EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation

Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown fea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TheScientificWorld Jg. 2014; H. 2014; S. 1 - 10
Hauptverfasser: Jirayucharoensak, Suwicha, Israsena, P., Pan-ngum, Setha
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 01.01.2014
John Wiley & Sons, Inc
Wiley
Schlagworte:
ISSN:2356-6140, 1537-744X, 1537-744X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers.
AbstractList Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers.
Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers.Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers.
Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers.
Audience Academic
Author Jirayucharoensak, Suwicha
Pan-ngum, Setha
Israsena, P.
AuthorAffiliation 2 National Electronics and Computer Technology Center, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
1 Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
AuthorAffiliation_xml – name: 1 Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
– name: 2 National Electronics and Computer Technology Center, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
Author_xml – sequence: 1
  fullname: Jirayucharoensak, Suwicha
– sequence: 2
  fullname: Israsena, P.
– sequence: 3
  fullname: Pan-ngum, Setha
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25258728$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAQgCNURB9w4o4icUGgtH4nuVRalqVUWgECKnGzZm1n10tiByfbFf8ep9lCt6pU5eBHvvk0M57j5MB5Z5LkJUanGHN-RhBmZ4LkRUmeJEeY0zzLGft5kBwRykUmMEOHyXHXrRGiRY75s-SQcMKLnBRHSTebXWTvoTM6nTW-t96l34zyS2dv9leddcv0gzFtOjcQ3HD6bPqtD7_Sre1X6ddgnbIt1OnUN21MzPXpqJv6awgWepN-X9mqTyca2h4G6_PkaQV1Z17s1pPk6uPsx_RTNv9ycTmdzDMlKO0zylDOK8Yo1QKKAtOqZLAwBpdYFYBKZLjSOpYKguclAqSIqgqhF4XBCISmJ8nl6NUe1rINtoHwR3qw8ubCh6WE0FtVG0k4VawyUOGqYBwZoEjEjVIQe6gZia7z0dVuFo3RKtYZoN6T7v9xdiWX_loyHLOjZRS82QmC_70xXS8b2ylT1-CM33QSi5KVOckRexzlQjBUFrmI6Ot76NpvgotdHShcMhwr-08tIdZqXeVjimqQygnDNMckcpE6fYCKnzaNVfFpKxvv9wJe3e3Jv2bcTlcE8Aio4LsumEoqO45ANNtaYiSHCZbDBMtxgmPMu3sxt9qH6bcjvbJOw9Y-Au_yNRExFdyBOWIY0b9n1gSl
CitedBy_id crossref_primary_10_1088_1741_2552_ab260c
crossref_primary_10_3390_app14178091
crossref_primary_10_3390_a10020063
crossref_primary_10_1016_j_chb_2016_08_029
crossref_primary_10_1515_bmt_2020_0038
crossref_primary_10_1002_mp_16831
crossref_primary_10_1109_ACCESS_2021_3105917
crossref_primary_10_1109_TAFFC_2018_2890471
crossref_primary_10_1109_JBHI_2018_2870963
crossref_primary_10_3390_e21060609
crossref_primary_10_3390_bioengineering11050421
crossref_primary_10_1007_s11042_023_14489_9
crossref_primary_10_1038_s41598_022_18257_x
crossref_primary_10_1109_ACCESS_2024_3476960
crossref_primary_10_1007_s00521_015_2170_y
crossref_primary_10_1007_s11042_016_3608_7
crossref_primary_10_1155_2022_3517872
crossref_primary_10_1016_j_artmed_2021_102063
crossref_primary_10_1111_aor_13153
crossref_primary_10_1016_j_neucom_2017_05_002
crossref_primary_10_1155_2018_6740846
crossref_primary_10_1016_j_brainres_2024_149423
crossref_primary_10_3390_app9081526
crossref_primary_10_1109_TCDS_2021_3098842
crossref_primary_10_1007_s00521_016_2731_8
crossref_primary_10_1016_j_cmpb_2017_10_018
crossref_primary_10_1007_s12264_024_01319_7
crossref_primary_10_1016_j_knosys_2022_108556
crossref_primary_10_3390_s19214736
crossref_primary_10_1109_ACCESS_2019_2900127
crossref_primary_10_3390_s19092212
crossref_primary_10_1016_j_asoc_2022_108416
crossref_primary_10_1109_TNSRE_2021_3111689
crossref_primary_10_1515_bams_2020_0051
crossref_primary_10_1080_10494820_2021_1984255
crossref_primary_10_1016_j_neucom_2022_09_078
crossref_primary_10_1109_TNSRE_2016_2601240
crossref_primary_10_1515_bmt_2020_0295
crossref_primary_10_1109_TAFFC_2020_3023966
crossref_primary_10_1109_TNSRE_2019_2940485
crossref_primary_10_1109_TETCI_2019_2937566
crossref_primary_10_1109_TAFFC_2017_2714671
crossref_primary_10_1007_s42600_024_00351_w
crossref_primary_10_3390_s21103414
crossref_primary_10_1016_j_compind_2017_04_005
crossref_primary_10_3390_informatics7010006
crossref_primary_10_1007_s12065_022_00802_2
crossref_primary_10_1109_LSP_2021_3049683
crossref_primary_10_3390_e24091187
crossref_primary_10_1186_s12859_017_1964_6
crossref_primary_10_1016_j_compbiomed_2017_10_025
crossref_primary_10_3390_app9235078
crossref_primary_10_1109_TNNLS_2018_2790388
crossref_primary_10_1109_ACCESS_2020_3027026
crossref_primary_10_1109_TCDS_2021_3065200
crossref_primary_10_3390_s17020317
crossref_primary_10_1109_TAFFC_2020_2964549
crossref_primary_10_1109_ACCESS_2022_3146729
crossref_primary_10_1111_coin_12414
crossref_primary_10_1109_TAFFC_2017_2768030
crossref_primary_10_3389_fnins_2019_01278
crossref_primary_10_3390_diagnostics13040640
crossref_primary_10_3390_app9163355
crossref_primary_10_1109_TNNLS_2019_2933882
crossref_primary_10_1186_s40537_020_00289_7
crossref_primary_10_3390_s19245533
crossref_primary_10_1007_s12652_018_1065_z
crossref_primary_10_1109_TBCAS_2021_3089132
crossref_primary_10_1155_2022_6000989
crossref_primary_10_1007_s00521_022_06942_x
crossref_primary_10_1145_3448302
crossref_primary_10_3389_fnins_2020_00808
crossref_primary_10_1155_2015_386057
crossref_primary_10_1162_neco_a_01526
crossref_primary_10_3390_s20236727
crossref_primary_10_1088_1361_6501_ac27ea
crossref_primary_10_1016_j_bspc_2021_103407
crossref_primary_10_1109_TAFFC_2017_2660485
crossref_primary_10_1016_j_apacoust_2020_107840
crossref_primary_10_1109_ACCESS_2021_3091487
crossref_primary_10_1109_TNNLS_2022_3214225
crossref_primary_10_1515_bmt_2019_0306
crossref_primary_10_1007_s10489_023_04551_2
crossref_primary_10_1016_j_patrec_2017_06_004
crossref_primary_10_1109_ACCESS_2019_2927768
crossref_primary_10_1109_JBHI_2017_2727218
crossref_primary_10_1007_s12124_020_09592_7
crossref_primary_10_2196_11966
crossref_primary_10_1007_s12559_020_09773_x
crossref_primary_10_1109_TAFFC_2019_2936198
crossref_primary_10_1016_j_bspc_2020_102393
crossref_primary_10_1016_j_dsp_2018_07_003
crossref_primary_10_1049_el_2020_2460
crossref_primary_10_1016_j_jksuci_2024_102013
crossref_primary_10_1007_s11042_018_5618_0
crossref_primary_10_1155_2020_6816502
crossref_primary_10_1016_j_neucom_2017_09_081
crossref_primary_10_1109_JSEN_2020_3020828
crossref_primary_10_3390_electronics12102216
crossref_primary_10_3390_app132111787
crossref_primary_10_3390_s18082739
crossref_primary_10_1109_ACCESS_2020_2986504
crossref_primary_10_1016_j_nicl_2019_101684
crossref_primary_10_1016_j_inffus_2024_102753
crossref_primary_10_1109_TCDS_2020_2976112
crossref_primary_10_3390_s20102860
crossref_primary_10_1109_ACCESS_2021_3051808
crossref_primary_10_1016_j_advms_2018_08_003
crossref_primary_10_3390_make4040053
crossref_primary_10_3390_s20164543
crossref_primary_10_1109_JBHI_2019_2894713
crossref_primary_10_1109_ACCESS_2022_3155647
crossref_primary_10_1016_j_neuri_2023_100126
crossref_primary_10_3390_agriculture12010037
crossref_primary_10_1016_j_bica_2018_04_012
crossref_primary_10_1109_TAFFC_2019_2943551
crossref_primary_10_1007_s10044_019_00860_w
crossref_primary_10_1007_s12652_020_02338_8
crossref_primary_10_1016_j_bspc_2021_102996
crossref_primary_10_1016_j_bspc_2021_102755
crossref_primary_10_1109_TNSRE_2018_2864119
crossref_primary_10_3389_fnsys_2021_729707
crossref_primary_10_3390_electronics11203316
crossref_primary_10_1109_TBME_2019_2898871
crossref_primary_10_1007_s11042_023_14354_9
crossref_primary_10_1016_j_eswa_2020_114516
crossref_primary_10_1007_s13042_021_01414_5
crossref_primary_10_1088_1741_2560_14_1_016003
crossref_primary_10_1007_s10044_016_0567_6
crossref_primary_10_1016_j_compbiomed_2022_105327
crossref_primary_10_1007_s10472_019_09668_0
crossref_primary_10_1007_s10462_019_09716_5
crossref_primary_10_1016_j_compeleceng_2018_03_015
crossref_primary_10_3390_s20154271
crossref_primary_10_1088_1741_2552_aaaf82
crossref_primary_10_1088_1741_2552_aaf3f6
crossref_primary_10_1109_ACCESS_2023_3270177
crossref_primary_10_1109_TASE_2020_3021456
crossref_primary_10_1109_TAFFC_2017_2786207
crossref_primary_10_1007_s11042_022_13405_x
crossref_primary_10_1016_j_bspc_2024_106957
crossref_primary_10_1016_j_measurement_2017_06_006
crossref_primary_10_1109_JSEN_2025_3553489
crossref_primary_10_1016_j_neunet_2023_06_040
crossref_primary_10_1109_ACCESS_2019_2936817
crossref_primary_10_3390_math9060593
crossref_primary_10_1145_3366484
crossref_primary_10_3390_sym12010021
crossref_primary_10_3390_s19235218
crossref_primary_10_1007_s12559_017_9533_x
crossref_primary_10_1038_s41467_023_44614_z
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1007_s13042_020_01205_4
crossref_primary_10_1111_pcn_12799
crossref_primary_10_1109_ACCESS_2019_2950366
crossref_primary_10_1109_TAFFC_2018_2790939
crossref_primary_10_3390_bs13090765
crossref_primary_10_1016_j_eswa_2020_114011
crossref_primary_10_1007_s42979_021_00678_6
crossref_primary_10_1109_ACCESS_2023_3339665
crossref_primary_10_3389_fnhum_2023_1153413
crossref_primary_10_1088_1741_2552_ab0ab5
crossref_primary_10_3390_app15168983
crossref_primary_10_3390_s20123516
crossref_primary_10_1002_cpe_5199
crossref_primary_10_1007_s10916_019_1345_y
crossref_primary_10_3390_info11040212
crossref_primary_10_1007_s11042_020_10043_z
crossref_primary_10_1109_ACCESS_2016_2576598
crossref_primary_10_1007_s11042_020_08714_y
crossref_primary_10_1007_s11042_023_16941_2
crossref_primary_10_3390_cancers11060756
crossref_primary_10_1016_j_jksuci_2019_11_003
crossref_primary_10_1016_j_bspc_2019_101732
crossref_primary_10_1007_s11042_020_08844_3
crossref_primary_10_1007_s11042_016_3444_9
crossref_primary_10_3390_app7121239
crossref_primary_10_1007_s12553_016_0129_3
crossref_primary_10_1016_j_compbiomed_2020_104001
crossref_primary_10_1016_j_compbiomed_2023_107135
crossref_primary_10_1093_bib_bbw068
crossref_primary_10_3390_diagnostics13111936
crossref_primary_10_3390_s23031255
crossref_primary_10_1016_j_cmpb_2018_04_005
crossref_primary_10_3390_brainsci10110781
crossref_primary_10_1109_ACCESS_2025_3592336
crossref_primary_10_3390_s19132999
crossref_primary_10_3389_fncom_2016_00055
crossref_primary_10_1016_j_compbiomed_2021_104757
crossref_primary_10_1109_ACCESS_2020_3021994
crossref_primary_10_1016_j_procs_2022_09_367
crossref_primary_10_3390_app8101992
crossref_primary_10_1016_j_measurement_2022_111738
crossref_primary_10_1111_epi_13907
crossref_primary_10_1177_1550059420916634
crossref_primary_10_1109_ACCESS_2019_2908285
crossref_primary_10_3389_fnbot_2019_00046
crossref_primary_10_1007_s10111_017_0450_2
crossref_primary_10_3390_s20020496
crossref_primary_10_1155_2021_6198317
crossref_primary_10_3390_app10217677
crossref_primary_10_1038_s44222_024_00180_7
crossref_primary_10_1016_j_ifacol_2023_10_486
crossref_primary_10_3389_fnins_2022_912798
crossref_primary_10_1016_j_jvcir_2019_01_013
crossref_primary_10_1109_ACCESS_2020_2980893
crossref_primary_10_1080_01969722_2021_2008685
crossref_primary_10_1007_s12008_018_0473_9
crossref_primary_10_1007_s40815_018_0567_3
crossref_primary_10_3390_s22249744
crossref_primary_10_3390_s19194079
Cites_doi 10.1155/2012/107046
10.1145/1961189.1961199
10.1109/TBME.2013.2253608
10.1186/1687-6180-2012-129
10.1007/978-3-642-10439-8_6
10.1109/T-AFFC.2011.15
10.1016/j.ijhcs.2009.03.005
10.1155/2013/618649
10.1097/00004691-199104000-00007
10.1016/0893-6080(89)90014-2
10.1007/978-1-4757-1904-8
10.1109/T-AFFC.2011.25
10.1109/TSMCA.2011.2116000
10.1162/neco.2006.18.7.1527
10.1088/1741-2560/8/3/036015
ContentType Journal Article
Copyright Copyright © 2014 Suwicha Jirayucharoensak et al.
COPYRIGHT 2014 John Wiley & Sons, Inc.
Copyright © 2014 Suwicha Jirayucharoensak et al. Suwicha Jirayucharoensak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2014 Suwicha Jirayucharoensak et al. 2014
Copyright_xml – notice: Copyright © 2014 Suwicha Jirayucharoensak et al.
– notice: COPYRIGHT 2014 John Wiley & Sons, Inc.
– notice: Copyright © 2014 Suwicha Jirayucharoensak et al. Suwicha Jirayucharoensak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2014 Suwicha Jirayucharoensak et al. 2014
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TK
7TM
7X2
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
FR3
FYUFA
GHDGH
HCIFZ
K9.
M0K
M0S
M1P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
5PM
DOA
DOI 10.1155/2014/627892
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database (ProQuest)
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Agricultural Science Database
Neurosciences Abstracts
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1537-744X
Editor Tang, Jinshan
Editor_xml – sequence: 1
  givenname: Jinshan
  surname: Tang
  fullname: Tang, Jinshan
EndPage 10
ExternalDocumentID oai_doaj_org_article_253c4feaf1f8450ea306845cca235d42
PMC4165739
3431784211
A413712412
25258728
10_1155_2014_627892
1050410
Genre Journal Article
GroupedDBID 0R~
123
24P
4.4
53G
5VS
7X2
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
AAMMB
AAWTL
ABUWG
ACCMX
ADBBV
ADDVE
ADJCN
ADMLS
ADRAZ
AEFGJ
AEGXH
AEUYN
AFKRA
AFKWF
AFPKN
AGXDD
AHFXO
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DA7
DIK
E3Z
EBD
EBS
EJD
EMOBN
FAC
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEP
IGS
INH
INR
IPNFZ
ITC
KQ8
M0K
M1P
M48
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RIG
RPM
SV3
TUS
UKHRP
3V.
AAJEY
ACHIH
M~E
RHU
RHW
RHX
AAYXX
AFFHD
ALUQN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ID FETCH-LOGICAL-c633t-34075f4433d6a8813f94abee191c8a090e5cdd744a65790a0c2cf86db8e10a6d3
IEDL.DBID 7X7
ISICitedReferencesCount 334
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343573200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2356-6140
1537-744X
IngestDate Tue Oct 14 18:56:29 EDT 2025
Tue Nov 04 01:55:36 EST 2025
Sun Nov 09 14:15:14 EST 2025
Thu Sep 04 20:26:20 EDT 2025
Sat Nov 29 14:43:37 EST 2025
Tue Nov 11 10:55:23 EST 2025
Tue Nov 04 18:22:41 EST 2025
Mon Jul 21 05:44:23 EDT 2025
Tue Nov 18 22:18:02 EST 2025
Sat Nov 29 03:08:09 EST 2025
Sun Jun 02 18:51:10 EDT 2024
Thu Sep 25 15:12:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2014
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-34075f4433d6a8813f94abee191c8a090e5cdd744a65790a0c2cf86db8e10a6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Jinshan Tang
OpenAccessLink https://www.proquest.com/docview/1561941253?pq-origsite=%requestingapplication%
PMID 25258728
PQID 1561941253
PQPubID 1136335
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_253c4feaf1f8450ea306845cca235d42
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4165739
proquest_miscellaneous_1694972704
proquest_miscellaneous_1566409876
proquest_journals_1561941253
gale_infotracmisc_A413712412
gale_infotracacademiconefile_A413712412
pubmed_primary_25258728
crossref_citationtrail_10_1155_2014_627892
crossref_primary_10_1155_2014_627892
hindawi_primary_10_1155_2014_627892
emarefa_primary_1050410
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: United States
– name: Cairo
PublicationTitle TheScientificWorld
PublicationTitleAlternate ScientificWorldJournal
PublicationYear 2014
Publisher Hindawi Publishing Corporation
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: John Wiley & Sons, Inc
– name: Wiley
References (21) 1995; 35
Naveen R. S. Julian A. Brain computing interface for wheel chair control Proceedings of the 4th International Conference on Computing, Communications and Networking Technologies (ICCCNT '13) July 2013 Tiruchengode, India 1 5 10.1109/ICCCNT.2013.6726572
(20) 2012; 3
Li K. Li X. Zhang Y. Affective state recognition from EEG with deep belief networks Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine 2013
(25) 2011; 2
Chanel G. Kronegg J. Grandjean D. Pun T. Gunsel B. Jain A. Tekalp A. M. Sankur B. Emotion assessment: arousal evaluation using EEG's and peripheral physiological signals Multimedia Content Representation, Classification and Security 2006 4105 Berlin, Germany Springer 530 537
(18) 2011; 8
(8) 2009; 67
(14) 2011; 41
(19) 2012; 2012
(28) 2013; 60
(17) 2006; 18
(22) 2012; 2012, article 129
(24) 1989; 2
Koelstra S. Yazdani A. Soleymani M. Single trial classification of EEG and peripheral physiological signals for recognition of emotions induced by music videos Proceedings of the International Conference on Brain Informatics 2010 Toronto, Canada
Wijeratne U. Perera U. Intelligent emotion recognition system using electroencephalography and active shape models Proceedings of the 2nd IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES '12) December 2012 636 641 10.1109/IECBES.2012.6498051 2-s2.0-84876781936
(11) 2013; 2013
Wang X.-W. Nie D. Lu B.-L. Lu B.-L. Zhang L. Kwok J. EEG-based emotion recognition using frequency domain features and support vector machines Neural Information Processing 2011 7062 Berlin, Germany Springer 734 743
Jolliffe I. T. Principal Component Analysis 1986 New York, NY. USA Springer 10.1007/978-1-4757-1904-8 MR841268
Akram F. Metwally M. K. Han H. Jeon H. Kim T. A novel P300-based BCI system for words typing Proceedings of the International Winter Workshop on Brain-Computer Interface (BCI '13) February 2013 24 25 10.1109/IWW-BCI.2013.6506617 2-s2.0-84877701088
AlZoubi O. Calvo R. A. Stevens R. H. Nicholson A. Li X. Classification of EEG for affect recognition: an adaptive approach AI 2009: Advances in Artificial Intelligence 2009 5866 Berlin, Germany Springer 52 61 Lecture Notes in Computer Science
Chung S. Y. Yoon H. J. Affective classification using Bayesian classifier and supervised learning Proceedings of the 12th International Conference on Control, Automation and Systems (ICCAS '12) October 2012 1768 1771 2-s2.0-84872523562
Lotte F. Guan C. Learning from other subjects helps reducing brain-computer interface calibration time Proceedings of the 35th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '10) March 2010 Dallas, Tex, USA 614 617 10.1109/ICASSP.2010.5495183 2-s2.0-78049377043
Wikipedia Electroencephalography March 2014, http://en.wikipedia.org/wiki/Electroencephalography
Nie D. Wang X.-W. Shi L.-C. Lu B.-L. EEG-based emotion recognition during watching movies Proceedings of the 5th International IEEE/EMBS Conference on Neural Engineering (NER '11) May 2011 Cancun, Mexico 667 670 10.1109/NER.2011.5910636 2-s2.0-79960373110
(6) 2012; 3
(3) 1991; 8
Huang D. Guan C. Ang K. K. Zhang H. Pan Y. Asymmetric spatial pattern for EEG-based emotion detection Proceeding of the International Joint Conference on Neural Networks (IJCNN '12) June 2012 Brisbane, Australia 1 7 10.1109/IJCNN.2012.6252390 2-s2.0-84865063644
11
22
23
(13) 2009; 5866
24
14
16
17
28
18
19
(20) 1995; 35
(10) 2011; 7062
6
(12) 2006; 4105
8
21
References_xml – volume: 2
  start-page: 53
  issue: 1
  year: 1989
  end-page: 56
  ident: 24
  article-title: Neural networks and principal component analysis: learning from examples without local minima
– volume: 2
  issue: 3
  year: 2011
  ident: 25
  article-title: LIBSVM: a Library for support vector machines
– volume: 41
  start-page: 1052
  issue: 6
  year: 2011
  end-page: 1063
  ident: 14
  article-title: Emotion assessment from physiological signals for adaptation of game difficulty
– reference: Chanel G. Kronegg J. Grandjean D. Pun T. Gunsel B. Jain A. Tekalp A. M. Sankur B. Emotion assessment: arousal evaluation using EEG's and peripheral physiological signals Multimedia Content Representation, Classification and Security 2006 4105 Berlin, Germany Springer 530 537
– reference: Wang X.-W. Nie D. Lu B.-L. Lu B.-L. Zhang L. Kwok J. EEG-based emotion recognition using frequency domain features and support vector machines Neural Information Processing 2011 7062 Berlin, Germany Springer 734 743
– volume: 3
  start-page: 18
  issue: 1
  year: 2012
  end-page: 31
  ident: 20
  article-title: DEAP: a database for emotion analysis; using physiological signals
– volume: 2013
  year: 2013
  end-page: 12
  ident: 11
  article-title: Real-time EEG-based happiness detection system
– volume: 35
  start-page: 63
  issue: 8
  year: 1995
  end-page: 68
  ident: 21
  article-title: SAM: the self-assessment manikin. An efficient cross-cultural measurement of emotion response
– reference: Chung S. Y. Yoon H. J. Affective classification using Bayesian classifier and supervised learning Proceedings of the 12th International Conference on Control, Automation and Systems (ICCAS '12) October 2012 1768 1771 2-s2.0-84872523562
– volume: 3
  start-page: 42
  issue: 1
  year: 2012
  end-page: 55
  ident: 6
  article-title: A multimodal database for affect recognition and implicit tagging
– volume: 8
  start-page: 200
  issue: 2
  year: 1991
  end-page: 202
  ident: 3
  article-title: American Electroencephalographic Society guidelines for standard electrode position nomenclature
– reference: Koelstra S. Yazdani A. Soleymani M. Single trial classification of EEG and peripheral physiological signals for recognition of emotions induced by music videos Proceedings of the International Conference on Brain Informatics 2010 Toronto, Canada
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  ident: 17
  article-title: A fast learning algorithm for deep belief nets
– reference: Jolliffe I. T. Principal Component Analysis 1986 New York, NY. USA Springer 10.1007/978-1-4757-1904-8 MR841268
– volume: 8
  issue: 3
  year: 2011
  ident: 18
  article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement
– reference: Wikipedia Electroencephalography March 2014, http://en.wikipedia.org/wiki/Electroencephalography
– volume: 60
  start-page: 2289
  issue: 8
  year: 2013
  end-page: 2298
  ident: 28
  article-title: Transferring subspaces between subjects in brain—computer interfacing
– reference: Li K. Li X. Zhang Y. Affective state recognition from EEG with deep belief networks Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine 2013
– reference: Huang D. Guan C. Ang K. K. Zhang H. Pan Y. Asymmetric spatial pattern for EEG-based emotion detection Proceeding of the International Joint Conference on Neural Networks (IJCNN '12) June 2012 Brisbane, Australia 1 7 10.1109/IJCNN.2012.6252390 2-s2.0-84865063644
– reference: AlZoubi O. Calvo R. A. Stevens R. H. Nicholson A. Li X. Classification of EEG for affect recognition: an adaptive approach AI 2009: Advances in Artificial Intelligence 2009 5866 Berlin, Germany Springer 52 61 Lecture Notes in Computer Science
– volume: 2012, article 129
  year: 2012
  ident: 22
  article-title: Principal component based covariate shift adaption to reduce non-stationarity in a MEG-based brain-computer interface
– reference: Nie D. Wang X.-W. Shi L.-C. Lu B.-L. EEG-based emotion recognition during watching movies Proceedings of the 5th International IEEE/EMBS Conference on Neural Engineering (NER '11) May 2011 Cancun, Mexico 667 670 10.1109/NER.2011.5910636 2-s2.0-79960373110
– volume: 67
  start-page: 607
  issue: 8
  year: 2009
  end-page: 627
  ident: 8
  article-title: Short-term emotion assessment in a recall paradigm
– reference: Lotte F. Guan C. Learning from other subjects helps reducing brain-computer interface calibration time Proceedings of the 35th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '10) March 2010 Dallas, Tex, USA 614 617 10.1109/ICASSP.2010.5495183 2-s2.0-78049377043
– volume: 2012
  year: 2012
  end-page: 9
  ident: 19
  article-title: Sleep stage classification using unsupervised feature learning
– reference: Naveen R. S. Julian A. Brain computing interface for wheel chair control Proceedings of the 4th International Conference on Computing, Communications and Networking Technologies (ICCCNT '13) July 2013 Tiruchengode, India 1 5 10.1109/ICCCNT.2013.6726572
– reference: Akram F. Metwally M. K. Han H. Jeon H. Kim T. A novel P300-based BCI system for words typing Proceedings of the International Winter Workshop on Brain-Computer Interface (BCI '13) February 2013 24 25 10.1109/IWW-BCI.2013.6506617 2-s2.0-84877701088
– reference: Wijeratne U. Perera U. Intelligent emotion recognition system using electroencephalography and active shape models Proceedings of the 2nd IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES '12) December 2012 636 641 10.1109/IECBES.2012.6498051 2-s2.0-84876781936
– ident: 18
  doi: 10.1155/2012/107046
– ident: 24
  doi: 10.1145/1961189.1961199
– ident: 28
  doi: 10.1109/TBME.2013.2253608
– ident: 21
  doi: 10.1186/1687-6180-2012-129
– volume: 5866
  start-page: 52
  volume-title: Classification of EEG for affect recognition: an adaptive approach
  year: 2009
  ident: 13
  doi: 10.1007/978-3-642-10439-8_6
– ident: 19
  doi: 10.1109/T-AFFC.2011.15
– ident: 8
  doi: 10.1016/j.ijhcs.2009.03.005
– ident: 11
  doi: 10.1155/2013/618649
– volume: 8
  start-page: 200
  issue: 2
  year: 1991
  ident: 3
  publication-title: Journal of Clinical Neurophysiology
  doi: 10.1097/00004691-199104000-00007
– volume: 35
  start-page: 63
  issue: 8
  year: 1995
  ident: 20
  publication-title: Jounal of Advertising Research
– ident: 23
  doi: 10.1016/0893-6080(89)90014-2
– volume: 4105
  start-page: 530
  volume-title: Emotion assessment: arousal evaluation using EEG's and peripheral physiological signals
  year: 2006
  ident: 12
– ident: 22
  doi: 10.1007/978-1-4757-1904-8
– volume: 7062
  start-page: 734
  volume-title: EEG-based emotion recognition using frequency domain features and support vector machines
  year: 2011
  ident: 10
– ident: 6
  doi: 10.1109/T-AFFC.2011.25
– ident: 14
  doi: 10.1109/TSMCA.2011.2116000
– ident: 16
  doi: 10.1162/neco.2006.18.7.1527
– ident: 17
  doi: 10.1088/1741-2560/8/3/036015
SSID ssj0038715
ssib053847956
Score 2.5174298
Snippet Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
emarefa
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Architectural engineering
Arousal - physiology
Brain research
Classification
Electrodes
Electroencephalography
Electroencephalography - methods
Emotions
Emotions - physiology
Humans
Identification and classification
Methods
Nerve Net
Neural Networks, Computer
Principal Component Analysis - methods
Principal components analysis
Reproducibility of Results
Signal processing
Support Vector Machine
Task Performance and Analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYltNBLafrc1i0qDfQBS7R66-ikTnsyoQ_IbdHqURuKbWIn_fsdrWTjLSG99La2Bq2kGc3Mpx3NIHQkoolWUFtTRzoAKKyrO-p4DZY2NsyGThPXF5tQ06m-uDDne6W-UkxYTg-cF-6YCuZ4DDY2UXNBggUfFx7gxZQJz3vtS5TZA1MgSbCLuTIpS0zWyQxggejLzAkJYImTclMPjCmg_4Yfy3QhlA5sU5_Cv7-na-G33anse7MEln_Pb3JJ_46s3DNVZw_Rg-Jj4nGe2yG6ExaP0GHZxWv8vqSa_vAYrSeTz_UJGDKPJ7meD_66jSiC5z6eAH8KYYVLHtafeJrjxnE6wMXn-ageXpb0ynIB48G5u9PlNaBwcGTxt9k8bvDY21X-6v8E_TibfD_9UpcyDLWTjG1qBphPRM4Z89Jq3bBouO1CAKTntCWGBOG8V5xbKZQhljjqopa-06EhVnr2FB0sYATPETbR68Y6JjvluaQeWCR8B5iJeUUj8xX6uGVA60qO8lQq41fbYxUh2sStNnOrQkc74lVOzXEz2Uni5I4k5dPu_wApa4uUtf-Ssgo9K3Kw9ypBeEMq9C7JRZv0AQzV2XKtASacMmu1Y_ASFDhRDfQxGlDCPnaD5rdFsm6fzWgrdW3RNusWMHhjoAvBKvRm15z6TxF0i7C86mkkYHkwfrfQSMMNOLSEw3yzIO_GQgUVWlFdITUQ8cG6DlsW81mfrxx8fqGYefE_GPES3U-rkQ_BRuhgc3kVXqG77nozX1--7pXAH24eWe8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgAokXxPgMFGTEJD6kCCf-iP3YjY49VdMAqW-R44-1EkqrpRv_PufYjZYxTbwlzeli17_z3c85nxE64F55zUudl4Y0QFBokzelYTl4Wl9Q7RpJTH_YRDWfy8VCnaYE2e7fT_jg7YCeF-yrCDs2Yaq9L3lI3Do7WexQAxbLKhUqwsT5lwIF4P2RclwAMWIk7cq7oWrkh_py_f2eXA33epieHy4DMf6zui38vJlFec0tHT9Bj1M8iacRAPvonmufov1ksR3-lMpKf36Gutnse34ITsviWTy7B5_tsofgus8dwN-c2-BUc_Ucz2OOOA6Ltfg0LsvDy8Icsm6hPTiqO1pfAeOGoBX_WK78Fk-t3sQv_M_Rr-PZz6OTPB25kBtB6TanwO-4Z4xSK7SUBfWK6cY5YHVGaqKI48baijEteKWIJqY0XgrbSFcQLSx9gfZaaMErhJW3stCGiqayTJQWhojbBvgRtVXpqc3Ql90A1CbVIw_HYvyue17CeR1Gq46jlaGDQXgTy3DcLnYYRnIQCbWz-x8AT3Uyxbrk1DDvtC-8ZJw4DawJLgDKABnLQMnLhINrr-KEFSRDHwMu6mD70FSj0xYG6HCoolVPISKoIGAqQMdkJAk2a0aPPyRk3d2byQ51dZpZuhr4dqFABacZej88DvpDtlzr1pe9jADeDo7uDhmhmILglTDobwTy0JaSl1xWpcxQNYL46H8dP2lXy742OcT3vKLq9X918A16FO7iitYE7W0vLt1b9MBcbVfdxbveyv8CMlpG0A
  priority: 102
  providerName: Hindawi Publishing
Title EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation
URI https://search.emarefa.net/detail/BIM-1050410
https://dx.doi.org/10.1155/2014/627892
https://www.ncbi.nlm.nih.gov/pubmed/25258728
https://www.proquest.com/docview/1561941253
https://www.proquest.com/docview/1566409876
https://www.proquest.com/docview/1694972704
https://pubmed.ncbi.nlm.nih.gov/PMC4165739
https://doaj.org/article/253c4feaf1f8450ea306845cca235d42
Volume 2014
WOSCitedRecordID wos000343573200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: M0K
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database (ProQuest)
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: CWDGH
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1537-744X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038715
  issn: 2356-6140
  databaseCode: 24P
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgA4kXYHwWSmXEJD6kqE5sJ84TakfHEFoVDZAKL5Hjj7USakvbjX-fs-OGBU194SVK4pNj1-e7-13PdwgdcptbyRMZJYpUAFBoFVWJYhFoWhtTaSpBlC82kY3HYjLJi-BwW4ewyq1M9IJaL5TzkfcBZwDeBnVM3y9_Ra5qlPt3NZTQuIn2Xdlsx-fZpFGnsJdZlrtcMbVkpgAOuC82x1OATIyE83qgUvugB1k_dcdCk5aG8on8_WldCc-yEdy3pw4y_55dZ5j-G195RWEd3_vfqd5Hd4Opigc1bx2gG2b-AB0EYbDGb0LG6rcP0Xo0-hgNQR9qPKrLAuGzbWAS3PuwBPzBmCUO6VzP8bgOP8fOD4yL2uMPH3PiaTGHCeG6u6PFJYB5sIfxl-nMbvBAy2UdPPAIfTsefT06iUI1h0illG4iCtCRW8Yo1akUIqY2Z7IyBgCjEpLkxHCldcaYTHmWE0lUoqxIdSVMTGSq6WO0N4cRPEU4t1rEUtG0yjRLEw1rzHUF0IvqLLFUd9C77QqWKqQ6dxU3fpYe8nBeuuUu6-XuoMOGeFln-LiebOhYoSFxabn9i8XqvAy7vIQlU8waaWMrGCdGAiCDG9glwHOaQSdPAiNd-RQnLCYd9NoxVunECgxVyXA6AibsEnSVAzA2MrDFYuij26IEcaBaza8Ca-6eTXfLemUQWuvyL9910Mum2fXvAvHmZnHhaVJGctChO2jSnOVgFxMG8613QjOWhCdcZInooKy1R1q_a7tlPpv6tOcAHXhG82e7h_4c3XHzrL1kXbS3WV2YF-iWutzM1quelw_-KnpofzgaF2c974aB6yn5DNeC_4CW4tNp8R2ezk4mfwBExHAC
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKCoILUJ6BAEYU8ZBW8fqxjwNCaZvSqG0UQZHKafH60URCSUjSVvwpfiPjXW_ooiq3Hrht4pHX3v08M593PIPQprCplYLKgCqSA0FheZBTxQOwtDZk0uQJUUWxibjfT46P08Ea-l2dhXFhlZVOLBS1nii3R94GngF8G8wx-zj9GbiqUe7ralVCo4TFvvl1DpRt_qG3A-_3NaW73aPtvcBXFQhUxNgiYEBhhOWcMR3JJAmZTbnMjQHiohJJUmKE0jrmXEYiTokkiiqbRDpPTEhkpBn0ew2tcwf2Blof9A4H3yoEg_bgceqy05S2gAEdEUV5OxEBSePEnxAEI94Gy8vbkTuISms2sSgdUJwPlvBbLk3FjaEj6eejy1zhfyM6L5jI3Tv_28O9i257Zxx3ytWzgdbM-B7a8Opujt_6nNzv7qN5t_sp2AKLr3G3LHyEP1ehV3BdBF7gHWOm2CesPcH9MsAeu51uPCi_acDNnAKejOEB4rK77cmZBCWwMPjLcGQXuKPltAyPeIC-XsnkH6LGGEbwGOHU6iSUikV5rHlENWBK6BzIJdMxtUw30fsKMZnyydxdTZEfWUHqhMgcvLISXk20uRSeljlMLhfbctBbirjE48Ufk9lJ5vVYBhBR3BppQ5twQYwEygkXoAcA45pDJ488cC_cShAekiZ644CcOcUJQ1XSn_-ACbsUZFkH3KkYvM0Q-mjVJEHhqVrzK78UVs-mVUE982p5nv3FeRO9XDa7_l2o4dhMTguZiJMUvIQVMlHKU_D8CYf5litvORYqqEhimjRRXFuTtedabxmPhkVidyBHImbpk9VDf4Fu7h0dHmQHvf7-U3TLzbncE2yhxmJ2ap6h6-psMZrPnnvthNH3q16zfwBgycYF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxELZKOcQLUM5AACOKOKRVvD72eEAobROoiqKIQ6p4Wbw-mkgoCUnair_Gr2O89oYuqvLWB9428chr736emc87nkFoW9jcSkFlRBUpgaCwMiqp4hFYWhszacqMqKrYRDoYZIeH-XAD_a7PwriwylonVopaT5XbI-8AzwC-DeaYdWwIixju9d_NfkaugpT70lqX0_AQOTC_ToG-Ld7u78G7fkFpv_dl90MUKgxEKmFsGTGgM8JyzphOZJbFzOZclsYAiVGZJDkxQmmdci4TkeZEEkWVzRJdZiYmMtEM-r2ELqfAMV044VB8q7EMeoSnuctT460CA2IiqkJ3IgG6xkk4KwjmvAM2mHcSdySVNqxjVUSgOiks4bdcGY2rI0fXT8fnOcX_xnaeMZb9m__zY76FbgQXHXf9mtpCG2ZyG20FJbjAr0Km7td30KLXex_tgB-gcc-XQ8Kf6oAsuK7CMfCeMTMc0tge4YEPu8du_xsP_ZcOuJlTy9MJPEzsu9udnkhQDUuDP4_Gdom7Ws580MRd9PVCJn8PbU5gBA8Qzq3OYqlYUqaaJ1QDvoQugXIynVLLdAu9qdFTqJDi3VUa-VFUVE-IwkGt8FBroe2V8MxnNjlfbMfBcCXi0pFXf0znR0XQbgXARXFrpI1txgUxEogoXIB2ALxrDp3cDyA-cytBeExa6KUDdeHUKQxVyXAqBCbsEpMVXXCyUvBBY-ij3ZAENagazc_Dslg_m3YN-yIo60XxF_Mt9GzV7Pp3AYgTMz2uZBJOcvAd1sgkOc-BDxAO8_WrcDUWKqjIUpq1UNpYn43n2myZjEdVunegTCJl-cP1Q3-KrsFCLT7uDw4eoetuyn6jsI02l_Nj8xhdUSfL8WL-pFJTGH2_6AX7BwXkzWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Emotion+Recognition+Using+Deep+Learning+Network+with+Principal+Component+Based+Covariate+Shift+Adaptation&rft.jtitle=TheScientificWorld&rft.au=Jirayucharoensak%2C+Suwicha&rft.au=Pan-Ngum%2C+Setha&rft.au=Pasin+Israsena&rft.date=2014-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2356-6140&rft.eissn=1537-744X&rft.volume=2014&rft_id=info:doi/10.1155%2F2014%2F627892&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3431784211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2356-6140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2356-6140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2356-6140&client=summon