Attention is not all you need: the complicated case of ethically using large language models in healthcare and medicine

Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:EBioMedicine Ročník 90; s. 104512
Hlavní autor: Harrer, Stefan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.04.2023
Elsevier
Témata:
ISSN:2352-3964, 2352-3964
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generative AI applications will remain a party trick with substantial potential for creating and spreading misinformation or harmful and inaccurate content at unprecedented scale. However, if positioned and developed responsibly as companions to humans augmenting but not replacing their role in decision making, knowledge retrieval and other cognitive processes, they could evolve into highly efficient, trustworthy, assistive tools for information management. This perspective describes how such tools could transform data management workflows in healthcare and medicine, explains how the underlying technology works, provides an assessment of risks and limitations, and proposes an ethical, technical, and cultural framework for responsible design, development, and deployment. It seeks to incentivise users, developers, providers, and regulators of generative AI that utilises LLMs to collectively prepare for the transformational role this technology could play in evidence-based sectors.
AbstractList Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generative AI applications will remain a party trick with substantial potential for creating and spreading misinformation or harmful and inaccurate content at unprecedented scale. However, if positioned and developed responsibly as companions to humans augmenting but not replacing their role in decision making, knowledge retrieval and other cognitive processes, they could evolve into highly efficient, trustworthy, assistive tools for information management. This perspective describes how such tools could transform data management workflows in healthcare and medicine, explains how the underlying technology works, provides an assessment of risks and limitations, and proposes an ethical, technical, and cultural framework for responsible design, development, and deployment. It seeks to incentivise users, developers, providers, and regulators of generative AI that utilises LLMs to collectively prepare for the transformational role this technology could play in evidence-based sectors.
SummaryLarge Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generative AI applications will remain a party trick with substantial potential for creating and spreading misinformation or harmful and inaccurate content at unprecedented scale. However, if positioned and developed responsibly as companions to humans augmenting but not replacing their role in decision making, knowledge retrieval and other cognitive processes, they could evolve into highly efficient, trustworthy, assistive tools for information management. This perspective describes how such tools could transform data management workflows in healthcare and medicine, explains how the underlying technology works, provides an assessment of risks and limitations, and proposes an ethical, technical, and cultural framework for responsible design, development, and deployment. It seeks to incentivise users, developers, providers, and regulators of generative AI that utilises LLMs to collectively prepare for the transformational role this technology could play in evidence-based sectors.
Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generative AI applications will remain a party trick with substantial potential for creating and spreading misinformation or harmful and inaccurate content at unprecedented scale. However, if positioned and developed responsibly as companions to humans augmenting but not replacing their role in decision making, knowledge retrieval and other cognitive processes, they could evolve into highly efficient, trustworthy, assistive tools for information management. This perspective describes how such tools could transform data management workflows in healthcare and medicine, explains how the underlying technology works, provides an assessment of risks and limitations, and proposes an ethical, technical, and cultural framework for responsible design, development, and deployment. It seeks to incentivise users, developers, providers, and regulators of generative AI that utilises LLMs to collectively prepare for the transformational role this technology could play in evidence-based sectors.Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery, audio, code, and videos in response to textual instructions. Without human oversight, guidance and responsible design and operation, such generative AI applications will remain a party trick with substantial potential for creating and spreading misinformation or harmful and inaccurate content at unprecedented scale. However, if positioned and developed responsibly as companions to humans augmenting but not replacing their role in decision making, knowledge retrieval and other cognitive processes, they could evolve into highly efficient, trustworthy, assistive tools for information management. This perspective describes how such tools could transform data management workflows in healthcare and medicine, explains how the underlying technology works, provides an assessment of risks and limitations, and proposes an ethical, technical, and cultural framework for responsible design, development, and deployment. It seeks to incentivise users, developers, providers, and regulators of generative AI that utilises LLMs to collectively prepare for the transformational role this technology could play in evidence-based sectors.
ArticleNumber 104512
Author Harrer, Stefan
Author_xml – sequence: 1
  givenname: Stefan
  orcidid: 0000-0001-7947-330X
  surname: Harrer
  fullname: Harrer, Stefan
  email: stefan.harrer@dhcrc.com
  organization: Digital Health Cooperative Research Centre, Melbourne, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36924620$$D View this record in MEDLINE/PubMed
BookMark eNqFkltv1DAQhSNUREvpL0BCfuRlF19iJwuiqKq4VKrEA_BsOfZk18GxF9sp2n-P021RWwn6kjiTOd-RZ87z6sAHD1X1kuAlwUS8GZbQ2TAuKaasVGpO6JPqiDJOF2wl6oM758PqJKUBY0x4XYrts-qQiRWtBcVH1e-znMFnGzyyCfmQkXIO7cKEPIB5i_IGkA7j1lmtMhikVQIUegR5UyrO7dCUrF8jp-IaytOvJ1UOYzDgErIebUC5vNEqAlLeoBGM1dbDi-ppr1yCk5v3cfXj08fv518Wl18_X5yfXS60YCwvatrV1PBeKehIKwRoaoTBrS7fnDDREYIZxbWBpmes0YaD1oS2nKq-6Thlx9XFnmuCGuQ22lHFnQzKyutCiGupYrbagVS4b3gvcMc4r2tTK86ZUK0SmEHDKCmsD3vWdurKPXSZW1TuHvT-H283ch2uJMGY8lXLC-H1DSGGXxOkLEebNLgyNwhTkrRpV025VtOW1ld3zf663K6uNKz2DTqGlCL0Utus5k0Wb-uKqZyTIgd5nRQ5J0Xuk1K07IH2Fv9_1fu9qqwWrixEmbQFr8tKI-hcJmof0Z8-0Gtn_Ryjn7CDNIQp-pIFSWSiEstvc4LnAFNWwts0dQG8-zfgUfs_VX4BkQ
CitedBy_id crossref_primary_10_1159_000537854
crossref_primary_10_30935_cedtech_15496
crossref_primary_10_1038_s41591_024_03258_2
crossref_primary_10_1016_j_ejvsvf_2023_10_003
crossref_primary_10_1016_j_ejro_2023_100494
crossref_primary_10_1007_s10791_025_09628_9
crossref_primary_10_1108_JAL_12_2024_0357
crossref_primary_10_15446_dyna_v90n230_111700
crossref_primary_10_4258_hir_2025_31_2_114
crossref_primary_10_1080_17483107_2025_2471050
crossref_primary_10_1016_j_neuron_2024_01_016
crossref_primary_10_1111_cobi_14464
crossref_primary_10_1038_s41591_024_02860_8
crossref_primary_10_1016_S2213_8587_24_00154_2
crossref_primary_10_1016_j_aei_2024_103042
crossref_primary_10_1097_01_NEP_0000000000001246
crossref_primary_10_1080_10528008_2025_2551972
crossref_primary_10_3390_app15148088
crossref_primary_10_1007_s41666_025_00211_x
crossref_primary_10_1080_0194262X_2024_2413558
crossref_primary_10_1080_09588221_2025_2539160
crossref_primary_10_1177_13524585241277376
crossref_primary_10_1016_j_lanwpc_2023_100905
crossref_primary_10_3389_fonc_2024_1386718
crossref_primary_10_7717_peerj_cs_2911
crossref_primary_10_1089_pop_2024_0222
crossref_primary_10_1016_j_mcpdig_2025_100196
crossref_primary_10_1080_08164622_2025_2517750
crossref_primary_10_1111_jocn_17493
crossref_primary_10_1007_s00432_024_05673_x
crossref_primary_10_1080_10447318_2024_2316376
crossref_primary_10_1016_j_bjps_2024_02_007
crossref_primary_10_1177_01655515241227531
crossref_primary_10_1093_jamia_ocae188
crossref_primary_10_1186_s40561_024_00341_6
crossref_primary_10_1371_journal_pdig_0000651
crossref_primary_10_1007_s10072_025_08428_9
crossref_primary_10_1093_rap_rkae119
crossref_primary_10_34067_KID_0000000000000556
crossref_primary_10_1016_j_isci_2023_108163
crossref_primary_10_1093_cid_ciad633
crossref_primary_10_1007_s42001_025_00387_7
crossref_primary_10_1371_journal_pone_0290613
crossref_primary_10_1097_MS9_0000000000003234
crossref_primary_10_1111_jep_70065
crossref_primary_10_1016_S1473_3099_24_00140_3
crossref_primary_10_1146_annurev_biodatasci_103123_095202
crossref_primary_10_1109_JBHI_2023_3327485
crossref_primary_10_3390_electronics14153064
crossref_primary_10_1016_j_engappai_2025_111188
crossref_primary_10_1097_JOM_0000000000003212
crossref_primary_10_1145_3712001
crossref_primary_10_3389_fbioe_2024_1359768
crossref_primary_10_5498_wjp_v14_i3_334
crossref_primary_10_3389_fams_2024_1380996
crossref_primary_10_1016_j_cca_2023_117519
crossref_primary_10_4274_dir_2024_242876
crossref_primary_10_1038_s41746_024_01283_6
crossref_primary_10_1057_s41599_024_02894_w
crossref_primary_10_1016_j_compcom_2024_102871
crossref_primary_10_1097_CRD_0000000000001042
crossref_primary_10_1080_0309877X_2024_2378298
crossref_primary_10_1145_3718096
crossref_primary_10_3390_robotics13080112
crossref_primary_10_1016_j_jacr_2024_01_012
crossref_primary_10_1371_journal_pdig_0000417
crossref_primary_10_1371_journal_pone_0300024
crossref_primary_10_3390_bioengineering12010017
crossref_primary_10_1080_12460125_2024_2430731
crossref_primary_10_2196_59439
crossref_primary_10_1093_postmj_qgae038
crossref_primary_10_1016_j_arth_2024_01_029
crossref_primary_10_1136_rapm_2023_104637
crossref_primary_10_1038_s41598_023_48747_5
crossref_primary_10_5694_mja2_51992
crossref_primary_10_1177_10547738241227699
crossref_primary_10_1016_j_ebiom_2025_105695
crossref_primary_10_1186_s13012_024_01357_9
crossref_primary_10_1007_s11227_025_07597_w
crossref_primary_10_1111_imj_16393
crossref_primary_10_1002_lary_32202
crossref_primary_10_1080_10447318_2023_2225931
crossref_primary_10_1007_s11023_024_09692_y
crossref_primary_10_1016_j_artmed_2025_103227
crossref_primary_10_1177_07439156251319788
crossref_primary_10_3390_app15020893
crossref_primary_10_7759_cureus_90103
crossref_primary_10_1111_dom_16630
crossref_primary_10_1186_s12911_024_02838_z
crossref_primary_10_1038_s41746_024_01157_x
crossref_primary_10_55982_openpraxis_17_1_718
crossref_primary_10_1016_j_compbiomed_2025_110885
crossref_primary_10_1162_artl_e_00409
crossref_primary_10_1016_j_ebiom_2023_104671
crossref_primary_10_1016_j_prro_2025_02_006
crossref_primary_10_1007_s00167_023_07529_2
crossref_primary_10_3390_electronics12244957
crossref_primary_10_1111_cgf_70025
crossref_primary_10_1148_radiol_240597
crossref_primary_10_1038_s41390_025_03980_8
crossref_primary_10_1088_2632_2153_adec3c
crossref_primary_10_1097_PAP_0000000000000406
crossref_primary_10_2196_50295
crossref_primary_10_1093_jamia_ocaf124
crossref_primary_10_1001_jamanetworkopen_2025_22400
crossref_primary_10_1080_15424065_2024_2320227
crossref_primary_10_1093_jamia_ocae039
crossref_primary_10_1186_s12909_024_06048_z
crossref_primary_10_1111_nyas_15413
crossref_primary_10_1016_j_apjo_2024_100084
crossref_primary_10_1016_j_apjo_2024_100085
crossref_primary_10_1016_j_bjps_2024_01_051
crossref_primary_10_1002_brx2_23
crossref_primary_10_3390_rs16162871
crossref_primary_10_1055_s_0043_1771514
crossref_primary_10_1108_JRIM_05_2024_0237
crossref_primary_10_35232_estudamhsd_1624996
crossref_primary_10_1186_s41239_023_00411_8
crossref_primary_10_3390_bdcc8110157
crossref_primary_10_3390_healthcare11182518
crossref_primary_10_4103_JNMO_JNMO_39_24
crossref_primary_10_1213_ANE_0000000000006579
crossref_primary_10_1186_s12909_025_06731_9
crossref_primary_10_2196_71916
crossref_primary_10_2196_59479
crossref_primary_10_1007_s10462_024_10921_0
crossref_primary_10_1016_j_bj_2025_100868
crossref_primary_10_1016_j_jbi_2024_104620
crossref_primary_10_1097_GOX_0000000000006825
crossref_primary_10_1021_acs_jchemed_4c00249
crossref_primary_10_1001_jamanetworkopen_2024_24297
crossref_primary_10_3389_fmed_2024_1495582
crossref_primary_10_1177_14604582251315595
crossref_primary_10_1177_20584601241258675
crossref_primary_10_1148_radiol_241703
crossref_primary_10_1007_s10916_024_02043_5
crossref_primary_10_1016_j_mcpdig_2025_100230
crossref_primary_10_1097_GOX_0000000000005290
crossref_primary_10_2196_66207
crossref_primary_10_3390_bdcc8110161
crossref_primary_10_1007_s41669_024_00477_8
crossref_primary_10_2196_53008
crossref_primary_10_1097_MS9_0000000000003080
crossref_primary_10_1007_s11096_024_01777_z
crossref_primary_10_1016_j_amjms_2023_08_001
crossref_primary_10_1177_17562848241227031
crossref_primary_10_1111_jcal_70043
crossref_primary_10_1080_12460125_2024_2410042
crossref_primary_10_1371_journal_pdig_0000919
crossref_primary_10_3390_app15031192
crossref_primary_10_1109_ACCESS_2025_3527025
crossref_primary_10_1080_0361526X_2024_2400719
crossref_primary_10_1001_jamahealthforum_2023_1938
crossref_primary_10_1371_journal_pdig_0000367
crossref_primary_10_1080_09273948_2023_2242462
crossref_primary_10_3390_vaccines11071217
crossref_primary_10_1093_eurjcn_zvad120
crossref_primary_10_3390_jpm13091363
crossref_primary_10_1080_02691728_2024_2316622
crossref_primary_10_1111_jep_13980
crossref_primary_10_1111_cgf_15065
crossref_primary_10_1097_IOP_0000000000002420
crossref_primary_10_3390_jcm13133750
crossref_primary_10_3390_info14090492
crossref_primary_10_1093_asj_sjad260
crossref_primary_10_1002_berj_4186
crossref_primary_10_3390_electronics13224364
crossref_primary_10_1145_3625289
crossref_primary_10_1080_15265161_2025_2526734
crossref_primary_10_1111_jep_70129
crossref_primary_10_51867_ajernet_5_3_30
crossref_primary_10_1007_s00296_023_05473_5
crossref_primary_10_2196_53854
crossref_primary_10_5507_bp_2024_027
crossref_primary_10_1038_s41746_025_01486_5
crossref_primary_10_2106_JBJS_23_01417
crossref_primary_10_1177_00033197251324630
crossref_primary_10_1007_s10639_024_13009_y
crossref_primary_10_3390_healthcare11202776
crossref_primary_10_1186_s12909_025_07176_w
crossref_primary_10_1016_j_jacadv_2023_100565
crossref_primary_10_1080_17516234_2024_2363128
crossref_primary_10_1177_20552076231186520
crossref_primary_10_1111_jep_14250
crossref_primary_10_1136_bmj_2023_078538
crossref_primary_10_2196_57400
crossref_primary_10_1080_0144929X_2024_2321959
crossref_primary_10_1053_j_gastro_2023_06_006
crossref_primary_10_1145_3610210
crossref_primary_10_1227_neu_0000000000003297
crossref_primary_10_4236_vp_2024_103025
crossref_primary_10_1016_j_survophthal_2025_02_009
crossref_primary_10_1177_10806032251330628
crossref_primary_10_1016_j_mam_2023_101222
crossref_primary_10_1017_jme_2025_10132
crossref_primary_10_1016_j_ejvsvf_2024_07_037
crossref_primary_10_1111_jep_70269
crossref_primary_10_12688_f1000research_160142_1
crossref_primary_10_1111_jep_70260
crossref_primary_10_1109_ACCESS_2024_3367715
crossref_primary_10_1007_s11023_025_09730_3
crossref_primary_10_1136_bjo_2023_325046
crossref_primary_10_1093_jbcr_irae211
Cites_doi 10.1093/bioinformatics/btz682
10.1038/d41586-022-02083-2
10.1038/s41591-018-0213-5
10.3389/fcomp.2022.1045704
10.1148/radiol.230163
10.1093/bib/bbac409
10.15585/mmwr.mm6923e2
10.1038/s41591-022-01981-2
10.1016/j.tips.2019.05.005
10.1016/j.ijmedinf.2014.12.001
10.1038/d41586-022-02947-7
10.1073/pnas.2218523120
10.1145/3458754
ContentType Journal Article
Copyright 2023 The Author(s)
The Author(s)
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
2023 The Author(s) 2023
Copyright_xml – notice: 2023 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
– notice: 2023 The Author(s) 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.ebiom.2023.104512
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList




MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
EISSN 2352-3964
EndPage 104512
ExternalDocumentID oai_doaj_org_article_a0f75f60b35544d4a5536a8a603e7321
PMC10025985
36924620
10_1016_j_ebiom_2023_104512
S2352396423000774
1_s2_0_S2352396423000774
Genre Journal Article
Review
GroupedDBID .1-
.FO
0R~
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M48
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c633t-42b42d5faaeb1866ec2d6d08caeb5136b1103204de7f337cd5ecc12852af7b523
IEDL.DBID DOA
ISICitedReferencesCount 249
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000951710800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-3964
IngestDate Fri Oct 03 12:50:29 EDT 2025
Tue Nov 04 02:06:58 EST 2025
Wed Oct 01 10:53:17 EDT 2025
Thu Jan 02 22:31:41 EST 2025
Tue Nov 18 22:25:07 EST 2025
Thu Nov 13 04:22:41 EST 2025
Tue Jul 25 20:56:41 EDT 2023
Sun Feb 23 10:19:34 EST 2025
Tue Aug 26 16:33:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords AI trustworthiness
AI ethics
Foundation models
Large language models
Augmented human intelligence
Generative artificial intelligence
Information management
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-42b42d5faaeb1866ec2d6d08caeb5136b1103204de7f337cd5ecc12852af7b523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7947-330X
OpenAccessLink https://doaj.org/article/a0f75f60b35544d4a5536a8a603e7321
PMID 36924620
PQID 2789713678
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_a0f75f60b35544d4a5536a8a603e7321
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10025985
proquest_miscellaneous_2789713678
pubmed_primary_36924620
crossref_citationtrail_10_1016_j_ebiom_2023_104512
crossref_primary_10_1016_j_ebiom_2023_104512
elsevier_sciencedirect_doi_10_1016_j_ebiom_2023_104512
elsevier_clinicalkeyesjournals_1_s2_0_S2352396423000774
elsevier_clinicalkey_doi_10_1016_j_ebiom_2023_104512
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle EBioMedicine
PublicationTitleAlternate EBioMedicine
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lin, Hilton, Evans (bib59) 2021
Harrer (bib76) 2021
Bender, Gebru, McMillan-Major, Shmitchell (bib13) 2021
(bib47) 2023
Lardinois (bib30) 2023
Perrigo (bib35) 2023
Pichai (bib3) 2023
Strickland (bib73) 2022
Clynch, Kellett (bib17) 2015; 84
Callaway (bib26) 2022; 608
Lohr (bib66) 2022
Scao, Fan, Akiki (bib12) 2022
(bib37) 2023
Snoswell, Burgess (bib51) 2022
Sevilla, Heim, Ho, Besiroglu, Hobbhahn, Villalobos (bib70) 2022
Verma (bib69) 2022
Heikkilä (bib56) 2022
Vincent (bib41) 2023
Topol (bib31) 2023
Metz (bib44) 2022
OpenAI. Introducing ChatGPT. sourced from
Marcus, Davis (bib48) 2023
Ulloa, Rothrock, Ahmad, Jacobs (bib57) 2022; 4
(bib4) 2022
Newton (bib55) 2023
Blackman, Ammanath (bib58) 2022
Binz, Schulz (bib68) 2023; 120
Gordon (bib23) 2022
Huang, Grady (bib28) 2022
Brown, Mann, Ryder (bib11) 2020; 33
Callaway (bib24) 2022; 609
.
Vincent (bib50) 2022
Goldman (bib49) 2023
Perrigo (bib36) 2023
Kovanovic (bib29) 2023
Heikkilä (bib52) 2022
(bib5) 2023
Harrer, Shah, Antony, Hu (bib22) 2019; 40
Tiernan (bib67) 2022
Tiku, De Vynck, Oremus (bib77) 2023
Gu, Tinn, Cheng (bib72) 2021; 3
Crawford (bib27) 2023
Lee, Yoon, Kim (bib71) 2020; 36
(bib62) 2023
Thoppilan, De Freitas, Hall (bib2) 2022
Miller (bib54) 2023
Dominguez (bib65) 2022
Wiggers (bib53) 2022
Lyons (bib14) 2020
Henry (bib18) 2018
2023.
Philippidis (bib25) 2023
Greene (bib33) 2022
(bib39) 2021
Vishwam (bib42) 2023
Topol (bib75) 2016
Roose (bib15) 2022
Lipman, Distler (bib40) 2023
Larsen, Narayan (bib46) 2023
Broderick (bib32) 2022
Vincent (bib43) 2023
Singhal, Azizi, Tu (bib6) 2022
Luo, Sun, Xia (bib8) 2022; 23
Vaswani, Shazeer, Parmar (bib9) 2017; 30
Komorowski, Celi, Badawi, Gordon, Faisal (bib63) 2018; 24
Zhavoronkov (bib38) 2023
(bib16) 1988
Devlin, Chang, Lee, Toutanova (bib10) 2018
Acosta, Falcone, Rajpurkar, Topol (bib74) 2022; 28
Hosurmath, Bhojwani, Kumar (bib60) 2021
(bib45) 2022
Rushabh, Simar (bib21) 2023
Christian (bib64) 2020
Kung, Cheatham, Medinilla (bib7) 2022
Croak, Gennai (bib61) 2023
Shen, Heacock, Elias (bib19) 2023
Jeblick, Schachtner, Dexl (bib20) 2022
Gharpure, Hunter, Schnall (bib34) 2020; 69
Broderick (10.1016/j.ebiom.2023.104512_bib32) 2022
Pichai (10.1016/j.ebiom.2023.104512_bib3) 2023
Acosta (10.1016/j.ebiom.2023.104512_bib74) 2022; 28
Thoppilan (10.1016/j.ebiom.2023.104512_bib2) 2022
(10.1016/j.ebiom.2023.104512_bib39) 2021
Marcus (10.1016/j.ebiom.2023.104512_bib48) 2023
Lyons (10.1016/j.ebiom.2023.104512_bib14) 2020
Kung (10.1016/j.ebiom.2023.104512_bib7) 2022
Wiggers (10.1016/j.ebiom.2023.104512_bib53) 2022
Jeblick (10.1016/j.ebiom.2023.104512_bib20) 2022
Gordon (10.1016/j.ebiom.2023.104512_bib23) 2022
Larsen (10.1016/j.ebiom.2023.104512_bib46) 2023
Strickland (10.1016/j.ebiom.2023.104512_bib73) 2022
Bender (10.1016/j.ebiom.2023.104512_bib13) 2021
Scao (10.1016/j.ebiom.2023.104512_bib12) 2022
Vishwam (10.1016/j.ebiom.2023.104512_bib42) 2023
Devlin (10.1016/j.ebiom.2023.104512_bib10) 2018
Greene (10.1016/j.ebiom.2023.104512_bib33) 2022
Lohr (10.1016/j.ebiom.2023.104512_bib66) 2022
Henry (10.1016/j.ebiom.2023.104512_bib18) 2018
Crawford (10.1016/j.ebiom.2023.104512_bib27) 2023
Croak (10.1016/j.ebiom.2023.104512_bib61) 2023
Lee (10.1016/j.ebiom.2023.104512_bib71) 2020; 36
Shen (10.1016/j.ebiom.2023.104512_bib19) 2023
Verma (10.1016/j.ebiom.2023.104512_bib69) 2022
Vaswani (10.1016/j.ebiom.2023.104512_bib9) 2017; 30
Metz (10.1016/j.ebiom.2023.104512_bib44) 2022
Luo (10.1016/j.ebiom.2023.104512_bib8) 2022; 23
Callaway (10.1016/j.ebiom.2023.104512_bib24) 2022; 609
(10.1016/j.ebiom.2023.104512_bib45) 2022
Harrer (10.1016/j.ebiom.2023.104512_bib22) 2019; 40
Hosurmath (10.1016/j.ebiom.2023.104512_bib60) 2021
Kovanovic (10.1016/j.ebiom.2023.104512_bib29) 2023
Binz (10.1016/j.ebiom.2023.104512_bib68) 2023; 120
Zhavoronkov (10.1016/j.ebiom.2023.104512_bib38) 2023
Rushabh (10.1016/j.ebiom.2023.104512_bib21)
Tiernan (10.1016/j.ebiom.2023.104512_bib67) 2022
Philippidis (10.1016/j.ebiom.2023.104512_bib25) 2023
Heikkilä (10.1016/j.ebiom.2023.104512_bib56) 2022
Dominguez (10.1016/j.ebiom.2023.104512_bib65) 2022
Goldman (10.1016/j.ebiom.2023.104512_bib49) 2023
Callaway (10.1016/j.ebiom.2023.104512_bib26) 2022; 608
Vincent (10.1016/j.ebiom.2023.104512_bib43) 2023
Singhal (10.1016/j.ebiom.2023.104512_bib6) 2022
Heikkilä (10.1016/j.ebiom.2023.104512_bib52) 2022
Brown (10.1016/j.ebiom.2023.104512_bib11) 2020; 33
Clynch (10.1016/j.ebiom.2023.104512_bib17) 2015; 84
Lipman (10.1016/j.ebiom.2023.104512_bib40) 2023
Vincent (10.1016/j.ebiom.2023.104512_bib50) 2022
Newton (10.1016/j.ebiom.2023.104512_bib55) 2023
Gharpure (10.1016/j.ebiom.2023.104512_bib34) 2020; 69
(10.1016/j.ebiom.2023.104512_bib47) 2023
Perrigo (10.1016/j.ebiom.2023.104512_bib35) 2023
10.1016/j.ebiom.2023.104512_bib1
(10.1016/j.ebiom.2023.104512_bib37) 2023
(10.1016/j.ebiom.2023.104512_bib16) 1988
Harrer (10.1016/j.ebiom.2023.104512_bib76) 2021
Ulloa (10.1016/j.ebiom.2023.104512_bib57) 2022; 4
Snoswell (10.1016/j.ebiom.2023.104512_bib51) 2022
Vincent (10.1016/j.ebiom.2023.104512_bib41) 2023
Topol (10.1016/j.ebiom.2023.104512_bib31) 2023
Komorowski (10.1016/j.ebiom.2023.104512_bib63) 2018; 24
Gu (10.1016/j.ebiom.2023.104512_bib72) 2021; 3
Christian (10.1016/j.ebiom.2023.104512_bib64) 2020
Blackman (10.1016/j.ebiom.2023.104512_bib58) 2022
Sevilla (10.1016/j.ebiom.2023.104512_bib70) 2022
Topol (10.1016/j.ebiom.2023.104512_bib75) 2016
Tiku (10.1016/j.ebiom.2023.104512_bib77) 2023
Roose (10.1016/j.ebiom.2023.104512_bib15) 2022
Perrigo (10.1016/j.ebiom.2023.104512_bib36) 2023
Lardinois (10.1016/j.ebiom.2023.104512_bib30) 2023
Lin (10.1016/j.ebiom.2023.104512_bib59) 2021
Miller (10.1016/j.ebiom.2023.104512_bib54) 2023
Huang (10.1016/j.ebiom.2023.104512_bib28) 2022
37327676 - EBioMedicine. 2023 Jul;93:104671. doi: 10.1016/j.ebiom.2023.104671
References_xml – volume: 84
  start-page: 221
  year: 2015
  end-page: 228
  ident: bib17
  article-title: Medical documentation: part of the solution, or part of the problem? A narrative review of the literature on the time spent on and value of medical documentation
  publication-title: Int J Med Inform
– year: 2023
  ident: bib49
  article-title: Stable diffusion AI art lawsuit, plus caution from OpenAI, DeepMind | the AI beat
– start-page: 117
  year: 1988
  end-page: 133
  ident: bib16
  publication-title: "On bullshit". The importance of what we care about: philosophical essays
– year: 2022
  ident: bib69
  article-title: Meta's new AI is skilled at a ruthless, power-seeking game
– year: 2023
  ident: bib46
  article-title: Generative AI, a game-changer that society and industry need to be ready for
– year: 2022
  ident: bib52
  article-title: How AI-generated text is poisoning the internet
– year: 2021
  ident: bib60
  article-title: The AI 360 toolkit: AI models explained
– volume: 40
  start-page: 577
  year: 2019
  end-page: 591
  ident: bib22
  article-title: Artificial intelligence for clinical trial design
  publication-title: Trends Pharmacol Sci
– volume: 30
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib9
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Process Syst
– volume: 69
  start-page: 705
  year: 2020
  end-page: 709
  ident: bib34
  article-title: Knowledge and practices regarding safe household cleaning and disinfection for COVID-19 prevention – United States, May 2020
  publication-title: MMWR Morb Mortal Wkly Rep
– year: 2023
  ident: bib3
  article-title: An important next step on our AI journey
– year: 2023
  ident: bib21
  article-title: Promises – and pitfalls – of ChatGPT-assisted medicine
– year: 2021
  ident: bib59
  article-title: TruthfulQA: measuring how models mimic human falsehoods
  publication-title: arXiv
– volume: 3
  start-page: 1
  year: 2021
  end-page: 23
  ident: bib72
  article-title: Domain-specific language model pretraining for biomedical natural language processing
  publication-title: ACM Trans Comput Healthc
– year: 2022
  ident: bib15
  article-title: A coming-out party for generative AI, Silicon Valley's new craze
– year: 2023
  ident: bib29
  article-title: The dawn of AI has come, and its implications for education couldn't be more significant
– year: 2022
  ident: bib51
  article-title: A galaxy of deep science fakes: the problems with Galactica AI
– year: 2023
  ident: bib36
  article-title: DeepMind's CEO helped take AI mainstream. Now he's urging caution
– year: 2022
  ident: bib73
  article-title: Andrew Ng: unbiggen AI
– year: 2022
  ident: bib70
  article-title: Compute trends across three eras of machine learning
  publication-title: arXiv
– year: 2021
  ident: bib76
  article-title: Commercialising digital health: trading on a dynamic data marketplace
– year: 2022
  ident: bib6
  article-title: Large Language models encode clinical knowledge
  publication-title: arXiv
– volume: 23
  year: 2022
  ident: bib8
  article-title: BioGPT: generative pre-trained transformer for biomedical text generation and mining
  publication-title: Brief Bioinform
– start-page: 610
  year: 2021
  end-page: 623
  ident: bib13
  article-title: On the dangers of stochastic parrots: can language models be too big?
  publication-title: Proceedings of the 2021 ACM Conference on fairness, accountability, and transparency
– year: 2018
  ident: bib18
  publication-title: Do you spend more time on administrative tasks than your peers
– year: 2022
  ident: bib12
  article-title: Bloom: a 176b-parameter open-access multilingual language model
  publication-title: arXiv
– year: 2020
  ident: bib64
  article-title: The Alignment Problem: machine learning and human values
– reference: OpenAI. Introducing ChatGPT. sourced from:
– year: 2023
  ident: bib47
  article-title: We forgot to give neural networks the ability to forget
– year: 2022
  ident: bib58
  article-title: When – and why – you should explain how your AI works
– year: 2023
  ident: bib55
  article-title: Can ‘radioactive data’ save the internet from AI's influence?
– year: 2021
  ident: bib39
  publication-title: Ethics and governance of artificial intelligence for health: WHO guidance
– year: 2022
  ident: bib65
  article-title: OpenAI introduces InstructGPT language model to follow human instructions
– volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  ident: bib11
  article-title: Language models are few-shot learners
  publication-title: Adv Neural Inf Process Syst
– year: 2023
  ident: bib5
  article-title: Dall·E 2
– volume: 24
  start-page: 1716
  year: 2018
  end-page: 1720
  ident: bib63
  article-title: The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care
  publication-title: Nat Med
– year: 2023
  ident: bib48
  article-title: Large language models like ChatGPT say the darnedest things – ChatGPT/LLM errors tracker
– volume: 28
  start-page: 1773
  year: 2022
  end-page: 1784
  ident: bib74
  article-title: Multimodal biomedical AI
  publication-title: Nat Med
– year: 2023
  ident: bib41
  article-title: Top AI conference bans use of ChatGPT and AI language tools to write academic papers
– year: 2022
  ident: bib20
  article-title: ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports
  publication-title: arXiv
– reference: ; 2023.
– year: 2023
  ident: bib38
  article-title: Caution with AI-generated content in biomedicine
  publication-title: Nature
– volume: 120
  year: 2023
  ident: bib68
  article-title: Using cognitive psychology to understand GPT-3
  publication-title: Proc Natl Acad Sci U S A
– year: 2022
  ident: bib4
  article-title: Stable diffusion v2.1 and DreamStudio updates
– year: 2023
  ident: bib25
  article-title: Insilico gains FDA's first orphan drug designation for AI candidate
– year: 2022
  ident: bib7
  article-title: Performance of ChatGPT on USMLE: potential for AI-assisted medical education using Large Language Models
  publication-title: medRxiv
– year: 2022
  ident: bib56
  article-title: Inside a radical new project to democratize AI
– start-page: 230163
  year: 2023
  ident: bib19
  article-title: ChatGPT and other Large Language Models are double-edged swords
  publication-title: Radiology
– year: 2023
  ident: bib40
  article-title: Schools shouldn't ban access to ChatGPT
– volume: 609
  start-page: 661
  year: 2022
  ident: bib24
  article-title: Scientists are using AI to dream up revolutionary new proteins
  publication-title: Nature
– year: 2023
  ident: bib62
  article-title: Responsible AI resources
– volume: 608
  start-page: 15
  year: 2022
  ident: bib26
  article-title: ‘The entire protein universe’: AI predicts shape of nearly every known protein
  publication-title: Nature
– year: 2023
  ident: bib35
  article-title: OpenAI used Kenyan workers on less than $2 per hour
– year: 2022
  ident: bib28
  article-title: Generative AI: a creative new world
– year: 2018
  ident: bib10
  article-title: Bert: pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv
– year: 2023
  ident: bib43
  article-title: AI art tools Stable Diffusion and Midjourney targeted with copyright lawsuit
– year: 2016
  ident: bib75
  article-title: The patient will see you now
– year: 2022
  ident: bib44
  article-title: Lawsuit takes aim at the way AI is built
– year: 2023
  ident: bib61
  article-title: Responsible AI: looking back at 2022, and to the future
– year: 2020
  ident: bib14
  article-title: Timnit Gebru's actual paper may explain why Google ejected her
– year: 2022
  ident: bib32
  article-title: The wild world of PromptBase, the ebay for generative AI prompts
– year: 2023
  ident: bib37
  article-title: A sceptical take on the AI revolution
– year: 2022
  ident: bib23
  article-title: Large language models help decipher clinical notes
– year: 2022
  ident: bib66
  article-title: One man's dream of fusing AI with common sense
– reference: .
– year: 2023
  ident: bib31
  article-title: When M.D. Is a machine doctor
– volume: 36
  start-page: 1234
  year: 2020
  end-page: 1240
  ident: bib71
  article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
– year: 2022
  ident: bib33
  article-title: Meta takes new AI system offline because Twitter users are mean
– year: 2023
  ident: bib27
  article-title: AlphaFold works with other AI tools to go from target to hit moleculer in 30 days
– year: 2022
  ident: bib45
  article-title: Blueprint for trustworthy AI implementation guidance and assurance for healthcare
– year: 2022
  ident: bib50
  article-title: The scary truth about AI copyright is nobody knows what will happen next
– year: 2022
  ident: bib67
  article-title: Meta's AI guru LeCun: most of today's AI approaches will never lead to true intelligence
– year: 2023
  ident: bib77
  article-title: Big Tech was moving cautiously on AI. Then came ChatGPT
– year: 2022
  ident: bib53
  article-title: OpenAI's attempts to watermark AI text hit limits
– year: 2023
  ident: bib30
  article-title: Microsoft launches the new BING, with ChatGPT built in
– year: 2023
  ident: bib42
  article-title: Scientific journals ban ChatGPT use by researchers to author studies
– year: 2022
  ident: bib2
  article-title: Lamda: language models for dialog applications
  publication-title: arXiv
– year: 2023
  ident: bib54
  article-title: Human writer or AI? Scholars build a detection tool
– volume: 4
  start-page: 157
  year: 2022
  ident: bib57
  article-title: Invisible clinical labor driving the successful integration of AI in healthcare
  publication-title: Front Comput Sci
– year: 2018
  ident: 10.1016/j.ebiom.2023.104512_bib10
  article-title: Bert: pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv
– ident: 10.1016/j.ebiom.2023.104512_bib21
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib52
– volume: 36
  start-page: 1234
  issue: 4
  year: 2020
  ident: 10.1016/j.ebiom.2023.104512_bib71
  article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib41
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib43
– volume: 608
  start-page: 15
  issue: 7921
  year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib26
  article-title: ‘The entire protein universe’: AI predicts shape of nearly every known protein
  publication-title: Nature
  doi: 10.1038/d41586-022-02083-2
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib30
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib42
– volume: 24
  start-page: 1716
  issue: 11
  year: 2018
  ident: 10.1016/j.ebiom.2023.104512_bib63
  article-title: The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0213-5
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib67
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib12
  article-title: Bloom: a 176b-parameter open-access multilingual language model
  publication-title: arXiv
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib25
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib58
– ident: 10.1016/j.ebiom.2023.104512_bib1
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib48
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib7
  article-title: Performance of ChatGPT on USMLE: potential for AI-assisted medical education using Large Language Models
  publication-title: medRxiv
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib33
– year: 2021
  ident: 10.1016/j.ebiom.2023.104512_bib60
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib66
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib28
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib55
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib3
– year: 2021
  ident: 10.1016/j.ebiom.2023.104512_bib39
– year: 2020
  ident: 10.1016/j.ebiom.2023.104512_bib14
– start-page: 610
  year: 2021
  ident: 10.1016/j.ebiom.2023.104512_bib13
  article-title: On the dangers of stochastic parrots: can language models be too big?
– volume: 4
  start-page: 157
  year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib57
  article-title: Invisible clinical labor driving the successful integration of AI in healthcare
  publication-title: Front Comput Sci
  doi: 10.3389/fcomp.2022.1045704
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib38
  article-title: Caution with AI-generated content in biomedicine
  publication-title: Nature
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib36
– volume: 33
  start-page: 1877
  year: 2020
  ident: 10.1016/j.ebiom.2023.104512_bib11
  article-title: Language models are few-shot learners
  publication-title: Adv Neural Inf Process Syst
– volume: 30
  start-page: 1
  year: 2017
  ident: 10.1016/j.ebiom.2023.104512_bib9
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Process Syst
– year: 2021
  ident: 10.1016/j.ebiom.2023.104512_bib59
  article-title: TruthfulQA: measuring how models mimic human falsehoods
  publication-title: arXiv
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib61
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib20
  article-title: ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports
  publication-title: arXiv
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib27
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib47
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib6
  article-title: Large Language models encode clinical knowledge
  publication-title: arXiv
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib69
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib56
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib29
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib32
– start-page: 230163
  year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib19
  article-title: ChatGPT and other Large Language Models are double-edged swords
  publication-title: Radiology
  doi: 10.1148/radiol.230163
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib53
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib15
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib65
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib46
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib73
– volume: 23
  issue: 6
  year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib8
  article-title: BioGPT: generative pre-trained transformer for biomedical text generation and mining
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac409
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib37
– volume: 69
  start-page: 705
  issue: 23
  year: 2020
  ident: 10.1016/j.ebiom.2023.104512_bib34
  article-title: Knowledge and practices regarding safe household cleaning and disinfection for COVID-19 prevention – United States, May 2020
  publication-title: MMWR Morb Mortal Wkly Rep
  doi: 10.15585/mmwr.mm6923e2
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib70
  article-title: Compute trends across three eras of machine learning
  publication-title: arXiv
– volume: 28
  start-page: 1773
  issue: 9
  year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib74
  article-title: Multimodal biomedical AI
  publication-title: Nat Med
  doi: 10.1038/s41591-022-01981-2
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib77
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib40
– volume: 40
  start-page: 577
  issue: 8
  year: 2019
  ident: 10.1016/j.ebiom.2023.104512_bib22
  article-title: Artificial intelligence for clinical trial design
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2019.05.005
– year: 2018
  ident: 10.1016/j.ebiom.2023.104512_bib18
– volume: 84
  start-page: 221
  issue: 4
  year: 2015
  ident: 10.1016/j.ebiom.2023.104512_bib17
  article-title: Medical documentation: part of the solution, or part of the problem? A narrative review of the literature on the time spent on and value of medical documentation
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2014.12.001
– volume: 609
  start-page: 661
  year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib24
  article-title: Scientists are using AI to dream up revolutionary new proteins
  publication-title: Nature
  doi: 10.1038/d41586-022-02947-7
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib45
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib51
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib23
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib35
– year: 2020
  ident: 10.1016/j.ebiom.2023.104512_bib64
– year: 2021
  ident: 10.1016/j.ebiom.2023.104512_bib76
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib44
– year: 2016
  ident: 10.1016/j.ebiom.2023.104512_bib75
– volume: 120
  issue: 6
  year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib68
  article-title: Using cognitive psychology to understand GPT-3
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2218523120
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib49
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib50
– volume: 3
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.ebiom.2023.104512_bib72
  article-title: Domain-specific language model pretraining for biomedical natural language processing
  publication-title: ACM Trans Comput Healthc
  doi: 10.1145/3458754
– start-page: 117
  year: 1988
  ident: 10.1016/j.ebiom.2023.104512_bib16
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib31
– year: 2023
  ident: 10.1016/j.ebiom.2023.104512_bib54
– year: 2022
  ident: 10.1016/j.ebiom.2023.104512_bib2
  article-title: Lamda: language models for dialog applications
  publication-title: arXiv
– reference: 37327676 - EBioMedicine. 2023 Jul;93:104671. doi: 10.1016/j.ebiom.2023.104671
SSID ssj0001542358
Score 2.666098
SecondaryResourceType review_article
Snippet Large Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text, imagery,...
SummaryLarge Language Models (LLMs) are a key component of generative artificial intelligence (AI) applications for creating new content including text,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104512
SubjectTerms Advanced Basic Science
AI ethics
AI trustworthiness
Artificial Intelligence
Attention
Augmented human intelligence
Delivery of Health Care
Foundation models
Generative artificial intelligence
Humans
Information management
Internal Medicine
Language
Large language models
Medicine
Personal View
Title Attention is not all you need: the complicated case of ethically using large language models in healthcare and medicine
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2352396423000774
https://www.clinicalkey.es/playcontent/1-s2.0-S2352396423000774
https://dx.doi.org/10.1016/j.ebiom.2023.104512
https://www.ncbi.nlm.nih.gov/pubmed/36924620
https://www.proquest.com/docview/2789713678
https://pubmed.ncbi.nlm.nih.gov/PMC10025985
https://doaj.org/article/a0f75f60b35544d4a5536a8a603e7321
Volume 90
WOSCitedRecordID wos000951710800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-3964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001542358
  issn: 2352-3964
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgAokL4psUqIzEkUDi73AriIoDqpAAaW-WYzt0q1WCmizV_ns8dhJtALUXjrtrb5SZF884fvMGoVcyRDVqw5Pmy7LKmWrKXHHX5JTLShFTe29j15LP8vRUrVbVl71WX8AJS_LAyXBvTdFI3oiihsDIHDOcU2GUEQX1ksYSclLIam8zleqDGdSAxs5ynOS0EmySHIrkLg_F7W-gdTgccvKSLMJSVO9fRKe_s88_SZR7UenkHro7ppP4ON3GfXTDtw_Q7dRgcvcQXR4PQ-Iz4nWP227AZrPBu26L2xC13uGQ_eGZVO4dtiGm4a7BHljwYegOAy_-B94AXxxP7zZxbJ_T43WLz2b6GDatw9NJ_SP0_eTjtw-f8rHVQm4FpUPOSM2I440xYe1WQnhLnHCFsuEzL6moSxDeK5jzsqFUWseD60No48Q0sg6b2cfooO1a_xRhUzeVo5B72DBeuIrzuvCGVTWnzNsqQ2SytLajDjm0w9joiXB2rqN7NLhHJ_dk6PU86WeS4bh6-Htw4TwUNLTjFwFZekSWvg5ZGWITAPRUphoW1vBH66uvLf81zffj4tDrUvdEF_orQBOQSaK1JMuQmGeO-U_Ka66_5MsJnzqsDnDkY1rfbXsNdc4SVPlUhp4kvM5GoSLsvQUpMqQWSF5YbflLuz6LCuSg28srxQ__h52foTtwL4kO9RwdDBdb_wLdsr-GdX9xhG7KlTqKT_dvonhQXg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+is+not+all+you+need%3A+the+complicated+case+of+ethically+using+large+language+models+in+healthcare+and+medicine&rft.jtitle=EBioMedicine&rft.au=Harrer%2C+Stefan&rft.date=2023-04-01&rft.pub=Elsevier+B.V&rft.issn=2352-3964&rft.eissn=2352-3964&rft.volume=90&rft_id=info:doi/10.1016%2Fj.ebiom.2023.104512&rft.externalDocID=S2352396423000774
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23523964%2Fcov200h.gif