Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages

Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 16; p. E944
Main Authors: Schroder, Kate, Irvine, Katharine M, Taylor, Martin S, Bokil, Nilesh J, Le Cao, Kim-Anh, Masterman, Kelly-Anne, Labzin, Larisa I, Semple, Colin A, Kapetanovic, Ronan, Fairbairn, Lynsey, Akalin, Altuna, Faulkner, Geoffrey J, Baillie, John Kenneth, Gongora, Milena, Daub, Carsten O, Kawaji, Hideya, McLachlan, Geoffrey J, Goldman, Nick, Grimmond, Sean M, Carninci, Piero, Suzuki, Harukazu, Hayashizaki, Yoshihide, Lenhard, Boris, Hume, David A, Sweet, Matthew J
Format: Journal Article
Language:English
Published: United States 17.04.2012
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)-4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5' ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as "divergently regulated"). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular "inputs" such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional "outputs" such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.
AbstractList Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)-4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5' ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as "divergently regulated"). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular "inputs" such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional "outputs" such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)-4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5' ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as "divergently regulated"). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular "inputs" such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional "outputs" such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.
Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)-4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5' ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as "divergently regulated"). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular "inputs" such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional "outputs" such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.
Author Sweet, Matthew J
Carninci, Piero
Daub, Carsten O
Masterman, Kelly-Anne
Schroder, Kate
Baillie, John Kenneth
Bokil, Nilesh J
Grimmond, Sean M
Le Cao, Kim-Anh
Suzuki, Harukazu
Faulkner, Geoffrey J
Gongora, Milena
Hayashizaki, Yoshihide
McLachlan, Geoffrey J
Irvine, Katharine M
Semple, Colin A
Lenhard, Boris
Hume, David A
Kapetanovic, Ronan
Goldman, Nick
Akalin, Altuna
Kawaji, Hideya
Labzin, Larisa I
Taylor, Martin S
Fairbairn, Lynsey
Author_xml – sequence: 1
  givenname: Kate
  surname: Schroder
  fullname: Schroder, Kate
  email: k.schroder@imb.uq.edu.au
  organization: Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia. k.schroder@imb.uq.edu.au
– sequence: 2
  givenname: Katharine M
  surname: Irvine
  fullname: Irvine, Katharine M
– sequence: 3
  givenname: Martin S
  surname: Taylor
  fullname: Taylor, Martin S
– sequence: 4
  givenname: Nilesh J
  surname: Bokil
  fullname: Bokil, Nilesh J
– sequence: 5
  givenname: Kim-Anh
  surname: Le Cao
  fullname: Le Cao, Kim-Anh
– sequence: 6
  givenname: Kelly-Anne
  surname: Masterman
  fullname: Masterman, Kelly-Anne
– sequence: 7
  givenname: Larisa I
  surname: Labzin
  fullname: Labzin, Larisa I
– sequence: 8
  givenname: Colin A
  surname: Semple
  fullname: Semple, Colin A
– sequence: 9
  givenname: Ronan
  surname: Kapetanovic
  fullname: Kapetanovic, Ronan
– sequence: 10
  givenname: Lynsey
  surname: Fairbairn
  fullname: Fairbairn, Lynsey
– sequence: 11
  givenname: Altuna
  surname: Akalin
  fullname: Akalin, Altuna
– sequence: 12
  givenname: Geoffrey J
  surname: Faulkner
  fullname: Faulkner, Geoffrey J
– sequence: 13
  givenname: John Kenneth
  surname: Baillie
  fullname: Baillie, John Kenneth
– sequence: 14
  givenname: Milena
  surname: Gongora
  fullname: Gongora, Milena
– sequence: 15
  givenname: Carsten O
  surname: Daub
  fullname: Daub, Carsten O
– sequence: 16
  givenname: Hideya
  surname: Kawaji
  fullname: Kawaji, Hideya
– sequence: 17
  givenname: Geoffrey J
  surname: McLachlan
  fullname: McLachlan, Geoffrey J
– sequence: 18
  givenname: Nick
  surname: Goldman
  fullname: Goldman, Nick
– sequence: 19
  givenname: Sean M
  surname: Grimmond
  fullname: Grimmond, Sean M
– sequence: 20
  givenname: Piero
  surname: Carninci
  fullname: Carninci, Piero
– sequence: 21
  givenname: Harukazu
  surname: Suzuki
  fullname: Suzuki, Harukazu
– sequence: 22
  givenname: Yoshihide
  surname: Hayashizaki
  fullname: Hayashizaki, Yoshihide
– sequence: 23
  givenname: Boris
  surname: Lenhard
  fullname: Lenhard, Boris
– sequence: 24
  givenname: David A
  surname: Hume
  fullname: Hume, David A
– sequence: 25
  givenname: Matthew J
  surname: Sweet
  fullname: Sweet, Matthew J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22451944$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAQhi1URD9gZkMeWVJ8tpPaI6r4kiqxlDlynEsbSOxgJwX-PUEUieXuhuce3b1zMnHeISGXwJbAVuKmcyYuAYBBmgHTJ2Q2Vkgyqdnk3zwl8xhfGWM6VeyMTDmXKWgpZ-Rj7V3EcDB97R01rqRlfcCwQ2eR1o5ufdMkTf2GNKDFrveByiTgbmhMjyUdOaT42QWM8UcwbnShbk34ovuhNY6OrjhE2vohIm2NDb7bmx3Gc3JamSbixbEvyMv93Xb9mGyeH57Wt5vEZkL0iVVgpK2YYqlWWClVlVpk2mio0sIwK6RgBdcqrcTKFlXKhUHLi1LKlZLAgS_I9a-3C_59wNjnbR0tNo1xON6UA2N8pYUENaJXR3QoWizz4yP5X1j8G8ccb_U
CitedBy_id crossref_primary_10_1042_BST20200987
crossref_primary_10_1016_j_it_2021_10_007
crossref_primary_10_1111_imcb_70031
crossref_primary_10_3389_fimmu_2019_01283
crossref_primary_10_1016_j_molimm_2016_11_009
crossref_primary_10_1242_dmm_049266
crossref_primary_10_1161_ATVBAHA_117_309195
crossref_primary_10_1016_j_metabol_2018_01_014
crossref_primary_10_1038_srep12524
crossref_primary_10_3390_ijms23031496
crossref_primary_10_1038_s41590_024_02024_3
crossref_primary_10_3390_vaccines13010033
crossref_primary_10_3389_fimmu_2020_593300
crossref_primary_10_1007_s00439_024_02642_9
crossref_primary_10_1007_s00109_015_1286_y
crossref_primary_10_1016_j_smim_2015_02_001
crossref_primary_10_1186_1471_2164_14_581
crossref_primary_10_3389_fimmu_2020_01964
crossref_primary_10_1186_1471_2164_14_332
crossref_primary_10_1016_j_dci_2014_07_001
crossref_primary_10_1177_1753425919855420
crossref_primary_10_3389_fgene_2019_01355
crossref_primary_10_1189_jlb_4VMA0716_316R
crossref_primary_10_3389_fimmu_2019_02031
crossref_primary_10_1016_j_neures_2024_01_004
crossref_primary_10_3389_fimmu_2022_912899
crossref_primary_10_1111_evj_12584
crossref_primary_10_1186_s12967_016_1111_6
crossref_primary_10_1016_j_jsbmb_2020_105590
crossref_primary_10_3390_ijms24076234
crossref_primary_10_4049_jimmunol_1300365
crossref_primary_10_3389_fimmu_2017_01871
crossref_primary_10_1016_j_chembiol_2024_04_012
crossref_primary_10_1016_j_biologicals_2012_10_005
crossref_primary_10_1165_rcmb_2022_0237ED
crossref_primary_10_1016_j_jneuroim_2021_577496
crossref_primary_10_1038_s41467_023_40937_z
crossref_primary_10_3390_cells12020227
crossref_primary_10_1016_j_imbio_2012_07_020
crossref_primary_10_1016_j_freeradbiomed_2019_04_024
crossref_primary_10_26508_lsa_202301908
crossref_primary_10_1111_bph_15311
crossref_primary_10_1016_j_bcp_2018_02_010
crossref_primary_10_1096_fj_201500061
crossref_primary_10_1128_mcb_00452_21
crossref_primary_10_1128_MCB_01168_12
crossref_primary_10_1080_09205063_2016_1155881
crossref_primary_10_1016_j_it_2012_11_001
crossref_primary_10_1016_j_cyto_2012_11_014
crossref_primary_10_1038_s41586_018_0657_2
crossref_primary_10_1007_s10875_012_9844_3
crossref_primary_10_1038_srep25520
crossref_primary_10_1038_s41416_019_0441_6
crossref_primary_10_1016_j_micpath_2020_104234
crossref_primary_10_1002_JLB_3MR0720_513R
crossref_primary_10_1159_000511260
crossref_primary_10_3389_fimmu_2021_700009
crossref_primary_10_4049_jimmunol_1502336
crossref_primary_10_1189_jlb_3CE0314_163R
crossref_primary_10_1126_science_aad5497
crossref_primary_10_4049_jimmunol_1301355
crossref_primary_10_1038_cti_2015_46
crossref_primary_10_1189_jlb_2AB0815_339R
crossref_primary_10_1016_j_vetmic_2016_05_013
crossref_primary_10_1016_j_cytogfr_2013_03_007
crossref_primary_10_1038_s41588_023_01421_y
crossref_primary_10_1055_s_0040_1717088
crossref_primary_10_1016_j_biopha_2023_114298
crossref_primary_10_1002_advs_202104372
crossref_primary_10_1016_j_expneurol_2017_08_015
crossref_primary_10_1111_evj_13341
crossref_primary_10_1002_JLB_MR0519_143R
crossref_primary_10_1038_s41467_024_45615_2
crossref_primary_10_1002_trc2_12114
crossref_primary_10_1007_s11011_019_00399_z
crossref_primary_10_1038_cmi_2016_11
crossref_primary_10_1016_j_intimp_2023_109852
crossref_primary_10_1038_icb_2012_40
crossref_primary_10_1007_s12031_021_01815_9
crossref_primary_10_1016_j_addr_2017_05_010
crossref_primary_10_1038_s41467_020_16889_z
crossref_primary_10_1111_ajt_13749
crossref_primary_10_1016_j_mib_2013_03_002
crossref_primary_10_3389_fimmu_2014_00316
crossref_primary_10_1186_s12915_023_01590_6
crossref_primary_10_3390_genes11060631
crossref_primary_10_1371_journal_pgen_1006641
crossref_primary_10_1080_14728222_2019_1676416
crossref_primary_10_1002_eji_201545655
crossref_primary_10_1038_icb_2017_64
crossref_primary_10_1002_JLB_2AB0420_151RR
crossref_primary_10_1371_journal_pone_0118017
crossref_primary_10_1146_annurev_cancerbio_030419_033333
crossref_primary_10_1083_jcb_201707027
crossref_primary_10_1038_s41598_020_70248_y
crossref_primary_10_1080_08830185_2018_1506780
crossref_primary_10_1371_journal_pone_0273810
crossref_primary_10_1007_s43032_022_00934_x
crossref_primary_10_1186_1471_2164_14_632
crossref_primary_10_1038_s41589_019_0277_7
crossref_primary_10_1084_jem_20201452
crossref_primary_10_3389_fimmu_2018_02246
crossref_primary_10_1038_s41598_019_40503_y
crossref_primary_10_1128_msphere_00091_25
crossref_primary_10_1016_j_dci_2019_03_020
crossref_primary_10_1016_j_semcancer_2018_02_010
crossref_primary_10_1155_2015_909406
crossref_primary_10_1038_srep28952
crossref_primary_10_1038_ni_3324
crossref_primary_10_1038_s44318_025_00507_z
crossref_primary_10_1128_JVI_01813_16
crossref_primary_10_1101_gr_190546_115
crossref_primary_10_1161_HYPERTENSIONAHA_119_13469
crossref_primary_10_1038_s41577_024_01080_y
crossref_primary_10_1097_CCE_0000000000000126
crossref_primary_10_3390_ani9070399
crossref_primary_10_1002_wrna_1441
crossref_primary_10_1007_s40264_015_0350_4
crossref_primary_10_1016_j_immuni_2014_01_006
crossref_primary_10_1186_s12859_023_05198_z
crossref_primary_10_1016_j_gene_2018_07_044
crossref_primary_10_1189_jlb_6HI0313_169R
crossref_primary_10_3390_ijms21197229
crossref_primary_10_1186_s12989_025_00624_x
crossref_primary_10_1002_JLB_MA0318_112RR
crossref_primary_10_1073_pnas_2212813120
crossref_primary_10_12688_f1000research_15274_1
crossref_primary_10_3390_v12101089
crossref_primary_10_4049_jimmunol_1502009
crossref_primary_10_4049_jimmunol_1700760
crossref_primary_10_1002_bies_201500192
crossref_primary_10_3389_fimmu_2019_02887
crossref_primary_10_1016_j_yexcr_2015_10_017
crossref_primary_10_1111_febs_14348
crossref_primary_10_1111_imr_12211
crossref_primary_10_1038_s41541_025_01124_x
crossref_primary_10_1093_molbev_mst190
crossref_primary_10_3389_fimmu_2020_594594
crossref_primary_10_1038_s41577_025_01142_9
crossref_primary_10_4049_jimmunol_1302138
crossref_primary_10_1038_nrg_2017_19
crossref_primary_10_1101_gr_255679_119
crossref_primary_10_1371_journal_pone_0054935
crossref_primary_10_1016_j_jff_2024_106198
crossref_primary_10_1371_journal_pone_0148984
crossref_primary_10_1007_s00018_024_05158_7
crossref_primary_10_3389_fphar_2016_00441
crossref_primary_10_1038_s41467_021_27245_0
crossref_primary_10_1091_mbc_E14_10_1457
crossref_primary_10_3389_fgene_2019_01080
crossref_primary_10_1016_j_tox_2025_154259
crossref_primary_10_3389_fimmu_2020_01426
crossref_primary_10_1371_journal_pone_0327988
crossref_primary_10_1186_s12859_017_1714_9
crossref_primary_10_1002_eji_202250242
crossref_primary_10_1073_pnas_1218599110
crossref_primary_10_3389_fimmu_2018_00022
crossref_primary_10_1002_JLB_2RI1117_474R
crossref_primary_10_1038_ncomms5407
crossref_primary_10_1186_s12864_015_2111_2
crossref_primary_10_1016_j_devcel_2023_12_017
crossref_primary_10_1002_cmdc_201700270
crossref_primary_10_1016_j_it_2013_02_008
crossref_primary_10_1016_j_immuni_2015_02_001
crossref_primary_10_1016_j_isci_2025_113046
crossref_primary_10_1107_S0907444913001558
crossref_primary_10_3389_fgene_2020_00817
crossref_primary_10_1093_hmg_ddab239
crossref_primary_10_3389_fimmu_2020_01016
crossref_primary_10_1007_s13238_013_3905_0
crossref_primary_10_1016_j_biologicals_2013_08_006
crossref_primary_10_1210_en_2013_1102
crossref_primary_10_1242_jcs_252973
crossref_primary_10_3389_fimmu_2023_1336393
crossref_primary_10_3390_biomedicines10123095
crossref_primary_10_1016_j_dci_2016_04_016
crossref_primary_10_1189_jlb_0312166
crossref_primary_10_1371_journal_pcbi_1013165
crossref_primary_10_1093_infdis_jix279
crossref_primary_10_1111_imcb_12363
crossref_primary_10_1371_journal_pone_0068306
crossref_primary_10_1161_CIRCRESAHA_115_306424
crossref_primary_10_1113_jphysiol_2014_277277
crossref_primary_10_1002_JLB_3A0617_261R
crossref_primary_10_1038_ni_2391
crossref_primary_10_26508_lsa_201800237
crossref_primary_10_1084_jem_20211191
crossref_primary_10_1007_s00018_021_04041_z
crossref_primary_10_1038_s41565_021_00988_z
crossref_primary_10_1038_s41577_024_01075_9
crossref_primary_10_4049_jimmunol_1401982
crossref_primary_10_1016_j_tins_2024_05_009
crossref_primary_10_1016_j_intimp_2017_11_032
crossref_primary_10_3390_pharmaceutics14122557
crossref_primary_10_1111_pim_12728
crossref_primary_10_1038_s41467_022_31892_2
crossref_primary_10_1371_journal_pone_0243807
crossref_primary_10_1016_j_immuni_2014_06_008
crossref_primary_10_1042_BSR20210455
crossref_primary_10_1016_j_smim_2016_10_004
crossref_primary_10_1016_j_bbrc_2014_01_069
crossref_primary_10_1128_JVI_03576_14
crossref_primary_10_3389_fcell_2020_00661
crossref_primary_10_1016_j_trsl_2016_08_001
crossref_primary_10_3389_fvets_2024_1428713
crossref_primary_10_1016_j_bcp_2020_113899
crossref_primary_10_1016_j_dci_2017_06_007
crossref_primary_10_1128_microbiolspec_MCHD_0024_2015
crossref_primary_10_3390_immuno1010001
crossref_primary_10_3389_fimmu_2015_00370
crossref_primary_10_1016_j_it_2018_11_007
crossref_primary_10_1186_s12865_017_0223_y
crossref_primary_10_1038_mtm_2014_10
crossref_primary_10_1002_JLB_4RI0917_358R
crossref_primary_10_1371_journal_pcbi_1003017
crossref_primary_10_1002_advs_202201452
crossref_primary_10_1016_j_imbio_2013_07_001
crossref_primary_10_1084_jem_20172222
crossref_primary_10_1128_AAC_01876_15
crossref_primary_10_4103_1673_5374_293134
crossref_primary_10_1111_imm_13708
crossref_primary_10_1007_s11010_024_05099_6
crossref_primary_10_3390_ijms21134733
crossref_primary_10_1002_eji_201545943
crossref_primary_10_4049_jimmunol_2100136
crossref_primary_10_1007_s11481_020_09927_6
crossref_primary_10_1016_j_neubiorev_2021_09_018
crossref_primary_10_1124_jpet_115_229328
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1110156109
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 22451944
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/I024801/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/D/20251969
– fundername: Medical Research Council
  grantid: MC_U127597124
– fundername: Medical Research Council
  grantid: MC_PC_U127597124
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c633t-c81a4cf080598ef88fd9369a91f5ba0c3430b2985f37cbf523aec2bd447841212
IEDL.DBID 7X8
ISICitedReferencesCount 251
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303246100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 11:51:58 EDT 2025
Sat May 31 02:13:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-c81a4cf080598ef88fd9369a91f5ba0c3430b2985f37cbf523aec2bd447841212
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/109/16/E944.full.pdf
PMID 22451944
PQID 1002793418
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1002793418
pubmed_primary_22451944
PublicationCentury 2000
PublicationDate 2012-04-17
PublicationDateYYYYMMDD 2012-04-17
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
SSID ssj0009580
Score 2.5216947
Snippet Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E944
SubjectTerms Animals
Cell Line
Cells, Cultured
Chemokine CCL20 - genetics
Chemokine CXCL13 - genetics
Evolution, Molecular
Female
Gene Expression Profiling
Gene Expression Regulation - drug effects
Genetic Variation
Host-Pathogen Interactions
Humans
Lipopolysaccharides - pharmacology
Macrophages - drug effects
Macrophages - metabolism
Macrophages - microbiology
Male
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Mice, Knockout
Oligonucleotide Array Sequence Analysis
Reverse Transcriptase Polymerase Chain Reaction
Salmonella typhimurium - physiology
Species Specificity
Swine
Toll-Like Receptor 4 - agonists
Toll-Like Receptor 4 - genetics
Title Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages
URI https://www.ncbi.nlm.nih.gov/pubmed/22451944
https://www.proquest.com/docview/1002793418
Volume 109
WOSCitedRecordID wos000303246100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDFaT2E3sCSFExQBVhyJ1q2zHFhWQlqY8fj53iStYkJBYMsWKY5_Pn-_O30fIWSrBMyrDkQpRMJElnBmVGOY97A548TO11UzfZb2eHA5VPwTcylBWufCJlaPOJxZj5G2kCgVbErG8nL4yVI3C7GqQ0FgmDQ6fRKvOhvIH6a6s2QhUzFKhogW1T8bb00KX6C7wJnFVjfgbvqz2me7Gf3u4SdYDwqRXtUk0yZIrtkgzrOGSngei6Ytt8oFqnYugLNVFTnOs0qjoOem4oAOwEfY8fnIU3KKbwumcCjarxetdTuE9R91nqKQtsMW05q6glfIfxYqPt5JicMHRF41iYY_gvsod8tC9GVzfsiDEwGzK-ZxZGWthPYDLjpLOS-lz1AHUKvYdoyPLBY9MomTH88waD2db7WxiciEwqwmb4y5ZKSaF28dKqjiJjLVO6lzIyGg4b2llpPIAPZ1WLXK6GNwRGDpmL3ThoJ-j7-Ftkb16hkbhr0aAQwCJCnHwh9aHZA1AT4IZoTg7Ig0Py9wdk1X7Ph-Xs5PKguDZ699_AcSC0Wo
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conservation+and+divergence+in+Toll-like+receptor+4-regulated+gene+expression+in+primary+human+versus+mouse+macrophages&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Schroder%2C+Kate&rft.au=Irvine%2C+Katharine+M&rft.au=Taylor%2C+Martin+S&rft.au=Bokil%2C+Nilesh+J&rft.date=2012-04-17&rft.eissn=1091-6490&rft.volume=109&rft.issue=16&rft.spage=E944&rft_id=info:doi/10.1073%2Fpnas.1110156109&rft_id=info%3Apmid%2F22451944&rft_id=info%3Apmid%2F22451944&rft.externalDocID=22451944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon