Automatic Segmentation of the Fetus in 3D Magnetic Resonance Images Using Deep Learning: Accurate and Fast Fetal Volume Quantification for Clinical Use

Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock’s formulas to that of MRI; and (3) quanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric cardiology Jg. 44; H. 6; S. 1311 - 1318
Hauptverfasser: Ryd, Daniel, Nilsson, Amanda, Heiberg, Einar, Hedström, Erik
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2023
Springer
Springer Nature B.V
Schlagworte:
ISSN:0172-0643, 1432-1971, 1432-1971
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock’s formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29–39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 datasets for training and validation, and 22 for testing. Hadlock’s formulas 1–4 with biometric parameters from MRI were compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland–Altman analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Hadlock’s formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1–4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151–650) ml/min (indexed 162 (range 52–220) ml/min/kg), and descending aortic flow was 763 (range 481–1160) ml/min (indexed 276 (range 189–386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable analysis time. Hadlock 1–4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment.
AbstractList Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock's formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29-39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 datasets for training and validation, and 22 for testing. Hadlock's formulas 1-4 with biometric parameters from MRI were compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland-Altman analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Hadlock's formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1-4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151-650) ml/min (indexed 162 (range 52-220) ml/min/kg), and descending aortic flow was 763 (range 481-1160) ml/min (indexed 276 (range 189-386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable analysis time. Hadlock 1-4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment.Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock's formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29-39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 datasets for training and validation, and 22 for testing. Hadlock's formulas 1-4 with biometric parameters from MRI were compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland-Altman analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Hadlock's formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1-4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151-650) ml/min (indexed 162 (range 52-220) ml/min/kg), and descending aortic flow was 763 (range 481-1160) ml/min (indexed 276 (range 189-386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable analysis time. Hadlock 1-4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment.
Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock's formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29-39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 datasets for training and validation, and 22 for testing. Hadlock's formulas 1-4 with biometric parameters from MRI were compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland-Altman analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Hadlock's formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1-4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151-650) ml/min (indexed 162 (range 52-220) ml/min/kg), and descending aortic flow was 763 (range 481-1160) ml/min (indexed 276 (range 189-386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable analysis time. Hadlock 1-4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment.
Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock’s formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29–39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 datasets for training and validation, and 22 for testing. Hadlock’s formulas 1–4 with biometric parameters from MRI were compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland–Altman analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Hadlock’s formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1–4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151–650) ml/min (indexed 162 (range 52–220) ml/min/kg), and descending aortic flow was 763 (range 481–1160) ml/min (indexed 276 (range 189–386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable analysis time. Hadlock 1–4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment.
Audience Academic
Author Heiberg, Einar
Hedström, Erik
Ryd, Daniel
Nilsson, Amanda
Author_xml – sequence: 1
  givenname: Daniel
  surname: Ryd
  fullname: Ryd, Daniel
  organization: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital
– sequence: 2
  givenname: Amanda
  surname: Nilsson
  fullname: Nilsson, Amanda
  organization: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital
– sequence: 3
  givenname: Einar
  surname: Heiberg
  fullname: Heiberg, Einar
  organization: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Wallenberg Centre for Molecular Medicine, Lund University
– sequence: 4
  givenname: Erik
  surname: Hedström
  fullname: Hedström, Erik
  email: Erik.Hedstrom@med.lu.se
  organization: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36334112$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVARbQd-gAWyxIZNip95sEGjKYVKRYhH2Vquc526SuwhTkB8Cb_LHWYobYUqL2LH53Hv9TkkezFFIOQpZ0ecseplZkyosmBCFEwyWRfsATngSoqCNxXfIweMV3hVKrlPDnO-YozVrNaPyL4spVSciwPyazlPabBTcPQzdAPECfcp0uTpdAn0BKY50xCpPKbvbRdhA_wEOUUbHdDTwXaQ6XkOsaPHAGt6BnaMeHpFl87No52A2tjSE5unjZjt6dfUzwPQj7ONU_DBbf18GumqDxHPPerBY_LQ2z7Dk913Qc5P3nxZvSvOPrw9XS3PCldKMRW6EuKCu0bJ1l-ArbWrFLS1ZLr2TvLa-VqCc9pJy7xuW62crzyUTuCImkbKBbFb3fwD1vOFWY9hsONPk2ww6zRiwWaEjE25S9PPJoNBVL-rOhshhC6hbY32DoxqFDeNc9wwBUrq1osaGvR4vfVA6gCtwyGPqHvL6tZNDJemS98NZwJLVAwVXuwUxvRthjyZIWQHfW8jpBnLqKTQUit86gV5fgd6leYx4gwNYkpVNaW-gepsDyZEn9DYbUTNstKqVhXDjCzI0X9QuFoYgsMw-oD_bxGe3ez0usW_eUOA2ALcmHIewV9DODObUJttqA2G2vwJtdl0X98hubCNKZYT-vupcve86BM7GP9N4x7Wb-bJDHM
CitedBy_id crossref_primary_10_3389_fcvm_2023_1285391
crossref_primary_10_1007_s00330_023_10038_y
crossref_primary_10_1016_j_compbiomed_2024_109000
crossref_primary_10_1186_s41205_025_00254_1
crossref_primary_10_1007_s10278_025_01556_w
Cites_doi 10.1002/pd.5351
10.1002/uog.5181
10.1007/978-3-319-24574-4_28
10.1002/uog.14882
10.1002/uog.5306
10.1016/j.ajog.2004.01.036
10.1186/1471-2342-10-1
10.1002/pd.1071
10.1148/radiology.150.2.6691115
10.1007/978-3-030-32692-0_71
10.1186/1532-429X-14-79
10.1046/j.1469-0705.2000.00208.x
10.1007/978-3-030-59725-2_35
10.1136/heart.87.1.67
10.1148/radiol.12121374
10.1136/archdischild-2016-311845
10.1046/j.1442-200x.1999.01154.x
10.1002/uog.20108
10.1016/0002-9378(85)90298-4
10.1007/s00246-010-9648-2
10.1016/0301-5629(84)90168-6
10.1002/uog.19066
10.1109/EMBC.2017.8037116
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2023 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Section V
Diagnostic Radiology, (Lund)
Bröstcancer Proteogenomik
Faculty of Engineering, LTH
Lunds Tekniska Högskola
WCMM-Wallenberg Centre for Molecular Medicine
LTH Profile areas
WCMM- Wallenberg center för molekylär medicinsk forskning
Department of Clinical Sciences, Lund
Biomarkörer och Epi
Section I
Lund Cardiac MR Group
Clinical Physiology (Lund)
LTH profilområde: Teknik för hälsa
Sektion I
Medicinska fakulteten
Breast cancer Proteogenomics
Institutionen för kliniska vetenskaper, Lund
Lunds universitet
Hjärt-MR-gruppen i Lund
LTH profilområden
Lund University
Sektion V
Diagnostisk radiologi, Lund
Biomarkers and epidemiology
Pediatrisk radiologi
LTH Profile Area: Engineering Health
Faculty of Medicine
Klinisk fysiologi, Lund
CorporateAuthor_xml – name: Clinical Physiology (Lund)
– name: LTH profilområde: Teknik för hälsa
– name: Lund Cardiac MR Group
– name: LTH Profile Area: Engineering Health
– name: Biomarkers and epidemiology
– name: Biomarkörer och Epi
– name: Section I
– name: Diagnostisk radiologi, Lund
– name: Lunds Tekniska Högskola
– name: Department of Clinical Sciences, Lund
– name: Faculty of Engineering, LTH
– name: Lund University
– name: Sektion V
– name: Section V
– name: Pediatrisk radiologi
– name: WCMM- Wallenberg center för molekylär medicinsk forskning
– name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Klinisk fysiologi, Lund
– name: Hjärt-MR-gruppen i Lund
– name: WCMM-Wallenberg Centre for Molecular Medicine
– name: Breast cancer Proteogenomics
– name: Institutionen för kliniska vetenskaper, Lund
– name: Lunds universitet
– name: Sektion I
– name: Diagnostic Radiology, (Lund)
– name: Bröstcancer Proteogenomik
– name: LTH Profile areas
– name: LTH profilområden
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7RV
7X7
7XB
8FI
AFKRA
AZQEC
BENPR
CCPQU
FYUFA
M0R
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1007/s00246-022-03038-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Consumer Health Database
PML(ProQuest Medical Library)
Nursing & Allied Health Premium
ProQuest Databases
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Central China
ProQuest Central
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



ProQuest One Academic Middle East (New)
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1971
EndPage 1318
ExternalDocumentID oai_portal_research_lu_se_publications_22256edd_5fce_4941_9cc1_04e435df28e9
PMC10293340
A754847036
36334112
10_1007_s00246_022_03038_0
Genre Journal Article
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GrantInformation_xml – fundername: Lund University
– fundername: ;
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
4.4
406
408
409
40D
40E
53G
5QI
5RE
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUDM
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEA
IHE
IHR
IJ-
IKXTQ
IMOTQ
INH
IOF
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9S
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
YLTOR
Z45
Z7U
Z82
Z83
Z87
Z8O
Z8V
Z8W
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~EX
7RV
7X7
8FI
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
CCPQU
CITATION
FYUFA
HMCUK
M0R
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PPXIY
PSQYO
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
7XB
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c632t-5722b1c943dfbea85c74ed83058fc318cf83ecc5c3a0f5dd54cf7fe6c21979933
IEDL.DBID 7RV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000879154700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0172-0643
1432-1971
IngestDate Mon Dec 01 03:11:28 EST 2025
Tue Nov 04 02:06:35 EST 2025
Fri Sep 05 12:25:02 EDT 2025
Tue Oct 07 13:50:15 EDT 2025
Sat Nov 29 13:58:51 EST 2025
Sat Nov 29 10:30:09 EST 2025
Mon Jul 21 05:54:43 EDT 2025
Sat Nov 29 03:24:07 EST 2025
Tue Nov 18 22:13:40 EST 2025
Fri Feb 21 02:43:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Fetal weight
Fetal cardiovascular magnetic resonance imaging
Prenatal diagnosis
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c632t-5722b1c943dfbea85c74ed83058fc318cf83ecc5c3a0f5dd54cf7fe6c21979933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s00246-022-03038-0
PMID 36334112
PQID 3256479654
PQPubID 7439191
PageCount 8
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_22256edd_5fce_4941_9cc1_04e435df28e9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10293340
proquest_miscellaneous_2732535464
proquest_journals_3256479654
gale_infotracmisc_A754847036
gale_infotracacademiconefile_A754847036
pubmed_primary_36334112
crossref_primary_10_1007_s00246_022_03038_0
crossref_citationtrail_10_1007_s00246_022_03038_0
springer_journals_10_1007_s00246_022_03038_0
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Heidelberg
PublicationTitle Pediatric cardiology
PublicationTitleAbbrev Pediatr Cardiol
PublicationTitleAlternate Pediatr Cardiol
PublicationYear 2023
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Navarro, Shit, Ezhov, Paetzold, Gafita, Peeken (CR20) 2019; 11861
Boyle, Addor, Arriola, Barisic, Bianchi, Csáky-Szunyogh (CR2) 2018; 103
CR18
Holland, Myers, CRW. (CR6) 2015; 45
CR14
Hammami, Mazer Zumaeta, Syngelaki, Akolekar, Nicolaides (CR10) 2018; 52
Allan, Huggon (CR8) 2004; 24
Chakraborty, Gorla, Swaminathan (CR5) 2018; 38
Kacem, Cannie, Kadji, Dobrescu, Lo, Ziane (CR13) 2013; 267
Heiberg, Sjögren, Ugander, Carlsson, Engblom, Arheden (CR16) 2010; 10
Franklin, Burch, Manning, Sleeman, Gould, Archer (CR7) 2002; 87
Dudovitch, Link-Sourani, Ben Sira, Miller, Ben Bashat, Joskowicz, Martel, Abolmaesumi, Stoyanov, Mateus, Zuluaga, Zhou (CR15) 2020
Satomi, Yasukochi, Shimizu, Takigiku, Ishii (CR4) 1999; 41
Schild (CR26) 2007; 30
Levery, Glickstein, Kleinman, Levasseur, Chen, Gersony (CR3) 2010; 31
Salehi, Sun, Steding-ehrenborg, Bidhult, Kording, Ruprecht (CR17) 2019; 8
Ronneberger, Fischer, Brox, Navab, Hornegger, Wells, Frangi (CR19) 2015
Ferrazzi, Rigano, Bozzo, Bellotti, Giovannini, Galan (CR9) 2000; 16
Seed, Van Amerom, Yoo, Al Nafisi, Grosse-Wortmann, Jaeggi (CR23) 2012; 14
CR24
Garite, Clark, Thorp (CR1) 2004; 191
Tutschek (CR25) 2018; 52
Hadlock, Harrist, Sharman, Deter, Park (CR11) 1985; 151
Maršál, Lindblad, Lingman, Eik-Nes (CR21) 1984; 10
Hadlock, Harrist, Carpenter, Deter, Park (CR12) 1984; 150
Figueras, Fernández, Hernández-Andrade, Gratacós (CR22) 2008; 32
K Maršál (3038_CR21) 1984; 10
TJ Garite (3038_CR1) 2004; 191
A Levery (3038_CR3) 2010; 31
F Figueras (3038_CR22) 2008; 32
3038_CR14
D Salehi (3038_CR17) 2019; 8
BJ Holland (3038_CR6) 2015; 45
3038_CR18
B Tutschek (3038_CR25) 2018; 52
Y Kacem (3038_CR13) 2013; 267
A Hammami (3038_CR10) 2018; 52
FP Hadlock (3038_CR11) 1985; 151
O Franklin (3038_CR7) 2002; 87
M Seed (3038_CR23) 2012; 14
G Dudovitch (3038_CR15) 2020
RL Schild (3038_CR26) 2007; 30
B Boyle (3038_CR2) 2018; 103
O Ronneberger (3038_CR19) 2015
3038_CR24
FP Hadlock (3038_CR12) 1984; 150
A Chakraborty (3038_CR5) 2018; 38
E Ferrazzi (3038_CR9) 2000; 16
F Navarro (3038_CR20) 2019; 11861
LD Allan (3038_CR8) 2004; 24
G Satomi (3038_CR4) 1999; 41
E Heiberg (3038_CR16) 2010; 10
References_xml – volume: 38
  start-page: 958
  year: 2018
  end-page: 963
  ident: CR5
  article-title: Impact of prenatal diagnosis of complex congenital heart disease on neonatal and infant morbidity and mortality
  publication-title: Prenat Diagn
  doi: 10.1002/pd.5351
– volume: 30
  start-page: 799
  issue: 6
  year: 2007
  end-page: 803
  ident: CR26
  article-title: Three-dimensional volumetry and fetal weight measurement
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.5181
– ident: CR18
– start-page: 234
  year: 2015
  end-page: 241
  ident: CR19
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Medical image computing and computer-assisted intervention:MICCAI 2015
  doi: 10.1007/978-3-319-24574-4_28
– ident: CR14
– volume: 45
  start-page: 631
  year: 2015
  end-page: 638
  ident: CR6
  article-title: Prenatal diagnosis of critical congenital heart disease reduces risk of death from cardiovascular compromise prior to planned neonatal cardiac surgery: a meta-analysis
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.14882
– volume: 32
  start-page: 587
  issue: 4
  year: 2008
  end-page: 591
  ident: CR22
  article-title: Umbilical venous blood flow measurement: accuracy and reproducibility
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.5306
– volume: 191
  start-page: 481
  issue: 2
  year: 2004
  end-page: 487
  ident: CR1
  article-title: Intrauterine growth restriction increases morbidity and mortality among premature neonates
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2004.01.036
– volume: 10
  start-page: 1
  year: 2010
  ident: CR16
  article-title: Design and validation of Segment–freely available software for cardiovascular image analysis
  publication-title: BMC Med Imaging
  doi: 10.1186/1471-2342-10-1
– volume: 24
  start-page: 1136
  issue: 13
  year: 2004
  end-page: 1142
  ident: CR8
  article-title: Counselling following a diagnosis of congenital heart disease
  publication-title: Prenat Diagn
  doi: 10.1002/pd.1071
– volume: 150
  start-page: 535
  issue: 2
  year: 1984
  end-page: 540
  ident: CR12
  article-title: Sonographic estimation of fetal weight. The value of femur length in addition to head and abdomen measurements
  publication-title: Radiology
  doi: 10.1148/radiology.150.2.6691115
– volume: 11861
  start-page: 620
  year: 2019
  end-page: 627
  ident: CR20
  article-title: Shape-aware complementary-task learning for multi-organ segmentation
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-030-32692-0_71
– volume: 14
  start-page: 1
  issue: 1
  year: 2012
  end-page: 11
  ident: CR23
  article-title: Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/1532-429X-14-79
– volume: 16
  start-page: 432
  issue: 5
  year: 2000
  end-page: 438
  ident: CR9
  article-title: Umbilical vein blood flow in growth-restricted fetuses
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1046/j.1469-0705.2000.00208.x
– start-page: 365
  year: 2020
  end-page: 374
  ident: CR15
  article-title: Deep learning automatic fetal structures segmentation in MRI scans with few annotated datasets
  publication-title: Medical image computing and computer assisted intervention: MICCAI 2020
  doi: 10.1007/978-3-030-59725-2_35
– volume: 87
  start-page: 67
  year: 2002
  end-page: 69
  ident: CR7
  article-title: Prenatal diagnosis of coarctation of the aorta improves survival and reduces morbidity
  publication-title: Heart
  doi: 10.1136/heart.87.1.67
– volume: 267
  start-page: 902
  issue: 3
  year: 2013
  end-page: 910
  ident: CR13
  article-title: Fetal weight estimation: comparison of two-dimensional US and MR imaging assessments
  publication-title: Radiology
  doi: 10.1148/radiol.12121374
– volume: 103
  start-page: 22
  issue: 1
  year: 2018
  end-page: 28
  ident: CR2
  article-title: Estimating global burden of disease due to congenital anomaly: an analysis of european data
  publication-title: Arch Dis Child Fetal Neonatal Ed
  doi: 10.1136/archdischild-2016-311845
– volume: 41
  start-page: 728
  year: 1999
  end-page: 732
  ident: CR4
  article-title: Has fetal echocardiography improved the prognosis of congenital heart disease? Comparison of patients with hypoplastic left heart syndrome with and without prenatal diagnosis
  publication-title: Pediatr Int
  doi: 10.1046/j.1442-200x.1999.01154.x
– volume: 8
  start-page: 1
  year: 2019
  end-page: 15
  ident: CR17
  article-title: Quantification of blood flow in the fetus with cardiovascular magnetic resonance imaging using Doppler ultrasound gating: validation against metric optimized gating
  publication-title: J Cardiovasc Magn Reson
– volume: 52
  start-page: 691
  issue: 6
  year: 2018
  end-page: 698
  ident: CR25
  article-title: 3D prints from ultrasound volumes
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.20108
– volume: 151
  start-page: 333
  issue: 3
  year: 1985
  end-page: 337
  ident: CR11
  article-title: Estimation of fetal weight with the use of head, body, and femur measurements: a prospective study
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/0002-9378(85)90298-4
– volume: 31
  start-page: 587
  year: 2010
  end-page: 597
  ident: CR3
  article-title: The Impact of prenatal diagnosis of complex congenital heart disease on neonatal outcomes
  publication-title: Pediatr Cardiol
  doi: 10.1007/s00246-010-9648-2
– volume: 10
  start-page: 339
  issue: 3
  year: 1984
  end-page: 348
  ident: CR21
  article-title: Blood flow in the fetal descending aorta; intrinsic factors affecting fetal blood flow, i.e. fetal breathing movements and cardiac arrhythmia
  publication-title: Ultrasound Med Biol
  doi: 10.1016/0301-5629(84)90168-6
– ident: CR24
– volume: 52
  start-page: 35
  issue: 1
  year: 2018
  end-page: 43
  ident: CR10
  article-title: Ultrasonographic estimation of fetal weight: development of new model and assessment of performance of previous models
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.19066
– volume: 10
  start-page: 1
  year: 2010
  ident: 3038_CR16
  publication-title: BMC Med Imaging
  doi: 10.1186/1471-2342-10-1
– volume: 24
  start-page: 1136
  issue: 13
  year: 2004
  ident: 3038_CR8
  publication-title: Prenat Diagn
  doi: 10.1002/pd.1071
– start-page: 234
  volume-title: Medical image computing and computer-assisted intervention:MICCAI 2015
  year: 2015
  ident: 3038_CR19
  doi: 10.1007/978-3-319-24574-4_28
– volume: 52
  start-page: 35
  issue: 1
  year: 2018
  ident: 3038_CR10
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.19066
– ident: 3038_CR14
– ident: 3038_CR24
  doi: 10.1109/EMBC.2017.8037116
– ident: 3038_CR18
– volume: 11861
  start-page: 620
  year: 2019
  ident: 3038_CR20
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-030-32692-0_71
– volume: 41
  start-page: 728
  year: 1999
  ident: 3038_CR4
  publication-title: Pediatr Int
  doi: 10.1046/j.1442-200x.1999.01154.x
– volume: 52
  start-page: 691
  issue: 6
  year: 2018
  ident: 3038_CR25
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.20108
– volume: 45
  start-page: 631
  year: 2015
  ident: 3038_CR6
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.14882
– volume: 151
  start-page: 333
  issue: 3
  year: 1985
  ident: 3038_CR11
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/0002-9378(85)90298-4
– volume: 267
  start-page: 902
  issue: 3
  year: 2013
  ident: 3038_CR13
  publication-title: Radiology
  doi: 10.1148/radiol.12121374
– volume: 10
  start-page: 339
  issue: 3
  year: 1984
  ident: 3038_CR21
  publication-title: Ultrasound Med Biol
  doi: 10.1016/0301-5629(84)90168-6
– volume: 30
  start-page: 799
  issue: 6
  year: 2007
  ident: 3038_CR26
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.5181
– volume: 87
  start-page: 67
  year: 2002
  ident: 3038_CR7
  publication-title: Heart
  doi: 10.1136/heart.87.1.67
– volume: 38
  start-page: 958
  year: 2018
  ident: 3038_CR5
  publication-title: Prenat Diagn
  doi: 10.1002/pd.5351
– volume: 31
  start-page: 587
  year: 2010
  ident: 3038_CR3
  publication-title: Pediatr Cardiol
  doi: 10.1007/s00246-010-9648-2
– volume: 32
  start-page: 587
  issue: 4
  year: 2008
  ident: 3038_CR22
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.5306
– volume: 8
  start-page: 1
  year: 2019
  ident: 3038_CR17
  publication-title: J Cardiovasc Magn Reson
– volume: 103
  start-page: 22
  issue: 1
  year: 2018
  ident: 3038_CR2
  publication-title: Arch Dis Child Fetal Neonatal Ed
  doi: 10.1136/archdischild-2016-311845
– volume: 16
  start-page: 432
  issue: 5
  year: 2000
  ident: 3038_CR9
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1046/j.1469-0705.2000.00208.x
– volume: 14
  start-page: 1
  issue: 1
  year: 2012
  ident: 3038_CR23
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/1532-429X-14-79
– volume: 191
  start-page: 481
  issue: 2
  year: 2004
  ident: 3038_CR1
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2004.01.036
– volume: 150
  start-page: 535
  issue: 2
  year: 1984
  ident: 3038_CR12
  publication-title: Radiology
  doi: 10.1148/radiology.150.2.6691115
– start-page: 365
  volume-title: Medical image computing and computer assisted intervention: MICCAI 2020
  year: 2020
  ident: 3038_CR15
  doi: 10.1007/978-3-030-59725-2_35
SSID ssj0008085
Score 2.3999016
Snippet Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1)...
SourceID swepub
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1311
SubjectTerms Agreements
Algorithms
Amniotic fluid
Cardiac Surgery
Cardiology
Clinical Medicine
Comparative analysis
Coronary vessels
Deep Learning
Engineering and Technology
Fetal Weight
Fetus - diagnostic imaging
Fetuses
Gestational Age
Humans
Klinisk medicin
Magnetic Resonance Imaging
Medical and Health Sciences
Medical Engineering
Medical Imaging
Medicin och hälsovetenskap
Medicine
Medicine & Public Health
Medicinsk bildvetenskap
Medicinteknik
Neural networks
Physiological aspects
Placenta
Pregnancy
R&D
Radiologi och bildbehandling
Radiology and Medical Imaging
Research & development
Teknik
Three dimensional imaging
Ultrasonic imaging
Umbilical cord
Vascular Surgery
Veins & arteries
SummonAdditionalLinks – databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQQYgL35SFgoyExAEibWI7cbitKCuQaAUUqoqL5djjbaVtdtUk_BX-LmPHG5oVqgRnO47jjN882zPPhLzMK5dyXUAiWIULlDKzSZWBTnhVobl4B-aCzuyn4vBQnpyUn2NSWLOJdt8cSQakHpLdvDvxAbNZgoaJ0xQX6tfR3Ul_YcPXo-MBf-VU9oGLBdZEhxtTZf7exsgdbYPyJa-0HTE5HJtuSYwGtzS_838fdJfcjjSUznq7uUeuQX2f3DyIB-0PyK9Z166Cmis9gsV5TFCq6cpRZIx0Dm3X0LOasn16oBe1z4Sk_iTAy3cA_XiOKNXQEI5A9wHWNMq4Lt7SmTGdl6egurZ0rpvWN4ZdOQ4wSb90ug9f6t-HlJpG6dIltgcPyff5-2_vPiTxDofE5CxrE1FkWZWakjPrKtBSmIKDlYgy0hnEE-MkQysShumpE9YKblzhIDeIpAVyJ_aI7NSrGh4TaqzQFQKUQYqNi_pUg9DILy0rbKmdlhOSbn6lMlHg3N-zsVSDNHMYcYUjrsKIq-mEvB6eWffyHlfWfuUtRPm5jy0bHVMYsH9eRUvNClz_cS9pNiF7o5o4Z824eGNjKmJGoxiyT16UueAT8mIo9k_6OLgaVl2jkGxmggmeY53d3iSHfrOcISVJswmRI2MdKngl8XFJfXYaFMWRZeJQc_zANxtT_dOvq8bjR2_741eEdaOKYlWnatmpBtT60i608psMOVirhDOgeMlTVRqTqikHpO_WZRLKJ__Wl6fkVob8s4_N3CM77UUHz8gN87M9ay6eB4T4DZT_YR4
  priority: 102
  providerName: Springer Nature
Title Automatic Segmentation of the Fetus in 3D Magnetic Resonance Images Using Deep Learning: Accurate and Fast Fetal Volume Quantification for Clinical Use
URI https://link.springer.com/article/10.1007/s00246-022-03038-0
https://www.ncbi.nlm.nih.gov/pubmed/36334112
https://www.proquest.com/docview/3256479654
https://www.proquest.com/docview/2732535464
https://pubmed.ncbi.nlm.nih.gov/PMC10293340
Volume 44
WOSCitedRecordID wos000879154700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Consumer Health Database
  customDbUrl:
  eissn: 1432-1971
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0008085
  issn: 1432-1971
  databaseCode: M0R
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/familyhealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-1971
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0008085
  issn: 1432-1971
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1432-1971
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0008085
  issn: 1432-1971
  databaseCode: 7RV
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1432-1971
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0008085
  issn: 1432-1971
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1432-1971
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008085
  issn: 1432-1971
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVgQ4gXvj8KYzISEg8QkcR2nPCCClsFEq1GB9XEi-XYTlepS8uS8Ff4u1w7brb0oS-8RKrsJE56cu6xfX2M0OskLyIquQkYyaGDksU6yGMjA5rnABcbwArnM_uNTybp2Vl24gfcKp9WueFER9R6pewY-XsCsZnyLGH04_p3YHeNsrOrfguNm2g_stoY8Myns46J0zBtUxh5HNjQ6xfNuKVzNjjZ9FsoARZPg7AXmLbp-Vp82s6d7CZQt8xGXYAa3fvfR7uP7nppioctlh6gG6Z8iG6P_eT7I_R32NQr5_CKT838wi9aKvGqwKAi8cjUTYUXJSZHeCznpV0die3sgLX0MPjrBTBXhV2KAj4yZo29tev8Ax4q1VjLCixLjUeyqu3FoCkzR534eyPblKb2fiCzsbczXcL1zGP0c3T84_OXwO_rEKiExHXAeBznkcoo0UVuZMoUp0anwDxpoYBjVJESQBZTRIYF05pRVfDCJArYlYOeIk_QXrkqzTOElWYyB9JSILuhox9JwyRoTk24zmQh0wGKNn-qUN703O69sRSdXbMDggAgCAcEEQ7Q2-6cdWv5sbP2G4sVYfkArqykX9YA7bPOWmLIoU9Irc3ZAB30asJ3rPrFG3QIzyOVuILGAL3qiu2ZNjeuNKumEiBAY0YYTaDO0xacXbtJQkCmRPEApT3YdhWsu3i_pFycO5dxUJ7wqik84LsNwq_atet9_Gq_gv4tXF9SeAOrc7FsRGXE-trItLADD4nRWrBCGUEzGolMqUiE1ICk10Wcmuz57nf0At2JQYO2-ZkHaK--bMxLdEv9qRfV5aHjBns84-6YHqL9T8eTkyn8Gof2OD2d_QPfJ3D-
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBQEX3o_CAkYCcYCIJrbjBAmhilJttW0FYkEVF-PYTrdSNy2bBMQv4V_wGxk7j9320NseONtxHGdmvhl75jNCz8Ik9ankxmMkgQAlDrSXBEZ6NElAXCyApY5ndsQnk2g6jT_uoL9NLYxNq2xsojPUeqnsHvlrAthMeRwy-m71w7O3RtnT1eYKjUosDszvXxCy5W-Hffi_z4Ng8OHw_b5X3yrgqZAEhcd4ECS-iinRaWJkxBSnRkcg91GqQMJVGhH4LqaI7KZMa0ZVylMTKtBtDmhOYNwL6CLYcW6DPT5tAzxwvqIqZZIHnoX6ukjHlepZMLTpvtACqBF53TUg3ISDM3i4mavZHthukJs6QBxc_9-W8ga6VrveuFfpyk20Y7Jb6PK4Ti64jf70ymLpGGzxZzM7rouyMrxMMXjJeGCKMsfzDJM-HstZZqs_sT39sJQlBg-PwTLn2KVg4L4xK1xT187e4J5SpaXkwDLTeCDzwg4GU_nqoAF_KmWVslW9D8IIXNO1LmA8cwd9OZdluYt2s2Vm7iOsNJMJGGUFYQUNY18aJsGn1oTrWKYy6iC_ESKhalJ3e7fIQrR01E7wBAiecIInuh30sn1mVVGabO39wsqmsPYORlayLtuA-VnmMNHjEPNSS-PWQXtrPcFOqfXmRhpFbSdzcSqKHfS0bbZP2ty_zCzLXICDHTDCaAh97lXK0M6bhATcMD_ooGhNTdoOlj19vSWbHzkWdfCsYakpfOCrRqNO57VtPb5VWrf-Chcri5qg60gsSpEbsTqz8y7sxkpotBYsVUbQmPoiVsoXXWogZNFpEJn4wfY1eoKu7B-OR2I0nBw8RFcD8LerXNQ9tFuclOYRuqR-FvP85LGzSxh9P2_t_Qc08cnp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQhiZeGHcCA4yExANEa2I7F94qSsTEVg0NpokXy_Glq9Sl1ZLwV_i7HDtuaCo0CfFsx3Gc4-98Jz7nC0JvktJEVKQ6ZKSEACWPVVjGWoS0LMFcrAMzTmf2OJ1Os4uL_HSjit9lu6-PJLuaBqvSVDWHK2UO-8I361ps8mwcgpHCloWgfZfaRHobr5-d91icjbIuiTGFnuB8fdnM38cYuKZtgN7wUNvZk_0R6pbcqHNRxf7_P9w9dNfTUzzu7Ok-uqWrB2jvxB_AP0S_xm2zdCqv-EzPrnzhUoWXBgOTxIVu2hrPK0wm-ETMKlshie0JgZX10PjoCtCrxi5NAU-0XmEv7zr7gMdStla2AotK4ULUjR0MpnLu4BN_bUWX1tTdD6g29pKmCxhPP0Lfi0_fPn4O_b8dQpmQuAlZGsdlJHNKlCm1yJhMqVYZoE9mJOCMNBkB62KSiJFhSjEqTWp0IgFhU-BU5DHaqZaVfoqwVEyUAFwSqDcE-5HQTADvVCRVuTAiC1C0fq1ceuFz-_-NBe8lm92Kc1hx7lacjwL0rr9m1cl-3Nj7rbUWbjEBRpbClzbA_Ky6Fh-nEBdSK3UWoINBT9jLcti8tjfusaTmBFgpTfOE0QC97pvtlTY_rtLLtuZAQmNGGE2gz5POPPt5k4QAVYniAGUDw-07WIXxYUs1v3RK48A-YakpPOD7tdn-mddN6_Gj2wfDW7h4knsRq0u-aHmt-Wrj6zS3Hx8SrRRnRmpOcxrxXMqIj6gGWq9MnOn82b_N5RXaO50U_Pho-uU5uhMDRe3SNw_QTnPd6hfotvzZzOvrlw44fgP-a2zm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Segmentation+of+the+Fetus+in+3D+Magnetic+Resonance+Images+Using+Deep+Learning%3A+Accurate+and+Fast+Fetal+Volume+Quantification+for+Clinical+Use&rft.jtitle=Pediatric+cardiology&rft.au=Ryd%2C+Daniel&rft.au=Nilsson%2C+Amanda&rft.au=Heiberg%2C+Einar&rft.au=Hedstr%C3%B6m%2C+Erik&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0172-0643&rft.eissn=1432-1971&rft.volume=44&rft.issue=6&rft.spage=1311&rft.epage=1318&rft_id=info:doi/10.1007%2Fs00246-022-03038-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0172-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0172-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0172-0643&client=summon