Noise-induced barren plateaus in variational quantum algorithms

Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on NISQ devices places fundamental limitations on VQA performance. We rigorously prove a serious limitation for noisy VQAs, in that the n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 12; číslo 1; s. 6961 - 11
Hlavní autoři: Wang, Samson, Fontana, Enrico, Cerezo, M., Sharma, Kunal, Sone, Akira, Cincio, Lukasz, Coles, Patrick J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 29.11.2021
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on NISQ devices places fundamental limitations on VQA performance. We rigorously prove a serious limitation for noisy VQAs, in that the noise causes the training landscape to have a barren plateau (i.e., vanishing gradient). Specifically, for the local Pauli noise considered, we prove that the gradient vanishes exponentially in the number of qubits n if the depth of the ansatz grows linearly with n . These noise-induced barren plateaus (NIBPs) are conceptually different from noise-free barren plateaus, which are linked to random parameter initialization. Our result is formulated for a generic ansatz that includes as special cases the Quantum Alternating Operator Ansatz and the Unitary Coupled Cluster Ansatz, among others. For the former, our numerical heuristics demonstrate the NIBP phenomenon for a realistic hardware noise model. Variational quantum algorithms (VQAs) are a leading candidate for useful applications of near-term quantum computing, but limitations due to unavoidable noise have not been clearly characterized. Here, the authors prove that local Pauli noise can cause vanishing gradients rendering VQAs untrainable.
AbstractList Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on NISQ devices places fundamental limitations on VQA performance. We rigorously prove a serious limitation for noisy VQAs, in that the noise causes the training landscape to have a barren plateau (i.e., vanishing gradient). Specifically, for the local Pauli noise considered, we prove that the gradient vanishes exponentially in the number of qubits n if the depth of the ansatz grows linearly with n . These noise-induced barren plateaus (NIBPs) are conceptually different from noise-free barren plateaus, which are linked to random parameter initialization. Our result is formulated for a generic ansatz that includes as special cases the Quantum Alternating Operator Ansatz and the Unitary Coupled Cluster Ansatz, among others. For the former, our numerical heuristics demonstrate the NIBP phenomenon for a realistic hardware noise model.
Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on NISQ devices places fundamental limitations on VQA performance. We rigorously prove a serious limitation for noisy VQAs, in that the noise causes the training landscape to have a barren plateau (i.e., vanishing gradient). Specifically, for the local Pauli noise considered, we prove that the gradient vanishes exponentially in the number of qubits n if the depth of the ansatz grows linearly with n. These noise-induced barren plateaus (NIBPs) are conceptually different from noise-free barren plateaus, which are linked to random parameter initialization. Our result is formulated for a generic ansatz that includes as special cases the Quantum Alternating Operator Ansatz and the Unitary Coupled Cluster Ansatz, among others. For the former, our numerical heuristics demonstrate the NIBP phenomenon for a realistic hardware noise model. Variational quantum algorithms (VQAs) are a leading candidate for useful applications of near-term quantum computing, but limitations due to unavoidable noise have not been clearly characterized. Here, the authors prove that local Pauli noise can cause vanishing gradients rendering VQAs untrainable.
Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on NISQ devices places fundamental limitations on VQA performance. We rigorously prove a serious limitation for noisy VQAs, in that the noise causes the training landscape to have a barren plateau (i.e., vanishing gradient). Specifically, for the local Pauli noise considered, we prove that the gradient vanishes exponentially in the number of qubits n if the depth of the ansatz grows linearly with n . These noise-induced barren plateaus (NIBPs) are conceptually different from noise-free barren plateaus, which are linked to random parameter initialization. Our result is formulated for a generic ansatz that includes as special cases the Quantum Alternating Operator Ansatz and the Unitary Coupled Cluster Ansatz, among others. For the former, our numerical heuristics demonstrate the NIBP phenomenon for a realistic hardware noise model. Variational quantum algorithms (VQAs) are a leading candidate for useful applications of near-term quantum computing, but limitations due to unavoidable noise have not been clearly characterized. Here, the authors prove that local Pauli noise can cause vanishing gradients rendering VQAs untrainable.
Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on NISQ devices places fundamental limitations on VQA performance. We rigorously prove a serious limitation for noisy VQAs, in that the noise causes the training landscape to have a barren plateau (i.e., vanishing gradient). Specifically, for the local Pauli noise considered, we prove that the gradient vanishes exponentially in the number of qubits n if the depth of the ansatz grows linearly with n. These noise-induced barren plateaus (NIBPs) are conceptually different from noise-free barren plateaus, which are linked to random parameter initialization. Our result is formulated for a generic ansatz that includes as special cases the Quantum Alternating Operator Ansatz and the Unitary Coupled Cluster Ansatz, among others. For the former, our numerical heuristics demonstrate the NIBP phenomenon for a realistic hardware noise model.Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on NISQ devices places fundamental limitations on VQA performance. We rigorously prove a serious limitation for noisy VQAs, in that the noise causes the training landscape to have a barren plateau (i.e., vanishing gradient). Specifically, for the local Pauli noise considered, we prove that the gradient vanishes exponentially in the number of qubits n if the depth of the ansatz grows linearly with n. These noise-induced barren plateaus (NIBPs) are conceptually different from noise-free barren plateaus, which are linked to random parameter initialization. Our result is formulated for a generic ansatz that includes as special cases the Quantum Alternating Operator Ansatz and the Unitary Coupled Cluster Ansatz, among others. For the former, our numerical heuristics demonstrate the NIBP phenomenon for a realistic hardware noise model.
Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on NISQ devices places fundamental limitations on VQA performance. We rigorously prove a serious limitation for noisy VQAs, in that the noise causes the training landscape to have a barren plateau (i.e., vanishing gradient). Specifically, for the local Pauli noise considered, we prove that the gradient vanishes exponentially in the number of qubits n if the depth of the ansatz grows linearly with n. These noise-induced barren plateaus (NIBPs) are conceptually different from noise-free barren plateaus, which are linked to random parameter initialization. Our result is formulated for a generic ansatz that includes as special cases the Quantum Alternating Operator Ansatz and the Unitary Coupled Cluster Ansatz, among others. For the former, our numerical heuristics demonstrate the NIBP phenomenon for a realistic hardware noise model.
Variational quantum algorithms (VQAs) are a leading candidate for useful applications of near-term quantum computing, but limitations due to unavoidable noise have not been clearly characterized. Here, the authors prove that local Pauli noise can cause vanishing gradients rendering VQAs untrainable.
ArticleNumber 6961
Author Cincio, Lukasz
Fontana, Enrico
Coles, Patrick J.
Sone, Akira
Cerezo, M.
Sharma, Kunal
Wang, Samson
Author_xml – sequence: 1
  givenname: Samson
  orcidid: 0000-0003-2344-0634
  surname: Wang
  fullname: Wang, Samson
  email: samsonwang@outlook.com
  organization: Theoretical Division, Los Alamos National Laboratory, Imperial College London
– sequence: 2
  givenname: Enrico
  surname: Fontana
  fullname: Fontana, Enrico
  organization: Theoretical Division, Los Alamos National Laboratory, University of Strathclyde, National Physical Laboratory
– sequence: 3
  givenname: M.
  orcidid: 0000-0002-2757-3170
  surname: Cerezo
  fullname: Cerezo, M.
  email: cerezo@lanl.gov
  organization: Theoretical Division, Los Alamos National Laboratory, Center for Nonlinear Studies, Los Alamos National Laboratory
– sequence: 4
  givenname: Kunal
  surname: Sharma
  fullname: Sharma, Kunal
  organization: Theoretical Division, Los Alamos National Laboratory, Hearne Institute for Theoretical Physics and Department of Physics and Astronomy, Louisiana State University, Joint Center for Quantum Information and Computer Science, University of Maryland
– sequence: 5
  givenname: Akira
  orcidid: 0000-0003-3539-6140
  surname: Sone
  fullname: Sone, Akira
  organization: Theoretical Division, Los Alamos National Laboratory, Center for Nonlinear Studies, Los Alamos National Laboratory, Aliro Technologies, Inc
– sequence: 6
  givenname: Lukasz
  surname: Cincio
  fullname: Cincio, Lukasz
  organization: Theoretical Division, Los Alamos National Laboratory
– sequence: 7
  givenname: Patrick J.
  orcidid: 0000-0001-9879-8425
  surname: Coles
  fullname: Coles, Patrick J.
  email: pcoles@lanl.gov
  organization: Theoretical Division, Los Alamos National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34845216$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1832931$$D View this record in Osti.gov
BookMark eNp9Uk1v1DAUjFARLUv_AAcUwYVLwF-xnQsVqvioVMEFztaL_bLrVdZu7aQS_x7vppS2h_piy56ZN89vXlZHIQasqteUfKCE649ZUCFVQxhtmCKibeSz6oQRQRuqGD-6dz6uTnPekrJ4R7UQL6pjLrRoGZUn1dmP6DM2PrjZoqt7SAlDfTXChDDn2of6BpKHyccAY309Q5jmXQ3jOiY_bXb5VfV8gDHj6e2-qn5__fLr_Htz-fPbxfnny8ZKzqe9D-20Y44rIdC5TlMq-lYq5L0GR9BaVKBhcBwlWnB9Jxmh1NEWHB96vqouFl0XYWuukt9B-mMieHO4iGltIE3ejmgsbXvFBgEDBwGSdw6Z7FmrOselpqxofVq0ruZ-h85imBKMD0QfvgS_Met4Y7TkhAhVBN4uAjFP3mTrJ7QbG0NAOxmqOes4LaD3t1VSvJ4xT2bns8VxhIBxzoZJInQZRLvXe_cIuo1zKh--oJhQqvziqnpz3_ad33_DLAC2AGyKOScc7iCUmH1ozBIaU0JjDqExe5J-RCrtHOZdWvfj01S-UHOpE9aY_tt-gvUXOJDVaA
CitedBy_id crossref_primary_10_1080_23746149_2023_2165452
crossref_primary_10_1088_1361_6633_ad82cf
crossref_primary_10_1038_s41598_023_30983_4
crossref_primary_10_1103_PhysRevA_111_022629
crossref_primary_10_1140_epjqt_s40507_023_00166_1
crossref_primary_10_1103_PhysRevResearch_6_013076
crossref_primary_10_1016_j_inffus_2025_103049
crossref_primary_10_1007_s11128_025_04925_0
crossref_primary_10_1007_s42484_024_00200_0
crossref_primary_10_1103_PRXQuantum_4_010309
crossref_primary_10_1103_PRXQuantum_5_030317
crossref_primary_10_1103_PRXQuantum_5_030314
crossref_primary_10_1088_2058_9565_acf59c
crossref_primary_10_1038_s41534_022_00546_y
crossref_primary_10_1103_PhysRevA_111_022630
crossref_primary_10_1103_PhysRevApplied_21_067001
crossref_primary_10_1007_s42484_025_00314_z
crossref_primary_10_1103_PhysRevA_111_062410
crossref_primary_10_1038_s41567_024_02536_7
crossref_primary_10_22331_q_2025_08_27_1836
crossref_primary_10_1103_jt8s_hzhd
crossref_primary_10_1103_PhysRevResearch_5_033071
crossref_primary_10_1038_s41598_022_14767_w
crossref_primary_10_1103_PhysRevResearch_5_023025
crossref_primary_10_1103_PhysRevResearch_5_023147
crossref_primary_10_3390_quantum4010006
crossref_primary_10_1109_TQE_2024_3383050
crossref_primary_10_1088_1402_4896_ad14d6
crossref_primary_10_1007_s42484_025_00242_y
crossref_primary_10_1103_PhysRevA_110_052430
crossref_primary_10_1038_s41467_024_49910_w
crossref_primary_10_1088_2058_9565_ad6285
crossref_primary_10_1007_s11128_023_03876_8
crossref_primary_10_1103_PhysRevB_107_125127
crossref_primary_10_1007_s11128_023_03998_z
crossref_primary_10_1038_s41534_024_00866_1
crossref_primary_10_1088_2058_9565_ac2e52
crossref_primary_10_1088_2058_9565_ad8e80
crossref_primary_10_1145_3718349
crossref_primary_10_1088_2632_2153_ace757
crossref_primary_10_1103_PhysRevResearch_4_013052
crossref_primary_10_1103_PRXQuantum_6_010320
crossref_primary_10_1007_s11433_022_2057_y
crossref_primary_10_1002_que2_77
crossref_primary_10_1088_2058_9565_ade89f
crossref_primary_10_1038_s41534_022_00618_z
crossref_primary_10_1088_2058_9565_ad2a16
crossref_primary_10_1088_2058_9565_aceb87
crossref_primary_10_1016_j_imu_2025_101682
crossref_primary_10_1103_PhysRevResearch_4_043193
crossref_primary_10_3390_a15060202
crossref_primary_10_1007_s11141_024_10342_7
crossref_primary_10_1038_s41567_024_02530_z
crossref_primary_10_1103_PRXQuantum_6_010317
crossref_primary_10_1103_PhysRevApplied_21_014053
crossref_primary_10_1002_qute_202300147
crossref_primary_10_1103_PhysRevD_106_096006
crossref_primary_10_1103_PhysRevResearch_6_043254
crossref_primary_10_22331_q_2025_08_29_1841
crossref_primary_10_1007_s11128_024_04642_0
crossref_primary_10_1088_2058_9565_aca821
crossref_primary_10_1088_2058_9565_ad200a
crossref_primary_10_22331_q_2025_06_04_1761
crossref_primary_10_1007_s11128_023_04188_7
crossref_primary_10_1007_s11128_025_04821_7
crossref_primary_10_1088_2632_2153_acb12f
crossref_primary_10_1007_s42484_025_00241_z
crossref_primary_10_1007_s42484_024_00176_x
crossref_primary_10_1103_PhysRevResearch_4_033028
crossref_primary_10_1103_PhysRevResearch_4_033027
crossref_primary_10_1016_j_physa_2024_129951
crossref_primary_10_1038_s41467_025_63099_6
crossref_primary_10_1103_PhysRevA_111_022428
crossref_primary_10_1007_s42484_025_00266_4
crossref_primary_10_1016_j_inffus_2025_103404
crossref_primary_10_1088_2058_9565_ad80c0
crossref_primary_10_1103_PhysRevA_106_012606
crossref_primary_10_1038_s41534_024_00804_1
crossref_primary_10_1140_epjqt_s40507_024_00262_w
crossref_primary_10_1038_s42254_025_00813_9
crossref_primary_10_1073_pnas_2408530122
crossref_primary_10_1007_s42484_021_00059_5
crossref_primary_10_1038_s41598_023_37003_5
crossref_primary_10_1088_2058_9565_ac83e7
crossref_primary_10_22331_q_2025_05_05_1727
crossref_primary_10_1109_ACCESS_2025_3530952
crossref_primary_10_1038_s41534_024_00902_0
crossref_primary_10_1103_PhysRevB_110_184414
crossref_primary_10_3390_e24111656
crossref_primary_10_1038_s41598_023_44786_0
crossref_primary_10_1080_09540091_2024_2312121
crossref_primary_10_1007_s13218_024_00862_9
crossref_primary_10_1103_PhysRevA_111_012630
crossref_primary_10_1088_1367_2630_ad64fb
crossref_primary_10_1109_TQE_2023_3303989
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1140_epjqt_s40507_023_00216_8
crossref_primary_10_1103_PhysRevA_111_052403
crossref_primary_10_1109_TIT_2025_3552671
crossref_primary_10_1140_epjp_s13360_025_06461_3
crossref_primary_10_1021_acs_jpca_4c07045
crossref_primary_10_1038_s41534_022_00570_y
crossref_primary_10_1103_PhysRevApplied_21_054014
crossref_primary_10_3390_magnetochemistry7080117
crossref_primary_10_1016_j_mtquan_2025_100042
crossref_primary_10_1103_PhysRevResearch_6_043083
crossref_primary_10_1038_s41467_022_32550_3
crossref_primary_10_1088_2058_9565_adf771
crossref_primary_10_1088_2058_9565_ad80bf
crossref_primary_10_1088_2058_9565_ad4583
crossref_primary_10_1140_epjc_s10052_025_14322_7
crossref_primary_10_3390_ai6080175
crossref_primary_10_1103_PhysRevA_105_012423
crossref_primary_10_1016_j_ijmecsci_2025_110646
crossref_primary_10_1007_s11128_022_03766_5
crossref_primary_10_1103_PhysRevResearch_4_013097
crossref_primary_10_1088_1612_202X_ad8742
crossref_primary_10_1134_S0021364025607511
crossref_primary_10_22331_q_2025_04_09_1704
crossref_primary_10_1007_s42484_025_00239_7
crossref_primary_10_1002_qute_202400703
crossref_primary_10_1007_s11433_023_2098_8
crossref_primary_10_1063_5_0237599
crossref_primary_10_1103_j1gg_s6zb
crossref_primary_10_1109_COMST_2024_3399612
crossref_primary_10_1088_1402_4896_ad6ec3
crossref_primary_10_3390_math11092176
crossref_primary_10_1103_PhysRevApplied_22_044074
crossref_primary_10_1103_PRXQuantum_4_040335
crossref_primary_10_1007_s11227_025_07331_6
crossref_primary_10_1038_s41467_023_43908_6
crossref_primary_10_1088_1367_2630_ad4819
crossref_primary_10_1088_2632_2153_acf096
crossref_primary_10_1109_TCOMM_2022_3144469
crossref_primary_10_1103_xphb_x2g4
crossref_primary_10_1002_qute_202300298
crossref_primary_10_1103_PhysRevResearch_4_033217
crossref_primary_10_1007_s42484_023_00103_6
crossref_primary_10_1038_s41598_022_07296_z
crossref_primary_10_1103_PhysRevResearch_4_013083
crossref_primary_10_1103_PhysRevX_15_021057
crossref_primary_10_1016_j_physleta_2023_129138
crossref_primary_10_1038_s41467_024_51162_7
crossref_primary_10_1088_2058_9565_acef55
crossref_primary_10_1088_2058_9565_ada08e
crossref_primary_10_1038_s41534_024_00875_0
crossref_primary_10_1140_epjqt_s40507_022_00135_0
crossref_primary_10_1103_PRXQuantum_4_030307
crossref_primary_10_1103_PhysRevResearch_5_023171
crossref_primary_10_1109_TQE_2024_3409309
crossref_primary_10_1038_s43588_023_00467_6
crossref_primary_10_1002_qute_202200090
crossref_primary_10_1103_PhysRevResearch_6_043063
crossref_primary_10_1103_PRXQuantum_5_037001
crossref_primary_10_1088_2632_2153_ad35a3
crossref_primary_10_1038_s41534_022_00556_w
crossref_primary_10_1017_dce_2022_36
crossref_primary_10_1145_3678184
crossref_primary_10_1088_2058_9565_ad152e
crossref_primary_10_1016_j_cjph_2024_05_044
crossref_primary_10_1103_PRXQuantum_4_030313
crossref_primary_10_1016_j_cma_2025_118396
crossref_primary_10_1103_PhysRevA_111_012426
crossref_primary_10_1103_PhysRevResearch_5_L032040
crossref_primary_10_1007_JHEP01_2023_090
crossref_primary_10_1103_PhysRevA_111_052441
crossref_primary_10_1088_2058_9565_ad895c
crossref_primary_10_1007_s42484_022_00076_y
crossref_primary_10_1103_PhysRevResearch_6_033198
crossref_primary_10_3390_ma16124300
crossref_primary_10_1088_1367_2630_ad309d
crossref_primary_10_2478_qic_2025_0006
crossref_primary_10_1007_s42484_024_00144_5
crossref_primary_10_1088_1402_4896_ae009f
crossref_primary_10_1088_2058_9565_ac3c53
crossref_primary_10_1088_2058_9565_ac969c
crossref_primary_10_1038_s41534_024_00900_2
crossref_primary_10_1088_2058_9565_ad0571
crossref_primary_10_1103_PhysRevApplied_20_044002
crossref_primary_10_1038_s41598_023_45392_w
crossref_primary_10_1007_s42484_025_00271_7
crossref_primary_10_1088_2516_1075_ace86d
crossref_primary_10_1109_TQE_2021_3140190
crossref_primary_10_1007_s11128_025_04665_1
crossref_primary_10_1038_s42005_025_02111_3
crossref_primary_10_1039_D1RA07451B
crossref_primary_10_1103_PhysRevResearch_5_043175
crossref_primary_10_1038_s41467_024_51161_8
crossref_primary_10_1109_TQE_2023_3266410
crossref_primary_10_1007_s11432_024_4185_1
crossref_primary_10_1016_j_asoc_2023_110296
crossref_primary_10_1038_s41467_024_49287_w
crossref_primary_10_1103_PhysRevResearch_6_023171
crossref_primary_10_1103_2frm_2v6m
crossref_primary_10_1002_qute_202500199
crossref_primary_10_1080_17445760_2023_2231163
crossref_primary_10_1103_PhysRevResearch_6_013211
crossref_primary_10_1109_TQE_2022_3231124
crossref_primary_10_1038_s41534_022_00599_z
crossref_primary_10_1063_5_0217294
crossref_primary_10_1103_PhysRevResearch_5_033227
crossref_primary_10_1039_D4DD00321G
crossref_primary_10_1016_j_future_2025_107721
crossref_primary_10_1103_PhysRevA_111_012441
crossref_primary_10_1109_MCS_2024_3466448
crossref_primary_10_1007_s11128_025_04776_9
crossref_primary_10_1007_s00220_024_04958_z
crossref_primary_10_1007_s11128_024_04336_7
crossref_primary_10_1007_s42484_025_00282_4
crossref_primary_10_1103_PhysRevA_111_012445
crossref_primary_10_22331_q_2025_08_07_1823
crossref_primary_10_1007_s43673_022_00058_z
crossref_primary_10_1109_TMTT_2023_3344878
crossref_primary_10_1038_s41534_024_00825_w
crossref_primary_10_1109_TQE_2024_3386753
crossref_primary_10_1038_s42005_025_02243_6
crossref_primary_10_1103_PhysRevResearch_6_023020
crossref_primary_10_1186_s40323_025_00298_2
crossref_primary_10_1103_PhysRevLett_128_180505
crossref_primary_10_1103_PRXQuantum_5_020328
crossref_primary_10_1103_PhysRevA_106_062434
crossref_primary_10_1007_s42484_024_00169_w
crossref_primary_10_1038_s41598_025_05660_3
crossref_primary_10_1088_2058_9565_ad9fa4
crossref_primary_10_3390_e23101281
crossref_primary_10_1103_PhysRevResearch_5_023087
crossref_primary_10_1002_qute_202300309
crossref_primary_10_1109_TQE_2022_3229747
crossref_primary_10_1103_PhysRevResearch_7_L022010
crossref_primary_10_3390_a14100294
crossref_primary_10_1038_s41598_025_13923_2
crossref_primary_10_1109_TQE_2022_3159327
crossref_primary_10_1088_2632_2153_ad88d6
crossref_primary_10_1007_s42484_023_00118_z
crossref_primary_10_1063_5_0099469
crossref_primary_10_1016_j_cma_2024_117428
crossref_primary_10_1103_jkcp_6km5
crossref_primary_10_1103_PhysRevLett_130_230404
crossref_primary_10_1007_s11128_024_04461_3
crossref_primary_10_1140_epjqt_s40507_024_00289_z
crossref_primary_10_1155_int_1351522
crossref_primary_10_1016_j_future_2025_107981
crossref_primary_10_1007_s42484_023_00132_1
crossref_primary_10_3390_jimaging9070128
crossref_primary_10_1007_s11227_025_06966_9
crossref_primary_10_1103_PhysRevResearch_6_043008
crossref_primary_10_1103_rgyh_8xw8
crossref_primary_10_1038_s41534_023_00681_0
crossref_primary_10_1109_MCAS_2024_3349665
crossref_primary_10_1007_s42484_021_00055_9
crossref_primary_10_1002_eng2_70337
crossref_primary_10_1103_PhysRevResearch_7_023240
crossref_primary_10_1038_s44172_023_00061_8
crossref_primary_10_1140_epjqt_s40507_025_00335_4
crossref_primary_10_1016_j_psep_2024_04_032
crossref_primary_10_1103_PhysRevA_106_042409
crossref_primary_10_1088_2058_9565_ad1340
crossref_primary_10_1103_PhysRevA_105_022417
crossref_primary_10_1007_s11128_021_03001_7
crossref_primary_10_1103_PRXQuantum_5_030340
crossref_primary_10_1088_2058_9565_aca55d
crossref_primary_10_1103_PhysRevResearch_6_013143
crossref_primary_10_1088_2058_9565_ad133e
crossref_primary_10_1103_x2v8_jx1h
crossref_primary_10_1109_TQE_2024_3511419
crossref_primary_10_1038_s41467_023_39381_w
crossref_primary_10_1038_s41534_024_00819_8
crossref_primary_10_1088_2058_9565_add61d
crossref_primary_10_3390_make6020044
crossref_primary_10_1088_1402_4896_adf0ae
crossref_primary_10_1088_2058_9565_ad985f
crossref_primary_10_1007_s11128_023_04187_8
crossref_primary_10_1103_PhysRevA_111_032615
crossref_primary_10_1103_PhysRevApplied_22_054037
crossref_primary_10_1038_s41534_022_00596_2
crossref_primary_10_1088_1361_6633_ad85f0
crossref_primary_10_1088_1742_6596_2438_1_012062
crossref_primary_10_1007_s42484_024_00153_4
crossref_primary_10_1038_s43588_022_00311_3
crossref_primary_10_1103_PhysRevA_111_062605
crossref_primary_10_1103_PRXQuantum_5_020315
crossref_primary_10_1038_s41534_024_00955_1
crossref_primary_10_1109_TNNLS_2024_3504828
crossref_primary_10_1038_s41534_024_00906_w
crossref_primary_10_1088_2058_9565_ac7d06
crossref_primary_10_35848_1347_4065_acea0a
crossref_primary_10_1103_PhysRevA_107_062406
crossref_primary_10_1038_s42005_024_01783_7
crossref_primary_10_1088_1402_4896_acbdc8
crossref_primary_10_1103_PhysRevResearch_6_013295
crossref_primary_10_1007_s42484_024_00178_9
crossref_primary_10_1038_s41598_024_69643_6
crossref_primary_10_1038_s42005_024_01577_x
crossref_primary_10_1007_s42484_024_00215_7
crossref_primary_10_1088_2058_9565_aca3ce
crossref_primary_10_1103_PhysRevApplied_22_054005
crossref_primary_10_1038_s41598_022_10555_8
crossref_primary_10_1103_PhysRevLett_129_190501
crossref_primary_10_1007_s42484_025_00258_4
crossref_primary_10_1016_j_rineng_2025_107062
crossref_primary_10_1038_s41467_024_55346_z
crossref_primary_10_1038_s41467_024_49909_3
crossref_primary_10_1103_PRXQuantum_5_030320
crossref_primary_10_1088_2058_9565_acf9c7
crossref_primary_10_1103_PhysRevResearch_5_043035
crossref_primary_10_1103_PRXQuantum_3_040329
crossref_primary_10_3390_math11224678
crossref_primary_10_1088_1751_8121_ad6daf
crossref_primary_10_1103_PhysRevLett_134_170601
crossref_primary_10_1103_PhysRevApplied_20_024034
crossref_primary_10_1038_s42005_024_01719_1
crossref_primary_10_22331_q_2025_05_20_1748
crossref_primary_10_1088_1572_9494_ad89ac
crossref_primary_10_1002_qute_202200130
crossref_primary_10_1007_s42484_024_00204_w
crossref_primary_10_1088_2058_9565_ae05c4
crossref_primary_10_1103_PRXQuantum_6_010361
crossref_primary_10_1631_jzus_A2400397
crossref_primary_10_1109_ACCESS_2024_3433383
crossref_primary_10_22331_q_2025_03_20_1663
crossref_primary_10_1038_s41467_024_45882_z
crossref_primary_10_1002_qute_202500093
crossref_primary_10_1088_1361_6633_ad7f69
crossref_primary_10_1103_PhysRevA_110_062403
Cites_doi 10.1038/s41467-019-11417-0
10.1021/acs.chemrev.8b00803
10.3390/a12020034
10.1103/PhysRevResearch.1.033062
10.7566/JPSJ.90.032001
10.22331/q-2020-03-26-248
10.1038/s41467-020-14454-2
10.1103/PhysRevLett.84.2108
10.1103/PRXQuantum.2.020310
10.1103/PhysRevResearch.3.033090
10.1103/RevModPhys.79.291
10.1103/PhysRevLett.124.090504
10.1088/2058-9565/abf51a
10.22331/q-2018-08-06-79
10.1021/acs.jctc.8b01004
10.1080/00107514.2014.964942
10.1038/s43588-021-00084-1
10.22331/q-2019-12-09-214
10.1088/2058-9565/aad3e4
10.1038/nature23474
10.1038/s41534-020-00302-0
10.1088/2058-9565/abdca4
10.1038/ncomms5213
10.1126/science.abb9811
10.1103/PhysRevA.97.022304
10.1038/s41467-018-07090-4
10.1088/1367-2630/aae94a
10.22331/q-2019-10-07-191
10.1103/PRXQuantum.2.010324
10.1016/j.laa.2010.06.039
10.1038/s41467-021-21728-w
10.1088/2633-1357/abb0d7
10.1103/PhysRevA.92.042303
10.1038/s42254-021-00348-9
10.1088/1367-2630/18/2/023023
10.1103/PhysRevA.102.012426
10.1038/s41567-020-01105-y
10.1103/PRXQuantum.2.040316
10.1103/PhysRevA.102.052414
10.1103/PhysRevA.95.062317
10.1145/227683.227684
10.1145/278298.278306
10.1088/2058-9565/abe519
10.1038/s41467-019-10988-2
10.22331/q-2020-05-11-263
10.1103/RevModPhys.92.015003
10.1007/s11128-014-0809-8
10.1145/502090.502098
10.21468/SciPostPhys.6.3.029
10.1038/ncomms14485
10.1007/s42484-020-00036-4
10.1063/1.4939560
10.1103/PRXQuantum.1.020319
10.1038/nature23879
10.1103/PhysRevA.64.022319
10.1088/2058-9565/ab8aa4
10.1093/comjnl/7.4.308
10.1038/s41534-019-0167-6
10.1103/PhysRevB.102.235122
10.1006/aphy.2002.6254
10.1103/PhysRevA.99.062304
10.22331/q-2019-05-13-140
10.22331/q-2021-10-05-558
10.1103/PhysRevLett.125.260505
10.1088/2058-9565/abd891
10.22331/q-2021-11-26-592
10.26421/QIC19.13-14-3
10.1007/978-3-030-14082-3_7
10.1088/2058-9565/ac3b37
10.1103/PRXQuantum.3.010313
10.1088/0256-307X/38/3/030302
10.1038/s41534-021-00425-y
10.1103/PhysRevE.104.035309
10.1088/1367-2630/ab965e
10.1088/1751-8121/abfac7
10.1088/1367-2630/ab784c
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – sequence: 0
  name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OTOTI
5PM
DOA
DOI 10.1038/s41467-021-27045-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
PubMed
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_c15b72f4af3a4a639de26b2579d36812
PMC8630047
1832931
34845216
10_1038_s41467_021_27045_6
Genre Journal Article
GrantInformation_xml – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  funderid: https://doi.org/10.13039/501100000266
– fundername: U.S. Department of Energy (DOE)
  funderid: https://doi.org/10.13039/100000015
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
OTOTI
5PM
ID FETCH-LOGICAL-c633t-1728d8d2d3744edd98114b567e3b8ad0ecce7a8afd3e6ecadb962011d15ad3fb3
IEDL.DBID M7P
ISICitedReferencesCount 321
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000723756500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:33:49 EDT 2025
Tue Nov 04 01:52:37 EST 2025
Thu Dec 05 06:34:44 EST 2024
Thu Sep 04 20:26:17 EDT 2025
Tue Oct 07 07:22:01 EDT 2025
Wed Feb 19 02:10:56 EST 2025
Tue Nov 18 21:20:03 EST 2025
Sat Nov 29 06:29:37 EST 2025
Fri Feb 21 02:38:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-1728d8d2d3744edd98114b567e3b8ad0ecce7a8afd3e6ecadb962011d15ad3fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
89233218CNA000001
LA-UR-20-25526
USDOE Laboratory Directed Research and Development (LDRD) Program
ORCID 0000-0001-9879-8425
0000-0002-2757-3170
0000-0003-3539-6140
0000-0003-2344-0634
0000000227573170
0000000198798425
0000000267584376
0000000335396140
OpenAccessLink https://www.proquest.com/docview/2604247763?pq-origsite=%requestingapplication%
PMID 34845216
PQID 2604247763
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c15b72f4af3a4a639de26b2579d36812
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8630047
osti_scitechconnect_1832931
proquest_miscellaneous_2604834857
proquest_journals_2604247763
pubmed_primary_34845216
crossref_primary_10_1038_s41467_021_27045_6
crossref_citationtrail_10_1038_s41467_021_27045_6
springer_journals_10_1038_s41467_021_27045_6
PublicationCentury 2000
PublicationDate 2021-11-29
PublicationDateYYYYMMDD 2021-11-29
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – sequence: 0
  name: Nature Publishing Group
– name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Ho, Hsieh (CR74) 2019; 6
CR37
Kübler, Arrasmith, Cincio, Coles (CR48) 2020; 4
Beer (CR61) 2020; 11
Romero (CR70) 2018; 4
CR33
Schuld, Sinayskiy, Petruccione (CR58) 2014; 13
CR32
CR30
Cao (CR50) 2019; 119
Erdos, Renyi (CR76) 1959; 6
Grimsley, Economou, Barnes, Mayhall (CR91) 2019; 10
Arrasmith, Cincio, Sornborger, Zurek, Coles (CR25) 2019; 10
Arrasmith, Cerezo, Cincio, Coles (CR39) 2021; 5
Müller-Hermes, França, Wolf (CR105) 2016; 57
CR49
CR47
CR44
Wiersema (CR57) 2020; 1
CR41
CR40
Marrero, Kieferová, Wiebe (CR35) 2021; 2
Yuan, Endo, Zhao, Li, Benjamin (CR12) 2019; 3
Arora, Lund, Motwani, Sudan, Szegedy (CR78) 1998; 45
Kandala (CR53) 2017; 549
Cerezo, Sone, Volkoff, Cincio, Coles (CR34) 2021; 12
Patti, Najafi, Gao, Yelin (CR36) 2021; 3
Skolik, McClean, Mohseni, Smagt, Leib (CR43) 2021; 3
Endo, Cai, Benjamin, Yuan (CR3) 2021; 90
Lee, Huggins, Head-Gordon, Whaley (CR52) 2018; 15
Håstad (CR79) 2001; 48
Bauer, Wecker, Millis, Hastings, Troyer (CR7) 2016; 6
Biamonte (CR60) 2017; 549
Li, Benjamin (CR9) 2017; 7
He, Nachman, de Jong, Bauer (CR87) 2020; 102
Hadfield (CR16) 2019; 12
Marshall, Wudarski, Hadfield, Hogg (CR45) 2020; 1
Nelder, Mead (CR81) 1965; 7
Schuld, Sinayskiy, Petruccione (CR59) 2015; 56
McArdle, Endo, Aspuru-Guzik, Benjamin, Yuan (CR69) 2020; 92
CR66
CR64
CR63
Cade, Mineh, Montanaro, Stanisic (CR75) 2020; 102
Bravyi, Kitaev (CR72) 2002; 298
Cincio, Rudinger, Sarovar, Coles (CR96) 2021; 2
Cirstoiu (CR10) 2020; 6
Khatri (CR22) 2019; 3
Cerezo, Poremba, Cincio, Coles (CR26) 2020; 4
Wecker, Hastings, Troyer (CR56) 2015; 92
Zhang, Kyaw, Kottmann, Degroote, Aspuru-Guzik (CR93) 2021; 6
Jones, Endo, McArdle, Yuan, Benjamin (CR8) 2019; 99
McClean, Boixo, Smelyanskiy, Babbush, Neven (CR31) 2018; 9
Goemans, Williamson (CR77) 1995; 42
CR4
Nooijen (CR73) 2000; 84
Peruzzo (CR5) 2014; 5
Akshay, Philathong, Morales, Biamonte (CR68) 2020; 124
CR89
CR88
Wenzel, Audenaert (CR101) 2010; 433
Grant, Wossnig, Ostaszewski, Benedetti (CR42) 2019; 3
CR86
CR85
CR84
CR83
Preskill (CR1) 2018; 2
CR82
Wang, Hadfield, Jiang, Rieffel (CR14) 2018; 97
Cerezo (CR2) 2021; 3
Ortiz, Gubernatis, Knill, Laflamme (CR71) 2001; 64
CR19
McClean, Romero, Babbush, Aspuru-Guzik (CR6) 2016; 18
CR18
CR17
Nielsen (CR104) 2020; 5
Wang, Hadfield, Jiang, Rieffel (CR65) 2018; 97
CR15
CR13
Abbas (CR62) 2020; 1
CR99
CR98
CR95
Cincio, Subaşí, Sornborger, Coles (CR97) 2018; 20
CR94
CR90
Tang (CR92) 2021; 2
Cerezo, Coles (CR38) 2021; 6
LaRose, Tikku, O’Neel-Judy, Cincio, Coles (CR28) 2019; 5
Arute (CR54) 2020; 369
Blume-Kohout (CR103) 2017; 8
CR29
CR27
Harrigan (CR55) 2021; 17
CR24
CR23
Heya, Nakanishi, Mitarai, Fujii (CR11) 2019; 1
CR21
CR20
Gentini, Cuccoli, Pirandola, Verrucchi, Banchi (CR46) 2020; 102
CR102
CR100
Jiang, Rieffel, Wang (CR67) 2017; 95
Bartlett, Musiał (CR51) 2007; 79
Jurcevic (CR80) 2021; 6
J Håstad (27045_CR79) 2001; 48
G Ortiz (27045_CR71) 2001; 64
27045_CR90
27045_CR95
27045_CR94
27045_CR89
27045_CR88
A Abbas (27045_CR62) 2020; 1
27045_CR86
CO Marrero (27045_CR35) 2021; 2
V Akshay (27045_CR68) 2020; 124
A Kandala (27045_CR53) 2017; 549
Y Cao (27045_CR50) 2019; 119
P Erdos (27045_CR76) 1959; 6
Z Jiang (27045_CR67) 2017; 95
M Schuld (27045_CR58) 2014; 13
E Grant (27045_CR42) 2019; 3
Z-J Zhang (27045_CR93) 2021; 6
27045_CR99
27045_CR98
27045_CR15
27045_CR13
JR McClean (27045_CR31) 2018; 9
27045_CR19
27045_CR18
27045_CR17
S McArdle (27045_CR69) 2020; 92
F Arute (27045_CR54) 2020; 369
S Hadfield (27045_CR16) 2019; 12
MX Goemans (27045_CR77) 1995; 42
M Cerezo (27045_CR38) 2021; 6
27045_CR66
27045_CR64
R LaRose (27045_CR28) 2019; 5
S Arora (27045_CR78) 1998; 45
M Cerezo (27045_CR2) 2021; 3
M Nooijen (27045_CR73) 2000; 84
D Wenzel (27045_CR101) 2010; 433
JA Nelder (27045_CR81) 1965; 7
S Endo (27045_CR3) 2021; 90
27045_CR85
A Müller-Hermes (27045_CR105) 2016; 57
27045_CR84
27045_CR83
27045_CR82
J Biamonte (27045_CR60) 2017; 549
A Arrasmith (27045_CR25) 2019; 10
A Arrasmith (27045_CR39) 2021; 5
Z Wang (27045_CR65) 2018; 97
K Beer (27045_CR61) 2020; 11
WW Ho (27045_CR74) 2019; 6
HL Tang (27045_CR92) 2021; 2
27045_CR4
L Cincio (27045_CR96) 2021; 2
27045_CR44
27045_CR49
JR McClean (27045_CR6) 2016; 18
27045_CR47
J Preskill (27045_CR1) 2018; 2
D Wecker (27045_CR56) 2015; 92
RJ Bartlett (27045_CR51) 2007; 79
J Marshall (27045_CR45) 2020; 1
TL Patti (27045_CR36) 2021; 3
27045_CR63
K Heya (27045_CR11) 2019; 1
S Khatri (27045_CR22) 2019; 3
A Skolik (27045_CR43) 2021; 3
MP Harrigan (27045_CR55) 2021; 17
M Cerezo (27045_CR34) 2021; 12
R Wiersema (27045_CR57) 2020; 1
R Blume-Kohout (27045_CR103) 2017; 8
Z Wang (27045_CR14) 2018; 97
J Romero (27045_CR70) 2018; 4
X Yuan (27045_CR12) 2019; 3
J Lee (27045_CR52) 2018; 15
27045_CR30
B Bauer (27045_CR7) 2016; 6
27045_CR100
27045_CR23
27045_CR102
27045_CR21
27045_CR20
27045_CR27
27045_CR24
M Cerezo (27045_CR26) 2020; 4
27045_CR29
C Cade (27045_CR75) 2020; 102
P Jurcevic (27045_CR80) 2021; 6
JM Kübler (27045_CR48) 2020; 4
M Schuld (27045_CR59) 2015; 56
A Peruzzo (27045_CR5) 2014; 5
L Gentini (27045_CR46) 2020; 102
27045_CR41
SB Bravyi (27045_CR72) 2002; 298
27045_CR40
L Cincio (27045_CR97) 2018; 20
HR Grimsley (27045_CR91) 2019; 10
27045_CR33
27045_CR32
27045_CR37
E Nielsen (27045_CR104) 2020; 5
T Jones (27045_CR8) 2019; 99
Y Li (27045_CR9) 2017; 7
C Cirstoiu (27045_CR10) 2020; 6
A He (27045_CR87) 2020; 102
References_xml – volume: 10
  year: 2019
  ident: CR25
  article-title: Variational consistent histories as a hybrid algorithm for quantum foundations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11417-0
– volume: 119
  start-page: 10856
  year: 2019
  end-page: 10915
  ident: CR50
  article-title: Quantum chemistry in the age of quantum computing
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00803
– volume: 12
  start-page: 34
  year: 2019
  ident: CR16
  article-title: From the quantum approximate optimization algorithm to a quantum alternating operator ansatz
  publication-title: Algorithms
  doi: 10.3390/a12020034
– volume: 1
  start-page: 033062
  year: 2019
  ident: CR11
  article-title: Subspace variational quantum simulator
  publication-title: Phys. Rev. Research
  doi: 10.1103/PhysRevResearch.1.033062
– volume: 90
  start-page: 032001
  year: 2021
  ident: CR3
  article-title: Hybrid quantum-classical algorithms and quantum error mitigation
  publication-title: Journal of the Physical Society of Japan
  doi: 10.7566/JPSJ.90.032001
– volume: 4
  start-page: 248
  year: 2020
  ident: CR26
  article-title: Variational quantum fidelity estimation
  publication-title: Quantum
  doi: 10.22331/q-2020-03-26-248
– volume: 11
  start-page: 1
  year: 2020
  end-page: 6
  ident: CR61
  article-title: Training deep quantum neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14454-2
– volume: 84
  start-page: 2108
  year: 2000
  ident: CR73
  article-title: Can the eigenstates of a many-body hamiltonian be represented exactly using a general two-body cluster expansion?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.2108
– ident: CR19
– ident: CR88
– volume: 2
  start-page: 020310
  year: 2021
  ident: CR92
  article-title: qubit-adapt-vqe: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.020310
– volume: 3
  year: 2021
  ident: CR36
  article-title: Entanglement devised barren plateau mitigation
  publication-title: Phys. Rev. Research
  doi: 10.1103/PhysRevResearch.3.033090
– volume: 79
  start-page: 291
  year: 2007
  ident: CR51
  article-title: Coupled-cluster theory in quantum chemistry
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.79.291
– volume: 124
  start-page: 090504
  year: 2020
  ident: CR68
  article-title: Reachability deficits in quantum approximate optimization
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.090504
– ident: CR85
– volume: 6
  start-page: 035006
  year: 2021
  ident: CR38
  article-title: Higher order derivatives of quantum neural networks with barren plateaus
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/abf51a
– volume: 2
  start-page: 79
  year: 2018
  ident: CR1
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 15
  start-page: 311
  year: 2018
  end-page: 324
  ident: CR52
  article-title: Generalized unitary coupled cluster wave functions for quantum computation
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b01004
– volume: 56
  start-page: 172
  year: 2015
  end-page: 185
  ident: CR59
  article-title: An introduction to quantum machine learning
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2014.964942
– ident: CR100
– ident: CR18
– ident: CR66
– ident: CR47
– volume: 1
  start-page: 403
  year: 2020
  end-page: 409
  ident: CR62
  article-title: The power of quantum neural networks
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-021-00084-1
– volume: 3
  start-page: 214
  year: 2019
  ident: CR42
  article-title: An initialization strategy for addressing barren plateaus in parametrized quantum circuits
  publication-title: Quantum
  doi: 10.22331/q-2019-12-09-214
– ident: CR89
– volume: 4
  start-page: 014008
  year: 2018
  ident: CR70
  article-title: Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aad3e4
– ident: CR30
– volume: 549
  start-page: 195
  year: 2017
  end-page: 202
  ident: CR60
  article-title: Quantum machine learning
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 6
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR10
  article-title: Variational fast forwarding for quantum simulation beyond the coherence time
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-020-00302-0
– ident: CR33
– volume: 6
  start-page: 035001
  year: 2021
  ident: CR93
  article-title: Mutual information-assisted adaptive variational quantum eigensolver
  publication-title: Quantum Sci. Technol
  doi: 10.1088/2058-9565/abdca4
– volume: 5
  year: 2014
  ident: CR5
  article-title: A variational eigenvalue solver on a photonic quantum processor
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5213
– volume: 369
  start-page: 1084
  year: 2020
  end-page: 1089
  ident: CR54
  article-title: Hartree-fock on a superconducting qubit quantum computer
  publication-title: Science
  doi: 10.1126/science.abb9811
– volume: 97
  start-page: 022304
  year: 2018
  ident: CR65
  article-title: Quantum approximate optimization algorithm for maxcut: a fermionic view
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022304
– volume: 9
  year: 2018
  ident: CR31
  article-title: Barren plateaus in quantum neural network training landscapes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07090-4
– ident: CR86
– ident: CR63
– volume: 20
  start-page: 113022
  year: 2018
  ident: CR97
  article-title: Learning the quantum algorithm for state overlap
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/aae94a
– ident: CR27
– volume: 6
  start-page: 18
  year: 1959
  ident: CR76
  article-title: On random graphs i
  publication-title: Publ. math. Debr.
– volume: 3
  start-page: 191
  year: 2019
  ident: CR12
  article-title: Theory of variational quantum simulation
  publication-title: Quantum
  doi: 10.22331/q-2019-10-07-191
– ident: CR94
– volume: 7
  start-page: 021050
  year: 2017
  ident: CR9
  article-title: Efficient variational quantum simulator incorporating active error minimization
  publication-title: Phys. Rev. X
– ident: CR44
– volume: 2
  start-page: 010324
  year: 2021
  ident: CR96
  article-title: Machine learning of noise-resilient quantum circuits
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.010324
– ident: CR13
– volume: 433
  start-page: 1726
  year: 2010
  end-page: 1759
  ident: CR101
  article-title: Impressions of convexity: an illustration for commutator bounds
  publication-title: Linear algebra its Appl.
  doi: 10.1016/j.laa.2010.06.039
– volume: 12
  year: 2021
  ident: CR34
  article-title: Cost-function-dependent barren plateaus in shallow quantum neural networks
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-21728-w
– ident: CR83
– volume: 1
  start-page: 025208
  year: 2020
  ident: CR45
  article-title: Characterizing local noise in QAOA circuits
  publication-title: IOP SciNotes
  doi: 10.1088/2633-1357/abb0d7
– ident: CR41
– ident: CR24
– volume: 92
  start-page: 042303
  year: 2015
  ident: CR56
  article-title: Progress towards practical quantum variational algorithms
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.042303
– ident: CR102
– volume: 3
  start-page: 625
  year: 2021
  end-page: 644
  ident: CR2
  article-title: Variational quantum algorithms
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00348-9
– ident: CR49
– ident: CR4
– volume: 18
  start-page: 023023
  year: 2016
  ident: CR6
  article-title: The theory of variational hybrid quantum-classical algorithms
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/18/2/023023
– ident: CR29
– volume: 102
  start-page: 012426
  year: 2020
  ident: CR87
  article-title: Zero-noise extrapolation for quantum-gate error mitigation with identity insertions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.012426
– volume: 17
  start-page: 332
  year: 2021
  end-page: 336
  ident: CR55
  article-title: Quantum approximate optimization of non-planar graph problems on a planar superconducting processor
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-01105-y
– ident: CR84
– volume: 2
  year: 2021
  ident: CR35
  article-title: Entanglement induced barren plateaus
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.040316
– volume: 102
  start-page: 052414
  year: 2020
  ident: CR46
  article-title: Noise-resilient variational hybrid quantum-classical optimization
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.052414
– ident: CR21
– volume: 95
  start-page: 062317
  year: 2017
  ident: CR67
  article-title: Near-optimal quantum circuit for grover’s unstructured search using a transverse field
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.062317
– volume: 42
  start-page: 1115
  year: 1995
  end-page: 1145
  ident: CR77
  article-title: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
  publication-title: J. ACM
  doi: 10.1145/227683.227684
– volume: 45
  start-page: 501
  year: 1998
  end-page: 555
  ident: CR78
  article-title: Proof verification and the hardness of approximation problems
  publication-title: J. ACM
  doi: 10.1145/278298.278306
– volume: 6
  start-page: 025020
  year: 2021
  ident: CR80
  article-title: Demonstration of quantum volume 64 on a superconducting quantum computing system
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/abe519
– ident: CR15
– volume: 97
  start-page: 022304
  year: 2018
  ident: CR14
  article-title: Quantum approximate optimization algorithm for MaxCut: a fermionic view
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022304
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  ident: CR91
  article-title: An adaptive variational algorithm for exact molecular simulations on a quantum computer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10988-2
– volume: 4
  start-page: 263
  year: 2020
  ident: CR48
  article-title: An adaptive optimizer for measurement-frugal variational algorithms
  publication-title: Quantum
  doi: 10.22331/q-2020-05-11-263
– volume: 92
  start-page: 015003
  year: 2020
  ident: CR69
  article-title: Quantum computational chemistry
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.015003
– volume: 13
  start-page: 2567
  year: 2014
  end-page: 2586
  ident: CR58
  article-title: The quest for a quantum neural network
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-014-0809-8
– ident: CR32
– volume: 48
  start-page: 798
  year: 2001
  end-page: 859
  ident: CR79
  article-title: Some optimal inapproximability results
  publication-title: J. ACM
  doi: 10.1145/502090.502098
– ident: CR64
– volume: 6
  start-page: 029
  year: 2019
  ident: CR74
  article-title: Efficient variational simulation of non-trivial quantum states
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.6.3.029
– volume: 8
  start-page: 1
  year: 2017
  end-page: 13
  ident: CR103
  article-title: Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14485
– ident: CR99
– ident: CR95
– volume: 3
  start-page: 5
  year: 2021
  ident: CR43
  article-title: Layerwise learning for quantum neural networks
  publication-title: Quantum Mach. Intell.
  doi: 10.1007/s42484-020-00036-4
– ident: CR37
– ident: CR82
– volume: 57
  start-page: 022202
  year: 2016
  ident: CR105
  article-title: Relative entropy convergence for depolarizing channels
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4939560
– volume: 1
  start-page: 020319
  year: 2020
  ident: CR57
  article-title: Exploring entanglement and optimization within the hamiltonian variational ansatz
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.1.020319
– ident: CR40
– volume: 549
  start-page: 242
  year: 2017
  ident: CR53
  article-title: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
  publication-title: Nature
  doi: 10.1038/nature23879
– ident: CR98
– volume: 64
  start-page: 022319
  year: 2001
  ident: CR71
  article-title: Quantum algorithms for fermionic simulations
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.022319
– ident: CR23
– volume: 5
  start-page: 044002
  year: 2020
  ident: CR104
  article-title: Probing quantum processor performance with pyGSTi
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab8aa4
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: CR81
  article-title: A simplex method for function minimization
  publication-title: Computer J.
  doi: 10.1093/comjnl/7.4.308
– volume: 5
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR28
  article-title: Variational quantum state diagonalization
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-019-0167-6
– ident: CR90
– ident: CR17
– volume: 102
  start-page: 235122
  year: 2020
  ident: CR75
  article-title: Strategies for solving the fermi-hubbard model on near-term quantum computers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.235122
– volume: 6
  start-page: 031045
  year: 2016
  ident: CR7
  article-title: Hybrid quantum-classical approach to correlated materials
  publication-title: Phys. Rev. X
– volume: 298
  start-page: 210
  year: 2002
  end-page: 226
  ident: CR72
  article-title: Fermionic quantum computation
  publication-title: Ann. Phys.
  doi: 10.1006/aphy.2002.6254
– volume: 99
  start-page: 062304
  year: 2019
  ident: CR8
  article-title: Variational quantum algorithms for discovering hamiltonian spectra
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.062304
– volume: 3
  start-page: 140
  year: 2019
  ident: CR22
  article-title: Quantum-assisted quantum compiling
  publication-title: Quantum
  doi: 10.22331/q-2019-05-13-140
– volume: 5
  year: 2021
  ident: CR39
  article-title: Effect of barren plateaus on gradient-free optimization
  publication-title: Quantum
  doi: 10.22331/q-2021-10-05-558
– ident: CR20
– volume: 4
  start-page: 248
  year: 2020
  ident: 27045_CR26
  publication-title: Quantum
  doi: 10.22331/q-2020-03-26-248
– volume: 6
  start-page: 1
  year: 2020
  ident: 27045_CR10
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-020-00302-0
– volume: 9
  year: 2018
  ident: 27045_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07090-4
– ident: 27045_CR4
– ident: 27045_CR41
– volume: 7
  start-page: 021050
  year: 2017
  ident: 27045_CR9
  publication-title: Phys. Rev. X
– ident: 27045_CR49
– ident: 27045_CR64
  doi: 10.1103/PhysRevLett.125.260505
– volume: 119
  start-page: 10856
  year: 2019
  ident: 27045_CR50
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00803
– volume: 2
  start-page: 79
  year: 2018
  ident: 27045_CR1
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– ident: 27045_CR102
– volume: 4
  start-page: 014008
  year: 2018
  ident: 27045_CR70
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aad3e4
– volume: 3
  start-page: 5
  year: 2021
  ident: 27045_CR43
  publication-title: Quantum Mach. Intell.
  doi: 10.1007/s42484-020-00036-4
– volume: 92
  start-page: 042303
  year: 2015
  ident: 27045_CR56
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.042303
– volume: 2
  start-page: 010324
  year: 2021
  ident: 27045_CR96
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.010324
– volume: 10
  year: 2019
  ident: 27045_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11417-0
– volume: 6
  start-page: 035001
  year: 2021
  ident: 27045_CR93
  publication-title: Quantum Sci. Technol
  doi: 10.1088/2058-9565/abdca4
– volume: 3
  start-page: 625
  year: 2021
  ident: 27045_CR2
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00348-9
– ident: 27045_CR17
– ident: 27045_CR37
  doi: 10.1088/2058-9565/abd891
– volume: 3
  start-page: 191
  year: 2019
  ident: 27045_CR12
  publication-title: Quantum
  doi: 10.22331/q-2019-10-07-191
– volume: 10
  start-page: 1
  year: 2019
  ident: 27045_CR91
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10988-2
– ident: 27045_CR82
– volume: 8
  start-page: 1
  year: 2017
  ident: 27045_CR103
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14485
– volume: 102
  start-page: 012426
  year: 2020
  ident: 27045_CR87
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.012426
– volume: 15
  start-page: 311
  year: 2018
  ident: 27045_CR52
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b01004
– volume: 3
  year: 2021
  ident: 27045_CR36
  publication-title: Phys. Rev. Research
  doi: 10.1103/PhysRevResearch.3.033090
– volume: 92
  start-page: 015003
  year: 2020
  ident: 27045_CR69
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.015003
– ident: 27045_CR83
  doi: 10.22331/q-2021-11-26-592
– ident: 27045_CR47
– volume: 549
  start-page: 195
  year: 2017
  ident: 27045_CR60
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 45
  start-page: 501
  year: 1998
  ident: 27045_CR78
  publication-title: J. ACM
  doi: 10.1145/278298.278306
– volume: 99
  start-page: 062304
  year: 2019
  ident: 27045_CR8
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.062304
– ident: 27045_CR89
– ident: 27045_CR66
  doi: 10.26421/QIC19.13-14-3
– volume: 20
  start-page: 113022
  year: 2018
  ident: 27045_CR97
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/aae94a
– volume: 5
  start-page: 044002
  year: 2020
  ident: 27045_CR104
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab8aa4
– volume: 12
  start-page: 34
  year: 2019
  ident: 27045_CR16
  publication-title: Algorithms
  doi: 10.3390/a12020034
– volume: 12
  year: 2021
  ident: 27045_CR34
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-21728-w
– volume: 3
  start-page: 140
  year: 2019
  ident: 27045_CR22
  publication-title: Quantum
  doi: 10.22331/q-2019-05-13-140
– volume: 7
  start-page: 308
  year: 1965
  ident: 27045_CR81
  publication-title: Computer J.
  doi: 10.1093/comjnl/7.4.308
– ident: 27045_CR21
  doi: 10.1007/978-3-030-14082-3_7
– ident: 27045_CR95
– ident: 27045_CR86
  doi: 10.1088/2058-9565/ac3b37
– volume: 2
  year: 2021
  ident: 27045_CR35
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.040316
– volume: 57
  start-page: 022202
  year: 2016
  ident: 27045_CR105
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4939560
– volume: 2
  start-page: 020310
  year: 2021
  ident: 27045_CR92
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.020310
– volume: 97
  start-page: 022304
  year: 2018
  ident: 27045_CR14
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022304
– ident: 27045_CR84
– volume: 4
  start-page: 263
  year: 2020
  ident: 27045_CR48
  publication-title: Quantum
  doi: 10.22331/q-2020-05-11-263
– volume: 3
  start-page: 214
  year: 2019
  ident: 27045_CR42
  publication-title: Quantum
  doi: 10.22331/q-2019-12-09-214
– volume: 90
  start-page: 032001
  year: 2021
  ident: 27045_CR3
  publication-title: Journal of the Physical Society of Japan
  doi: 10.7566/JPSJ.90.032001
– ident: 27045_CR32
  doi: 10.1103/PRXQuantum.3.010313
– volume: 48
  start-page: 798
  year: 2001
  ident: 27045_CR79
  publication-title: J. ACM
  doi: 10.1145/502090.502098
– ident: 27045_CR90
– volume: 95
  start-page: 062317
  year: 2017
  ident: 27045_CR67
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.062317
– ident: 27045_CR98
– volume: 369
  start-page: 1084
  year: 2020
  ident: 27045_CR54
  publication-title: Science
  doi: 10.1126/science.abb9811
– volume: 1
  start-page: 025208
  year: 2020
  ident: 27045_CR45
  publication-title: IOP SciNotes
  doi: 10.1088/2633-1357/abb0d7
– volume: 18
  start-page: 023023
  year: 2016
  ident: 27045_CR6
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/18/2/023023
– volume: 56
  start-page: 172
  year: 2015
  ident: 27045_CR59
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2014.964942
– volume: 5
  year: 2014
  ident: 27045_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5213
– volume: 13
  start-page: 2567
  year: 2014
  ident: 27045_CR58
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-014-0809-8
– volume: 6
  start-page: 035006
  year: 2021
  ident: 27045_CR38
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/abf51a
– ident: 27045_CR13
– volume: 5
  start-page: 1
  year: 2019
  ident: 27045_CR28
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-019-0167-6
– volume: 5
  year: 2021
  ident: 27045_CR39
  publication-title: Quantum
  doi: 10.22331/q-2021-10-05-558
– volume: 17
  start-page: 332
  year: 2021
  ident: 27045_CR55
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-01105-y
– volume: 124
  start-page: 090504
  year: 2020
  ident: 27045_CR68
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.090504
– volume: 298
  start-page: 210
  year: 2002
  ident: 27045_CR72
  publication-title: Ann. Phys.
  doi: 10.1006/aphy.2002.6254
– ident: 27045_CR44
  doi: 10.1088/0256-307X/38/3/030302
– volume: 1
  start-page: 403
  year: 2020
  ident: 27045_CR62
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-021-00084-1
– ident: 27045_CR20
  doi: 10.1038/s41534-021-00425-y
– volume: 102
  start-page: 235122
  year: 2020
  ident: 27045_CR75
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.235122
– volume: 6
  start-page: 025020
  year: 2021
  ident: 27045_CR80
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/abe519
– ident: 27045_CR27
– volume: 79
  start-page: 291
  year: 2007
  ident: 27045_CR51
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.79.291
– ident: 27045_CR33
– volume: 11
  start-page: 1
  year: 2020
  ident: 27045_CR61
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14454-2
– volume: 97
  start-page: 022304
  year: 2018
  ident: 27045_CR65
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022304
– volume: 84
  start-page: 2108
  year: 2000
  ident: 27045_CR73
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.2108
– ident: 27045_CR85
  doi: 10.1103/PhysRevE.104.035309
– volume: 1
  start-page: 033062
  year: 2019
  ident: 27045_CR11
  publication-title: Phys. Rev. Research
  doi: 10.1103/PhysRevResearch.1.033062
– ident: 27045_CR18
– ident: 27045_CR24
– volume: 6
  start-page: 18
  year: 1959
  ident: 27045_CR76
  publication-title: Publ. math. Debr.
– ident: 27045_CR19
  doi: 10.1088/1367-2630/ab965e
– volume: 6
  start-page: 029
  year: 2019
  ident: 27045_CR74
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.6.3.029
– ident: 27045_CR40
  doi: 10.1088/1751-8121/abfac7
– ident: 27045_CR100
– ident: 27045_CR30
– ident: 27045_CR99
– ident: 27045_CR23
  doi: 10.1088/1367-2630/ab784c
– volume: 1
  start-page: 020319
  year: 2020
  ident: 27045_CR57
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.1.020319
– volume: 42
  start-page: 1115
  year: 1995
  ident: 27045_CR77
  publication-title: J. ACM
  doi: 10.1145/227683.227684
– volume: 549
  start-page: 242
  year: 2017
  ident: 27045_CR53
  publication-title: Nature
  doi: 10.1038/nature23879
– ident: 27045_CR94
– volume: 102
  start-page: 052414
  year: 2020
  ident: 27045_CR46
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.052414
– ident: 27045_CR15
– volume: 6
  start-page: 031045
  year: 2016
  ident: 27045_CR7
  publication-title: Phys. Rev. X
– ident: 27045_CR63
– volume: 64
  start-page: 022319
  year: 2001
  ident: 27045_CR71
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.022319
– ident: 27045_CR88
– ident: 27045_CR29
– volume: 433
  start-page: 1726
  year: 2010
  ident: 27045_CR101
  publication-title: Linear algebra its Appl.
  doi: 10.1016/j.laa.2010.06.039
SSID ssj0000391844
Score 2.7468429
Snippet Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether...
Variational quantum algorithms (VQAs) are a leading candidate for useful applications of near-term quantum computing, but limitations due to unavoidable noise...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6961
SubjectTerms 639/766/259
639/766/483/481
Algorithms
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computers
Humanities and Social Sciences
information theory and computation
multidisciplinary
Noise
Plateaus
Quantum computing
quantum information
Qubits (quantum computing)
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiDehBQWJG0Td2I4fJwSIigNacQDUm-VXaKRt0m6SSv33HTvZpcvzwilR4kT2vCeefAPwsqpqFBOP-i2sKpgnaAdD7QpmuUFvaGqS_oX59kksl_L4WH2-1uor1oRN8MAT4Q5dWVlBamZqaphBf-oD4RYFTXkasbOi9V0IdS2ZSjaYKkxd2PyXzILKw54lmxArEojAOKbgO54oAfbjoUPF-l2w-WvN5E8bp8kfHd2FO3Mgmb-dFnAPboT2PtyaWktePoA3y67pQ4EZN_LO5zZW5Lb52QpDSzP2edPmF5glz18C8_MRCTye5mb1vVs3w8lp_xC-Hn348v5jMTdLKByndChinykvPfFUMBa8VxIzHVtxEaiVxi-QVUEYaWpPAw_OeKt4dP6-rIyntaWPYK_t2vAE8lA6wbgVVlDPqDFWodIrRfAsvsJnUG4Ip92MJB4bWqx02tGmUk_E1khsnYiteQavts-cTTgafx39LvJjOzJiYKcLKBl6lgz9L8nIYD9yU2MoEfFwXSwccoOONkzRMoODDZP1rLa9xuSOESbQ5mbwYnsbFS7uopg2dOM0RlImK5HB40kmtvPEywzjIZy_2JGWnYXs3mmbkwTqLRP2Gb7z9Uaufkzrz4R6-j8ItQ-3SdSLElVDHcDesB7DM7jpLoamXz9PinUFJS0kqg
  priority: 102
  providerName: Directory of Open Access Journals
Title Noise-induced barren plateaus in variational quantum algorithms
URI https://link.springer.com/article/10.1038/s41467-021-27045-6
https://www.ncbi.nlm.nih.gov/pubmed/34845216
https://www.proquest.com/docview/2604247763
https://www.proquest.com/docview/2604834857
https://www.osti.gov/biblio/1832931
https://pubmed.ncbi.nlm.nih.gov/PMC8630047
https://doaj.org/article/c15b72f4af3a4a639de26b2579d36812
Volume 12
WOSCitedRecordID wos000723756500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvAuhZRUkbhC1iZ3YOVUUtQIJVhECtHCx_Eq70jbZbpJK_HvGTjbV8uiFSxLFjmNnHh6PJ98AvErTEtnEoHwzlUfUJKgHbakjqjKJs6EsE_8vzLePbDrls1leDA63ZgirXOtEr6hNrZ2P_ADtbppQhuJwtLyMXNYot7s6pNDYgh2HkpD40L1i9LE49HNO6fCvzCHhBw31msHFJSQMrZko25iPPGw_nmoUr7-ZnH9GTv62fepnpdP7_zueB3BvsEfDtz0DPYRbtnoEd_oMlT8fw9G0njc2woU7soAJlQvsrcLlAi1U2TXhvAqvcLE9OBTDyw7p1F2EcnGGr2rPL5on8PX05Mu799GQcyHSGSFt5NJVGW4SQxil1pic44JJpRmzRHFpDpHilkkuS0NsZrU0Ks-cDWHiVBpSKrIL21Vd2WcQ2lgzmimmGDGUSKly1B15nuCVa8IEEK-_vNADILnLi7EQfmOccNFTSyC1hKeWyAJ4PT6z7OE4bqx97Ag61nRQ2v5GvToTg2QKHaeKJSWVJZFUosFmbJIp1GS5IQ6cLYA9xw4CLRIHq6td_JFuhVOFOYkD2F-TVwzS34hr2gbwcixGuXWbMbKyddfX4YTylAXwtGeqsZ94m6JZhf1nG-y2MZDNkmp-7rHBuYdQwzbfrBnzulv__lDPbx7FHtxNnMjEKDX5Pmy3q86-gNv6qp03qwlssRnzRz6BneOTafF54l0bEy-NeCzSH1hSfPhUfP8FV1o6Dw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvGlDCwQJThC1sZ3YOaCKV9VVt6s9FFROxo6dNtI22W52i_qn-I2M89hqefTWA6dEiWPZyfd9ntjjGYBXUZQhTAzym-skYIagDtosDZiOFY6GKiP1XpivAz4ciqOjZLQCP7u9MM6tstPEWqhNmbo58i20uxlhHOmwMzkLXNYot7rapdBoYLFvL37gL1v1rv8Jv-9rQnY_H37cC9qsAkEaUzoLXEImIwwxlDNmjUkE_hLoKOaWaqHMNvbJciVUZqiNbaqMTmI3SpowUoZmmmK9N2CVObD3YHXUPxh9W8zquHjrgrF2d842FVsVq7XIeUIQjvZTEC-NgHWiADyUSOi_Gbl_-mr-tmBbj4O79_63N3gf7rYWt_--ocgDWLHFQ7jV5OC8eAQ7wzKvbJAXBkFufO1clwt_MkYbXM0rPy_8czXN2ylT_2yOSJyf-mp8jF2bnZxWj-HLtbT-CfSKsrDr4Nsw5SzWXHNqGFVKJ6iOSULwzFVhPAi7Ly3TNuS6y_wxlvXSPxWyQYdEdMgaHTL24M3imUkTcOTK0h8cgBYlXbDw-kI5PZat9sg0jDQnGVMZVUyhSWosiTXCNzHUhZ_zYMPBT6LN5QIHp87DKp1JJ_YJDT3Y7OAkW32r5CWWPHi5uI3K5JabVGHLeVNGUCYi7sFaA-JFO_EyQ8MR28-X4L3UkeU7RX5SRz8XdZA4rPNtR4TLZv37RT29uhcv4Pbe4cFADvrD_Q24QxxdQ2Rssgm92XRun8HN9HyWV9PnLeN9-H7dFPkF4J-UaA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o_QAkGCE0Tb2E7sHFAFlBVVq9UeAFVcjB07baRtst3sFvWv8esYO8lWy6O3Hjglih3LTr5vZmyPZwBeJkmBMDHIb66ziBmCctAWecR0qlAbqoL4szBf9_loJA4OsvEa_OzPwji3yl4mekFt6tytkQ_Q7maEcaTDoOjcIsY7w-3pSeQySLmd1j6dRguRPXv2A6dvzdvdHfzXrwgZfvz84VPUZRiI8pTSeeSSMxlhiKGcMWtMJnB6oJOUW6qFMls4PsuVUIWhNrW5MjpLncY0caIMLTTFdq_AVY5zTOdOOE6-Ldd3XOR1wVh3TmeLikHDvFRyPhGEoyUVpSu60KcMwEuN1P6bufun1-ZvW7deIw5v_8_f8g7c6uzw8F1LnLuwZqt7cL3NzHl2H7ZHddnYqKwMQt-E2jk0V-F0gpa5WjRhWYWnalZ2C6nhyQLxuTgO1eQQhzY_Om4ewJdL6f1DWK_qyj6G0MY5AkJzzalhVCmdoczMMoJ3rgkTQNz_dZl3gdhdPpCJ9A4BVMgWKRKRIj1SZBrA6-U70zYMyYW13zswLWu6EOL-QT07lJ1EknmcaE4KpgqqmEJD1ViSapTgmaEuKF0AGw6KEi0xF044d35X-Vw6FZDROIDNHlqyk3qNPMdVAC-WxSiv3CaUqmy9aOsIykTCA3jUAnrZT3zM0JzE_vMVqK8MZLWkKo98THThQ8dhm296Upx3698f6snFo3gON5AXcn93tLcBN4ljbozkzTZhfT5b2KdwLT-dl83smad-CN8vmx-_AK0Sm8s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise-induced+barren+plateaus+in+variational+quantum+algorithms&rft.jtitle=Nature+communications&rft.au=Wang%2C+Samson&rft.au=Fontana%2C+Enrico&rft.au=Cerezo%2C+M.&rft.au=Sharma%2C+Kunal&rft.date=2021-11-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft_id=info:doi/10.1038%2Fs41467-021-27045-6&rft_id=info%3Apmid%2F34845216&rft.externalDocID=PMC8630047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon