: 1027
  year: 2009
  ident: ref12
  article-title: Abnormal regulation of TSG101 in mice with spongiform neurodegeneration
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbadis.2009.08.009
– volume: 72
  start-page: 8756
  year: 1998
  ident: ref19
  article-title: Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes
  publication-title: J Virol
  doi: 10.1128/JVI.72.11.8756-8764.1998
– volume: 83
  start-page: 2327
  year: 2009
  ident: ref29
  article-title: Vacuolar protein sorting pathway contributes to the release of Marburg virus
  publication-title: J Virol
  doi: 10.1128/JVI.02184-08
– volume: 110
  start-page: 14402
  year: 2013
  ident: ref26
  article-title: Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1307681110
– volume: 9
  start-page: 939
  year: 2007
  ident: ref27
  article-title: Budding of Marburgvirus is associated with filopodia
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2006.00842.x
– volume: 6
  start-page: e1000875
  year: 2010
  ident: ref28
  article-title: Electron tomography reveals the steps in filovirus budding
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000875
– volume: 5
  start-page: e1000339
  year: 2009
  ident: ref37
  article-title: The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000339
– volume: 25
  start-page: 2155
  year: 2006
  ident: ref49
  article-title: Interaction of Moloney murine leukemia virus matrix protein with IQGAP
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601097
– volume: 60
  start-page: 1736
  year: 2000
  ident: ref11
  article-title: TSG101 protein steady-state level is regulated posttranslationally by an evolutionarily conserved COOH-terminal sequence
  publication-title: Cancer Res
– volume: 99
  start-page: 955
  year: 2002
  ident: ref55
  article-title: Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.032511899
– reference: 19143630 - Biochem Soc Trans. 2009 Feb;37(Pt 1):195-9
– reference: 5338131 - J Cell Biol. 1966 Jul;30(1):23-38
– reference: 9765419 - J Virol. 1998 Nov;72(11):8756-64
– reference: 17972901 - EMBO Rep. 2007 Nov;8(11):1019-23
– reference: 11809768 - J Biol Chem. 2002 Apr 5;277(14):12324-33
– reference: 18667490 - J Virol. 2008 Oct;82(19):9730-8
– reference: 17293854 - Nat Cell Biol. 2007 Mar;9(3):310-5
– reference: 21519188 - Hum Vaccin. 2011 Jun;7(6):701-11
– reference: 22348143 - PLoS One. 2012;7(2):e32030
– reference: 21262517 - Virology. 2011 Mar 30;412(1):68-74
– reference: 19812267 - J Gen Virol. 2010 Jan;91(Pt 1):228-34
– reference: 16027225 - J Cell Biol. 2005 Jul 18;170(2):317-25
– reference: 24034610 - Cell Host Microbe. 2013 Sep 11;14(3):232-41
– reference: 18158582 - Cell Mol Life Sci. 2008 Mar;65(5):756-76
– reference: 17229889 - Mol Biol Cell. 2007 Apr;18(4):1129-42
– reference: 17434167 - FEBS Lett. 2007 May 22;581(11):2089-97
– reference: 21146412 - Trends Biochem Sci. 2011 Mar;36(3):159-69
– reference: 10729166 - J Virol. 2000 Apr;74(8):3899-904
– reference: 10749147 - Cancer Res. 2000 Mar 15;60(6):1736-41
– reference: 23186212 - Cell Microbiol. 2013 Feb;15(2):270-84
– reference: 17301151 - J Virol. 2007 May;81(9):4895-9
– reference: 22102845 - Adv Virol. 2011 Jan 1;2011:null
– reference: 15507615 - J Virol. 2004 Nov;78(22):12277-87
– reference: 15256501 - Genes Dev. 2004 Jul 15;18(14):1737-52
– reference: 17140405 - Cell Microbiol. 2007 Apr;9(4):939-51
– reference: 23940347 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14402-7
– reference: 2014240 - Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3195-9
– reference: 21981045 - Cell Microbiol. 2012 Feb;14(2):182-97
– reference: 22915810 - J Virol. 2012 Nov;86(21):11779-88
– reference: 22190013 - J Gen Virol. 2012 Apr;93(Pt 4):857-65
– reference: 18077552 - Mol Biol Cell. 2008 Feb;19(2):754-63
– reference: 21730051 - J Biol Chem. 2011 Oct 7;286(40):35119-28
– reference: 23637409 - J Virol. 2013 Jul;87(13):7777-80
– reference: 17853893 - EMBO J. 2007 Oct 3;26(19):4215-27
– reference: 9791031 - Virology. 1998 Sep 30;249(2):406-17
– reference: 8837880 - Virus Res. 1995 Dec;39(2-3):129-50
– reference: 11714958 - J Gen Virol. 2001 Dec;82(Pt 12):2839-48
– reference: 16716591 - Trends Cell Biol. 2006 Jun;16(6):317-26
– reference: 21564451 - Traffic. 2011 Sep;12(9):1211-26
– reference: 20442788 - PLoS Pathog. 2010 Apr;6(4):e1000875
– reference: 8742726 - J Struct Biol. 1996 Jan-Feb;116(1):71-6
– reference: 20805499 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16107-12
– reference: 20808767 - PLoS Negl Trop Dis. 2010;4(8):e802
– reference: 16182563 - J Struct Biol. 2005 Oct;152(1):36-51
– reference: 22315426 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4146-51
– reference: 21518163 - Traffic. 2011 Oct;12(10):1282-90
– reference: 19703557 - Biochim Biophys Acta. 2009 Oct;1792(10):1027-35
– reference: 20504928 - J Virol. 2010 Aug;84(15):7847-56
– reference: 19091859 - J Virol. 2009 Mar;83(5):2327-37
– reference: 16364736 - Virology. 2006 Jan 5;344(1):55-63
– reference: 11805336 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):955-60
– reference: 21070952 - Structure. 2010 Nov 10;18(11):1536-47
– reference: 19282983 - PLoS Pathog. 2009 Mar;5(3):e1000339
– reference: 22685410 - PLoS Pathog. 2012;8(6):e1002762
– reference: 11024108 - J Virol. 2000 Nov;74(21):9818-27
– reference: 11769008 - Methods Mol Biol. 2002;185:447-59
– reference: 22479596 - PLoS One. 2012;7(3):e34308
– reference: 21191027 - J Virol. 2011 Apr;85(7):3546-56
– reference: 14963134 - J Virol. 2004 Mar;78(5):2382-93
– reference: 22110401 - PLoS Biol. 2011 Nov;9(11):e1001196
– reference: 18063004 - Virology. 2008 Mar 15;372(2):221-32
– reference: 16680159 - Nat Chem Biol. 2006 Jun;2(6):329-37
– reference: 16628219 - EMBO J. 2006 May 17;25(10):2155-66
SSID ssj0041316
Score 2.349639
Snippet Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses....
  Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses....
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1004463
SubjectTerms Actin Cytoskeleton - metabolism
Animals
Biology and Life Sciences
Cytoskeleton
DNA-Binding Proteins - metabolism
Endosomal Sorting Complexes Required for Transport - metabolism
Fever
Health aspects
Host-parasite relationships
Humans
Marburgvirus
Medicine and Health Sciences
Microscopy
Mortality
Nucleocapsid - metabolism
Plasma
Plasmids
Protein Transport - physiology
Proteins
Ribonucleoproteins - metabolism
RNA viruses
Transcription Factors - metabolism
Viral Proteins - metabolism
Virus Release - physiology
Virus research
Viruses
SummonAdditionalLinks – databaseName: Public Library of Science
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA66Kvjib73qKVEEn6rbJmnax_O4xYWzHOcp9xbSJF0XlrZsdoV78H93pu1We7iIr-2EppOZzJfM5AshbxMWCZmZNCwE7lZFjoeaJywsRex0Zl1RmpZn9lTmeXp5mZ39Xihey-AzGX3odfq-aTTSPWMCkt0kt2KWJFjCNTs73c28MB9HSX88bl_LUfhpWfqHuXjSrGr_N6B5vV7yjwA0u_-_XX9A7vVQkx51tvGQ3HDVI3Knu3zy6jH52W4GducaKG7H0gu_ANehc09zh6cH9PqKAqalgBHpSUs1AT2jAx061ZWl5xC2IBDSuqQ5UiNDaGzAwD1dVvSzxiFb0G_L9daH87bsy1l67FYr_4R8nZ1cHH8K-8sYQpMwtgmNEcLwqRW2cJwzcHNM2GYa8aCwzgrBtBC6FDwxHHwZxCLDMgsI0GnHLXtKJlVduQNCrXOYXoxkMbUcPl0wIaXTutCFY_CRgLDdGCnTM5XjhRkr1abfJKxYOg0qVKzqFRuQcGjVdEwd_5D_iMM_yCLPdvsARlD1bqssZwYJ8V1SFjyNyyw10NlyqlOZ8iISAXmDxqOQSaPCUp2F3nqv5l9ydcQy5DKD5e1eofOR0LteqKzhZ43uj0eAypChayR5OJKE-cCMXh-gIe_-2asoSQWAuIynAXm9M26FrbC-rnL1FmUAxyWIHQPyrDP2QTExFiDHXAZEjtxgpLnxm2r5vWUq51jGJNnz_V16Qe4CBOVdeeQhmWzWW_eS3DY_Nku_ftW69y881lEG
  priority: 102
  providerName: Public Library of Science
Title Interaction with Tsg101 Is Necessary for the Efficient Transport and Release of Nucleocapsids in Marburg Virus-Infected Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/25330247
https://www.proquest.com/docview/1615260910
https://pubmed.ncbi.nlm.nih.gov/PMC4199773
https://doaj.org/article/d43c2906e6fb482f98c357f0a8784b15
http://dx.doi.org/10.1371/journal.ppat.1004463
Volume 10
WOSCitedRecordID wos000344548800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: BENPR
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: M7P
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: 7X7
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: PIMPY
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLaggMRl4vcyRmUQEqewJrbj5LihVUwaVTSGVE6WYzul0kirpp20A_8779lptSDQLlxyiJ9l-b1n-7P9_D1C3mcsEbIweVwJPK1KHI81z1hci9TpwrqqNp5n9lxOJvl0WpS3Un1hTFigBw6KO7KcGaQkd1ld8Tyti9wwIeuRzmXOK_-8PAXUs91MhTkYZmaf9BST4sSSZVn3aI7J5Kiz0cflUiN9NF5ost6i5Ln7dzP0YHm1aP8GP_-Mory1LI2fkL0OT9Lj0I-n5J5rnpFHIcPkzXPyy5_4hccLFM9c6WU7g_FB5y1tHD4R0KsbCsCVAhCkzvNJQEN0veU8p7qxFBOrwGpHFzVtkP8Y1r8leHFL5w39qdEuM3o9X23aOMR2OUvxQqB9Qb6NTy8_fY67jAuxyRhbx8YIYfjICls5zhmMZbyVLTSCPmGdBXVqIXQteGY4DFgQSwwrLMA8px237CUZNIvG7RNqncM7xERWI8uh6QqsJp3Wla4cg0YiwrYqV6ajI8esGFfK37FJ2JYEDSo0lOoMFZF4V2sZ6DjukD9Ba-5kkUzb_wAXU52LqbtcLCLv0BcU0mU0GI8z05u2VWdfJ-qYFUhYBnvYfwpd9IQ-dEL1AjprdPcGAlSGNFw9ycOeJAx60yveR7_c9rlVSZYLQGoFzyPyduurCmthEF3jFhuUAbCWIUCMyKvguzvFpBhlnHIZEdnz6p7m-iXN_IenI-cYqyTZwf9Q9WvyGBApD9GSh2SwXm3cG_LQXK_n7WpI7sup9N98SB6cnE7Ki6Ef9_Adl-dDDNwtoaQ8-1J-_w3u-l5H
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELaggOCF37DAAIOQeMpoajtOHse0ahVdNI2C9mY5tlMqVUnVtEh74H_nLnEqgqh44S1Kzop9ts-ffXefCXkfs0jI1CRhLvC0KnI81DxmYSFGTqfW5YVpeGanMsuSq6v0wlMKYS6M1yDsEZdV3Xjy8aEq3UevydZxehQxGXXCR6uVRiZo9E2ym-SWTKMEo7vGF9POKIOpjmKfObevZG9lagj8d2Z6gJX4Gwb9M5Tyt7Vp_OA_tuohue8BKj1uSzwiN1z5mNxpr6y8fkJ-NkeIbTYExUNcOqvnMOHopKaZw5wDvb6mgIQpIEt62hBUQKXpjkSd6tLSS1jsYPmkVUEzJFSGBXUF06Kmi5Kea-zoOf22WG_rcNIEizlLT9xyWT8lX8ens5Oz0F_hEJqYsU1ojBCGD62wueOcgXFAN2-qEUUK66wQTAuhC8Fjw8ECgFhkWGoBNzrtuGXPyKAEPR0Qap1Dp2Qk86Hl8OucCSmd1rnOHYOfBIR13aeM5zfHazaWqnHaSdjntBpUqFjlFRuQcFdq1fJ7_EP-E46MnSyyczcvoFOV70xlOTNIo-_iIufJqEgTA5UthjqRCc8jEZB3OK4U8m-UGOAz19u6VpMvmTpmKTKgwaZ4r9BlT-iDFyoqaKzRPqkCVIa8Xj3Jw54kWBHT-3yAQ7Jrc62iOBEA_VKeBORtN-4VlsKovNJVW5QB9Bcj4gzI83Ye7BQzwrDlEZcBkb0Z0tNc_0u5-N7wm3MMfpLsxf4qvSF3z2bnUzWdZJ9fknsAYnkbYHlIBpv11r0it82PzaJev26swC-ef2n0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG-RAvfMMCAwxC8JStqe04eRxjFRUlqsZAe5ksx3ZKpSqtmhZpD_zv3DlJRRAVT7xVzTmxz3fns-_uZ0LexCwSMjVJmAs8rYocDzWPWViIgdOpdXlhPM7sWGZZcnGRTvbIZVsL03AQ9ojzReUj-fhjUbqjhpNHiFdUR08PIyajtsXhcqkRDhoDlOytRxzCk7E1FiBdI9dlGiW4NxtOxq2hBvMdxU013a4XdVYrD-q_Nd097Njf_NI_0yt_W6-Gd__zSO-RO40jS4_rt9wne658QG7WV1tePSQ__VFjXTVB8bCXnldTUEw6qmjmsDZBr64oeMwUPFB66oEsYCB0C7ZOdWnpGSyKsMzSRUEzBF6GhXcJ6lPRWUk_axSIKf02W22qcOSTypylJ24-rx6Rr8PT85OPYXPVQ2hixtahMUIY3rfC5o5zBkYEw8GpRm9TWGeFYFoIXQgeGw6WAsgiw1IL_qXTjlv2mPRK4N0-odY5DF5GMu9bDp_OmZDSaZ3r3DH4SEBYO6XKNDjoeB3HXPngnoT9UM1BhXxWDZ8DEm5bLWsckH_Qv0dp2dIiirf_AyZaNROsLGcG4fZdXOQ8GRRpYqCzRV8nMuF5JALyGmVNIU5HiYlAU72pKjX6kqljliJSGmyedxKddYjeNUTFAgZrdFN8ASxDKetQHnQowdqYzuN9FNN2zJWK4kSAi5jyJCCvWl1Q2Aqz90q32CANeIkxeqYBeVLrxpYxA0xvHnAZENnRmg7nuk_K2XePg84xSUqyp7u79JLcmnwYqvEo-_SM3AZfl9d5mAekt15t3HNyw_xYz6rVC28YfgEOv3kp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+with+Tsg101+is+necessary+for+the+efficient+transport+and+release+of+nucleocapsids+in+marburg+virus-infected+cells&rft.jtitle=PLoS+pathogens&rft.au=Olga+Dolnik&rft.au=Larissa+Kolesnikova&rft.au=Sonja+Welsch&rft.au=Thomas+Strecker&rft.date=2014-10-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=10&rft.issue=10&rft.spage=e1004463&rft_id=info:doi/10.1371%2Fjournal.ppat.1004463&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d43c2906e6fb482f98c357f0a8784b15
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon