Automatic Segmentation of the Fetus in 3D Magnetic Resonance Images Using Deep Learning: Accurate and Fast Fetal Volume Quantification for Clinical Use
Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock’s formulas to that of MRI; and (3) quanti...
Gespeichert in:
| Veröffentlicht in: | Pediatric cardiology Jg. 44; H. 6; S. 1311 - 1318 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.08.2023
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0172-0643, 1432-1971, 1432-1971 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock’s formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29–39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 datasets for training and validation, and 22 for testing. Hadlock’s formulas 1–4 with biometric parameters from MRI were compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland–Altman analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Hadlock’s formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1–4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151–650) ml/min (indexed 162 (range 52–220) ml/min/kg), and descending aortic flow was 763 (range 481–1160) ml/min (indexed 276 (range 189–386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable analysis time. Hadlock 1–4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment. |
|---|---|
| AbstractList | Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock's formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29-39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 datasets for training and validation, and 22 for testing. Hadlock's formulas 1-4 with biometric parameters from MRI were compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland-Altman analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Hadlock's formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1-4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151-650) ml/min (indexed 162 (range 52-220) ml/min/kg), and descending aortic flow was 763 (range 481-1160) ml/min (indexed 276 (range 189-386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable analysis time. Hadlock 1-4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment.Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock's formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29-39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 datasets for training and validation, and 22 for testing. Hadlock's formulas 1-4 with biometric parameters from MRI were compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland-Altman analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Hadlock's formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1-4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151-650) ml/min (indexed 162 (range 52-220) ml/min/kg), and descending aortic flow was 763 (range 481-1160) ml/min (indexed 276 (range 189-386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable analysis time. Hadlock 1-4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment. Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock's formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29-39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 datasets for training and validation, and 22 for testing. Hadlock's formulas 1-4 with biometric parameters from MRI were compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland-Altman analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Hadlock's formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1-4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151-650) ml/min (indexed 162 (range 52-220) ml/min/kg), and descending aortic flow was 763 (range 481-1160) ml/min (indexed 276 (range 189-386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable analysis time. Hadlock 1-4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment. Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock’s formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29–39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 datasets for training and validation, and 22 for testing. Hadlock’s formulas 1–4 with biometric parameters from MRI were compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland–Altman analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Hadlock’s formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1–4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151–650) ml/min (indexed 162 (range 52–220) ml/min/kg), and descending aortic flow was 763 (range 481–1160) ml/min (indexed 276 (range 189–386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable analysis time. Hadlock 1–4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment. |
| Audience | Academic |
| Author | Heiberg, Einar Hedström, Erik Ryd, Daniel Nilsson, Amanda |
| Author_xml | – sequence: 1 givenname: Daniel surname: Ryd fullname: Ryd, Daniel organization: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital – sequence: 2 givenname: Amanda surname: Nilsson fullname: Nilsson, Amanda organization: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital – sequence: 3 givenname: Einar surname: Heiberg fullname: Heiberg, Einar organization: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Wallenberg Centre for Molecular Medicine, Lund University – sequence: 4 givenname: Erik surname: Hedström fullname: Hedström, Erik email: Erik.Hedstrom@med.lu.se organization: Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36334112$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1DAUtVARbQd-gAWyxIZNip95sEGjKYVKRYhH2Vquc526SuwhTkB8Cb_LHWYobYUqL2LH53Hv9TkkezFFIOQpZ0ecseplZkyosmBCFEwyWRfsATngSoqCNxXfIweMV3hVKrlPDnO-YozVrNaPyL4spVSciwPyazlPabBTcPQzdAPECfcp0uTpdAn0BKY50xCpPKbvbRdhA_wEOUUbHdDTwXaQ6XkOsaPHAGt6BnaMeHpFl87No52A2tjSE5unjZjt6dfUzwPQj7ONU_DBbf18GumqDxHPPerBY_LQ2z7Dk913Qc5P3nxZvSvOPrw9XS3PCldKMRW6EuKCu0bJ1l-ArbWrFLS1ZLr2TvLa-VqCc9pJy7xuW62crzyUTuCImkbKBbFb3fwD1vOFWY9hsONPk2ww6zRiwWaEjE25S9PPJoNBVL-rOhshhC6hbY32DoxqFDeNc9wwBUrq1osaGvR4vfVA6gCtwyGPqHvL6tZNDJemS98NZwJLVAwVXuwUxvRthjyZIWQHfW8jpBnLqKTQUit86gV5fgd6leYx4gwNYkpVNaW-gepsDyZEn9DYbUTNstKqVhXDjCzI0X9QuFoYgsMw-oD_bxGe3ez0usW_eUOA2ALcmHIewV9DODObUJttqA2G2vwJtdl0X98hubCNKZYT-vupcve86BM7GP9N4x7Wb-bJDHM |
| CitedBy_id | crossref_primary_10_3389_fcvm_2023_1285391 crossref_primary_10_1007_s00330_023_10038_y crossref_primary_10_1016_j_compbiomed_2024_109000 crossref_primary_10_1186_s41205_025_00254_1 crossref_primary_10_1007_s10278_025_01556_w |
| Cites_doi | 10.1002/pd.5351 10.1002/uog.5181 10.1007/978-3-319-24574-4_28 10.1002/uog.14882 10.1002/uog.5306 10.1016/j.ajog.2004.01.036 10.1186/1471-2342-10-1 10.1002/pd.1071 10.1148/radiology.150.2.6691115 10.1007/978-3-030-32692-0_71 10.1186/1532-429X-14-79 10.1046/j.1469-0705.2000.00208.x 10.1007/978-3-030-59725-2_35 10.1136/heart.87.1.67 10.1148/radiol.12121374 10.1136/archdischild-2016-311845 10.1046/j.1442-200x.1999.01154.x 10.1002/uog.20108 10.1016/0002-9378(85)90298-4 10.1007/s00246-010-9648-2 10.1016/0301-5629(84)90168-6 10.1002/uog.19066 10.1109/EMBC.2017.8037116 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). COPYRIGHT 2023 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Section V Diagnostic Radiology, (Lund) Bröstcancer Proteogenomik Faculty of Engineering, LTH Lunds Tekniska Högskola WCMM-Wallenberg Centre for Molecular Medicine LTH Profile areas WCMM- Wallenberg center för molekylär medicinsk forskning Department of Clinical Sciences, Lund Biomarkörer och Epi Section I Lund Cardiac MR Group Clinical Physiology (Lund) LTH profilområde: Teknik för hälsa Sektion I Medicinska fakulteten Breast cancer Proteogenomics Institutionen för kliniska vetenskaper, Lund Lunds universitet Hjärt-MR-gruppen i Lund LTH profilområden Lund University Sektion V Diagnostisk radiologi, Lund Biomarkers and epidemiology Pediatrisk radiologi LTH Profile Area: Engineering Health Faculty of Medicine Klinisk fysiologi, Lund |
| CorporateAuthor_xml | – name: Clinical Physiology (Lund) – name: LTH profilområde: Teknik för hälsa – name: Lund Cardiac MR Group – name: LTH Profile Area: Engineering Health – name: Biomarkers and epidemiology – name: Biomarkörer och Epi – name: Section I – name: Diagnostisk radiologi, Lund – name: Lunds Tekniska Högskola – name: Department of Clinical Sciences, Lund – name: Faculty of Engineering, LTH – name: Lund University – name: Sektion V – name: Section V – name: Pediatrisk radiologi – name: WCMM- Wallenberg center för molekylär medicinsk forskning – name: Faculty of Medicine – name: Medicinska fakulteten – name: Klinisk fysiologi, Lund – name: Hjärt-MR-gruppen i Lund – name: WCMM-Wallenberg Centre for Molecular Medicine – name: Breast cancer Proteogenomics – name: Institutionen för kliniska vetenskaper, Lund – name: Lunds universitet – name: Sektion I – name: Diagnostic Radiology, (Lund) – name: Bröstcancer Proteogenomik – name: LTH Profile areas – name: LTH profilområden |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7RV 7X7 7XB 8FI AFKRA AZQEC BENPR CCPQU FYUFA M0R M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| DOI | 10.1007/s00246-022-03038-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information AUTh Library subscriptions: ProQuest Central ProQuest One Community College Health Research Premium Collection Consumer Health Database PML(ProQuest Medical Library) Nursing & Allied Health Premium ProQuest Databases ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest One Community College ProQuest One Health & Nursing ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Central China ProQuest Central Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Middle East (New) CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-1971 |
| EndPage | 1318 |
| ExternalDocumentID | oai_portal_research_lu_se_publications_22256edd_5fce_4941_9cc1_04e435df28e9 PMC10293340 A754847036 36334112 10_1007_s00246_022_03038_0 |
| Genre | Journal Article |
| GeographicLocations | Sweden |
| GeographicLocations_xml | – name: Sweden |
| GrantInformation_xml | – fundername: Lund University – fundername: ; |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 4.4 406 408 409 40D 40E 53G 5QI 5RE 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUDM ACZOJ ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEA IHE IHR IJ- IKXTQ IMOTQ INH IOF ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9S PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 YLTOR Z45 Z7U Z82 Z83 Z87 Z8O Z8V Z8W Z91 ZGI ZMTXR ZOVNA ZXP ~EX 7RV 7X7 8FI AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA AZQEC BENPR CCPQU CITATION FYUFA HMCUK M0R M1P NAPCQ PHGZM PHGZT PJZUB PPXIY PSQYO UKHRP CGR CUY CVF ECM EIF NPM 7XB PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| ID | FETCH-LOGICAL-c632t-5722b1c943dfbea85c74ed83058fc318cf83ecc5c3a0f5dd54cf7fe6c21979933 |
| IEDL.DBID | 7RV |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000879154700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0172-0643 1432-1971 |
| IngestDate | Mon Dec 01 03:11:28 EST 2025 Tue Nov 04 02:06:35 EST 2025 Fri Sep 05 12:25:02 EDT 2025 Tue Oct 07 13:50:15 EDT 2025 Sat Nov 29 13:58:51 EST 2025 Sat Nov 29 10:30:09 EST 2025 Mon Jul 21 05:54:43 EDT 2025 Sat Nov 29 03:24:07 EST 2025 Tue Nov 18 22:13:40 EST 2025 Fri Feb 21 02:43:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Fetal weight Fetal cardiovascular magnetic resonance imaging Prenatal diagnosis |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c632t-5722b1c943dfbea85c74ed83058fc318cf83ecc5c3a0f5dd54cf7fe6c21979933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s00246-022-03038-0 |
| PMID | 36334112 |
| PQID | 3256479654 |
| PQPubID | 7439191 |
| PageCount | 8 |
| ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_22256edd_5fce_4941_9cc1_04e435df28e9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10293340 proquest_miscellaneous_2732535464 proquest_journals_3256479654 gale_infotracmisc_A754847036 gale_infotracacademiconefile_A754847036 pubmed_primary_36334112 crossref_primary_10_1007_s00246_022_03038_0 crossref_citationtrail_10_1007_s00246_022_03038_0 springer_journals_10_1007_s00246_022_03038_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Heidelberg |
| PublicationTitle | Pediatric cardiology |
| PublicationTitleAbbrev | Pediatr Cardiol |
| PublicationTitleAlternate | Pediatr Cardiol |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Navarro, Shit, Ezhov, Paetzold, Gafita, Peeken (CR20) 2019; 11861 Boyle, Addor, Arriola, Barisic, Bianchi, Csáky-Szunyogh (CR2) 2018; 103 CR18 Holland, Myers, CRW. (CR6) 2015; 45 CR14 Hammami, Mazer Zumaeta, Syngelaki, Akolekar, Nicolaides (CR10) 2018; 52 Allan, Huggon (CR8) 2004; 24 Chakraborty, Gorla, Swaminathan (CR5) 2018; 38 Kacem, Cannie, Kadji, Dobrescu, Lo, Ziane (CR13) 2013; 267 Heiberg, Sjögren, Ugander, Carlsson, Engblom, Arheden (CR16) 2010; 10 Franklin, Burch, Manning, Sleeman, Gould, Archer (CR7) 2002; 87 Dudovitch, Link-Sourani, Ben Sira, Miller, Ben Bashat, Joskowicz, Martel, Abolmaesumi, Stoyanov, Mateus, Zuluaga, Zhou (CR15) 2020 Satomi, Yasukochi, Shimizu, Takigiku, Ishii (CR4) 1999; 41 Schild (CR26) 2007; 30 Levery, Glickstein, Kleinman, Levasseur, Chen, Gersony (CR3) 2010; 31 Salehi, Sun, Steding-ehrenborg, Bidhult, Kording, Ruprecht (CR17) 2019; 8 Ronneberger, Fischer, Brox, Navab, Hornegger, Wells, Frangi (CR19) 2015 Ferrazzi, Rigano, Bozzo, Bellotti, Giovannini, Galan (CR9) 2000; 16 Seed, Van Amerom, Yoo, Al Nafisi, Grosse-Wortmann, Jaeggi (CR23) 2012; 14 CR24 Garite, Clark, Thorp (CR1) 2004; 191 Tutschek (CR25) 2018; 52 Hadlock, Harrist, Sharman, Deter, Park (CR11) 1985; 151 Maršál, Lindblad, Lingman, Eik-Nes (CR21) 1984; 10 Hadlock, Harrist, Carpenter, Deter, Park (CR12) 1984; 150 Figueras, Fernández, Hernández-Andrade, Gratacós (CR22) 2008; 32 K Maršál (3038_CR21) 1984; 10 TJ Garite (3038_CR1) 2004; 191 A Levery (3038_CR3) 2010; 31 F Figueras (3038_CR22) 2008; 32 3038_CR14 D Salehi (3038_CR17) 2019; 8 BJ Holland (3038_CR6) 2015; 45 3038_CR18 B Tutschek (3038_CR25) 2018; 52 Y Kacem (3038_CR13) 2013; 267 A Hammami (3038_CR10) 2018; 52 FP Hadlock (3038_CR11) 1985; 151 O Franklin (3038_CR7) 2002; 87 M Seed (3038_CR23) 2012; 14 G Dudovitch (3038_CR15) 2020 RL Schild (3038_CR26) 2007; 30 B Boyle (3038_CR2) 2018; 103 O Ronneberger (3038_CR19) 2015 3038_CR24 FP Hadlock (3038_CR12) 1984; 150 A Chakraborty (3038_CR5) 2018; 38 E Ferrazzi (3038_CR9) 2000; 16 F Navarro (3038_CR20) 2019; 11861 LD Allan (3038_CR8) 2004; 24 G Satomi (3038_CR4) 1999; 41 E Heiberg (3038_CR16) 2010; 10 |
| References_xml | – volume: 38 start-page: 958 year: 2018 end-page: 963 ident: CR5 article-title: Impact of prenatal diagnosis of complex congenital heart disease on neonatal and infant morbidity and mortality publication-title: Prenat Diagn doi: 10.1002/pd.5351 – volume: 30 start-page: 799 issue: 6 year: 2007 end-page: 803 ident: CR26 article-title: Three-dimensional volumetry and fetal weight measurement publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.5181 – ident: CR18 – start-page: 234 year: 2015 end-page: 241 ident: CR19 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: Medical image computing and computer-assisted intervention:MICCAI 2015 doi: 10.1007/978-3-319-24574-4_28 – ident: CR14 – volume: 45 start-page: 631 year: 2015 end-page: 638 ident: CR6 article-title: Prenatal diagnosis of critical congenital heart disease reduces risk of death from cardiovascular compromise prior to planned neonatal cardiac surgery: a meta-analysis publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.14882 – volume: 32 start-page: 587 issue: 4 year: 2008 end-page: 591 ident: CR22 article-title: Umbilical venous blood flow measurement: accuracy and reproducibility publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.5306 – volume: 191 start-page: 481 issue: 2 year: 2004 end-page: 487 ident: CR1 article-title: Intrauterine growth restriction increases morbidity and mortality among premature neonates publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2004.01.036 – volume: 10 start-page: 1 year: 2010 ident: CR16 article-title: Design and validation of Segment–freely available software for cardiovascular image analysis publication-title: BMC Med Imaging doi: 10.1186/1471-2342-10-1 – volume: 24 start-page: 1136 issue: 13 year: 2004 end-page: 1142 ident: CR8 article-title: Counselling following a diagnosis of congenital heart disease publication-title: Prenat Diagn doi: 10.1002/pd.1071 – volume: 150 start-page: 535 issue: 2 year: 1984 end-page: 540 ident: CR12 article-title: Sonographic estimation of fetal weight. The value of femur length in addition to head and abdomen measurements publication-title: Radiology doi: 10.1148/radiology.150.2.6691115 – volume: 11861 start-page: 620 year: 2019 end-page: 627 ident: CR20 article-title: Shape-aware complementary-task learning for multi-organ segmentation publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-030-32692-0_71 – volume: 14 start-page: 1 issue: 1 year: 2012 end-page: 11 ident: CR23 article-title: Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-14-79 – volume: 16 start-page: 432 issue: 5 year: 2000 end-page: 438 ident: CR9 article-title: Umbilical vein blood flow in growth-restricted fetuses publication-title: Ultrasound Obstet Gynecol doi: 10.1046/j.1469-0705.2000.00208.x – start-page: 365 year: 2020 end-page: 374 ident: CR15 article-title: Deep learning automatic fetal structures segmentation in MRI scans with few annotated datasets publication-title: Medical image computing and computer assisted intervention: MICCAI 2020 doi: 10.1007/978-3-030-59725-2_35 – volume: 87 start-page: 67 year: 2002 end-page: 69 ident: CR7 article-title: Prenatal diagnosis of coarctation of the aorta improves survival and reduces morbidity publication-title: Heart doi: 10.1136/heart.87.1.67 – volume: 267 start-page: 902 issue: 3 year: 2013 end-page: 910 ident: CR13 article-title: Fetal weight estimation: comparison of two-dimensional US and MR imaging assessments publication-title: Radiology doi: 10.1148/radiol.12121374 – volume: 103 start-page: 22 issue: 1 year: 2018 end-page: 28 ident: CR2 article-title: Estimating global burden of disease due to congenital anomaly: an analysis of european data publication-title: Arch Dis Child Fetal Neonatal Ed doi: 10.1136/archdischild-2016-311845 – volume: 41 start-page: 728 year: 1999 end-page: 732 ident: CR4 article-title: Has fetal echocardiography improved the prognosis of congenital heart disease? Comparison of patients with hypoplastic left heart syndrome with and without prenatal diagnosis publication-title: Pediatr Int doi: 10.1046/j.1442-200x.1999.01154.x – volume: 8 start-page: 1 year: 2019 end-page: 15 ident: CR17 article-title: Quantification of blood flow in the fetus with cardiovascular magnetic resonance imaging using Doppler ultrasound gating: validation against metric optimized gating publication-title: J Cardiovasc Magn Reson – volume: 52 start-page: 691 issue: 6 year: 2018 end-page: 698 ident: CR25 article-title: 3D prints from ultrasound volumes publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.20108 – volume: 151 start-page: 333 issue: 3 year: 1985 end-page: 337 ident: CR11 article-title: Estimation of fetal weight with the use of head, body, and femur measurements: a prospective study publication-title: Am J Obstet Gynecol doi: 10.1016/0002-9378(85)90298-4 – volume: 31 start-page: 587 year: 2010 end-page: 597 ident: CR3 article-title: The Impact of prenatal diagnosis of complex congenital heart disease on neonatal outcomes publication-title: Pediatr Cardiol doi: 10.1007/s00246-010-9648-2 – volume: 10 start-page: 339 issue: 3 year: 1984 end-page: 348 ident: CR21 article-title: Blood flow in the fetal descending aorta; intrinsic factors affecting fetal blood flow, i.e. fetal breathing movements and cardiac arrhythmia publication-title: Ultrasound Med Biol doi: 10.1016/0301-5629(84)90168-6 – ident: CR24 – volume: 52 start-page: 35 issue: 1 year: 2018 end-page: 43 ident: CR10 article-title: Ultrasonographic estimation of fetal weight: development of new model and assessment of performance of previous models publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.19066 – volume: 10 start-page: 1 year: 2010 ident: 3038_CR16 publication-title: BMC Med Imaging doi: 10.1186/1471-2342-10-1 – volume: 24 start-page: 1136 issue: 13 year: 2004 ident: 3038_CR8 publication-title: Prenat Diagn doi: 10.1002/pd.1071 – start-page: 234 volume-title: Medical image computing and computer-assisted intervention:MICCAI 2015 year: 2015 ident: 3038_CR19 doi: 10.1007/978-3-319-24574-4_28 – volume: 52 start-page: 35 issue: 1 year: 2018 ident: 3038_CR10 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.19066 – ident: 3038_CR14 – ident: 3038_CR24 doi: 10.1109/EMBC.2017.8037116 – ident: 3038_CR18 – volume: 11861 start-page: 620 year: 2019 ident: 3038_CR20 publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-030-32692-0_71 – volume: 41 start-page: 728 year: 1999 ident: 3038_CR4 publication-title: Pediatr Int doi: 10.1046/j.1442-200x.1999.01154.x – volume: 52 start-page: 691 issue: 6 year: 2018 ident: 3038_CR25 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.20108 – volume: 45 start-page: 631 year: 2015 ident: 3038_CR6 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.14882 – volume: 151 start-page: 333 issue: 3 year: 1985 ident: 3038_CR11 publication-title: Am J Obstet Gynecol doi: 10.1016/0002-9378(85)90298-4 – volume: 267 start-page: 902 issue: 3 year: 2013 ident: 3038_CR13 publication-title: Radiology doi: 10.1148/radiol.12121374 – volume: 10 start-page: 339 issue: 3 year: 1984 ident: 3038_CR21 publication-title: Ultrasound Med Biol doi: 10.1016/0301-5629(84)90168-6 – volume: 30 start-page: 799 issue: 6 year: 2007 ident: 3038_CR26 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.5181 – volume: 87 start-page: 67 year: 2002 ident: 3038_CR7 publication-title: Heart doi: 10.1136/heart.87.1.67 – volume: 38 start-page: 958 year: 2018 ident: 3038_CR5 publication-title: Prenat Diagn doi: 10.1002/pd.5351 – volume: 31 start-page: 587 year: 2010 ident: 3038_CR3 publication-title: Pediatr Cardiol doi: 10.1007/s00246-010-9648-2 – volume: 32 start-page: 587 issue: 4 year: 2008 ident: 3038_CR22 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.5306 – volume: 8 start-page: 1 year: 2019 ident: 3038_CR17 publication-title: J Cardiovasc Magn Reson – volume: 103 start-page: 22 issue: 1 year: 2018 ident: 3038_CR2 publication-title: Arch Dis Child Fetal Neonatal Ed doi: 10.1136/archdischild-2016-311845 – volume: 16 start-page: 432 issue: 5 year: 2000 ident: 3038_CR9 publication-title: Ultrasound Obstet Gynecol doi: 10.1046/j.1469-0705.2000.00208.x – volume: 14 start-page: 1 issue: 1 year: 2012 ident: 3038_CR23 publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-14-79 – volume: 191 start-page: 481 issue: 2 year: 2004 ident: 3038_CR1 publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2004.01.036 – volume: 150 start-page: 535 issue: 2 year: 1984 ident: 3038_CR12 publication-title: Radiology doi: 10.1148/radiology.150.2.6691115 – start-page: 365 volume-title: Medical image computing and computer assisted intervention: MICCAI 2020 year: 2020 ident: 3038_CR15 doi: 10.1007/978-3-030-59725-2_35 |
| SSID | ssj0008085 |
| Score | 2.3999016 |
| Snippet | Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1)... |
| SourceID | swepub pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1311 |
| SubjectTerms | Agreements Algorithms Amniotic fluid Cardiac Surgery Cardiology Clinical Medicine Comparative analysis Coronary vessels Deep Learning Engineering and Technology Fetal Weight Fetus - diagnostic imaging Fetuses Gestational Age Humans Klinisk medicin Magnetic Resonance Imaging Medical and Health Sciences Medical Engineering Medical Imaging Medicin och hälsovetenskap Medicine Medicine & Public Health Medicinsk bildvetenskap Medicinteknik Neural networks Physiological aspects Placenta Pregnancy R&D Radiologi och bildbehandling Radiology and Medical Imaging Research & development Teknik Three dimensional imaging Ultrasonic imaging Umbilical cord Vascular Surgery Veins & arteries |
| SummonAdditionalLinks | – databaseName: Springer Nature - Connect here FIRST to enable access dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQQYgL35SFgoyExAEibWI7cbitKCuQaAUUqoqL5djjbaVtdtUk_BX-LmPHG5oVqgRnO47jjN882zPPhLzMK5dyXUAiWIULlDKzSZWBTnhVobl4B-aCzuyn4vBQnpyUn2NSWLOJdt8cSQakHpLdvDvxAbNZgoaJ0xQX6tfR3Ul_YcPXo-MBf-VU9oGLBdZEhxtTZf7exsgdbYPyJa-0HTE5HJtuSYwGtzS_838fdJfcjjSUznq7uUeuQX2f3DyIB-0PyK9Z166Cmis9gsV5TFCq6cpRZIx0Dm3X0LOasn16oBe1z4Sk_iTAy3cA_XiOKNXQEI5A9wHWNMq4Lt7SmTGdl6egurZ0rpvWN4ZdOQ4wSb90ug9f6t-HlJpG6dIltgcPyff5-2_vPiTxDofE5CxrE1FkWZWakjPrKtBSmIKDlYgy0hnEE-MkQysShumpE9YKblzhIDeIpAVyJ_aI7NSrGh4TaqzQFQKUQYqNi_pUg9DILy0rbKmdlhOSbn6lMlHg3N-zsVSDNHMYcYUjrsKIq-mEvB6eWffyHlfWfuUtRPm5jy0bHVMYsH9eRUvNClz_cS9pNiF7o5o4Z824eGNjKmJGoxiyT16UueAT8mIo9k_6OLgaVl2jkGxmggmeY53d3iSHfrOcISVJswmRI2MdKngl8XFJfXYaFMWRZeJQc_zANxtT_dOvq8bjR2_741eEdaOKYlWnatmpBtT60i608psMOVirhDOgeMlTVRqTqikHpO_WZRLKJ__Wl6fkVob8s4_N3CM77UUHz8gN87M9ay6eB4T4DZT_YR4 priority: 102 providerName: Springer Nature |
| Title | Automatic Segmentation of the Fetus in 3D Magnetic Resonance Images Using Deep Learning: Accurate and Fast Fetal Volume Quantification for Clinical Use |
| URI | https://link.springer.com/article/10.1007/s00246-022-03038-0 https://www.ncbi.nlm.nih.gov/pubmed/36334112 https://www.proquest.com/docview/3256479654 https://www.proquest.com/docview/2732535464 https://pubmed.ncbi.nlm.nih.gov/PMC10293340 |
| Volume | 44 |
| WOSCitedRecordID | wos000879154700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Consumer Health Database customDbUrl: eissn: 1432-1971 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0008085 issn: 1432-1971 databaseCode: M0R dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/familyhealth providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1432-1971 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0008085 issn: 1432-1971 databaseCode: 7X7 dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1432-1971 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0008085 issn: 1432-1971 databaseCode: 7RV dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1432-1971 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0008085 issn: 1432-1971 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1432-1971 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008085 issn: 1432-1971 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVgQ4gXvj8KYzISEg8QkcR2nPCCClsFEq1GB9XEi-XYTlepS8uS8Ff4u1w7brb0oS-8RKrsJE56cu6xfX2M0OskLyIquQkYyaGDksU6yGMjA5rnABcbwArnM_uNTybp2Vl24gfcKp9WueFER9R6pewY-XsCsZnyLGH04_p3YHeNsrOrfguNm2g_stoY8Myns46J0zBtUxh5HNjQ6xfNuKVzNjjZ9FsoARZPg7AXmLbp-Vp82s6d7CZQt8xGXYAa3fvfR7uP7nppioctlh6gG6Z8iG6P_eT7I_R32NQr5_CKT838wi9aKvGqwKAi8cjUTYUXJSZHeCznpV0die3sgLX0MPjrBTBXhV2KAj4yZo29tev8Ax4q1VjLCixLjUeyqu3FoCkzR534eyPblKb2fiCzsbczXcL1zGP0c3T84_OXwO_rEKiExHXAeBznkcoo0UVuZMoUp0anwDxpoYBjVJESQBZTRIYF05pRVfDCJArYlYOeIk_QXrkqzTOElWYyB9JSILuhox9JwyRoTk24zmQh0wGKNn-qUN703O69sRSdXbMDggAgCAcEEQ7Q2-6cdWv5sbP2G4sVYfkArqykX9YA7bPOWmLIoU9Irc3ZAB30asJ3rPrFG3QIzyOVuILGAL3qiu2ZNjeuNKumEiBAY0YYTaDO0xacXbtJQkCmRPEApT3YdhWsu3i_pFycO5dxUJ7wqik84LsNwq_atet9_Gq_gv4tXF9SeAOrc7FsRGXE-trItLADD4nRWrBCGUEzGolMqUiE1ICk10Wcmuz57nf0At2JQYO2-ZkHaK--bMxLdEv9qRfV5aHjBns84-6YHqL9T8eTkyn8Gof2OD2d_QPfJ3D- |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBQEX3o_CAkYCcYCIJrbjBAmhilJttW0FYkEVF-PYTrdSNy2bBMQv4V_wGxk7j9320NseONtxHGdmvhl75jNCz8Ik9ankxmMkgQAlDrSXBEZ6NElAXCyApY5ndsQnk2g6jT_uoL9NLYxNq2xsojPUeqnsHvlrAthMeRwy-m71w7O3RtnT1eYKjUosDszvXxCy5W-Hffi_z4Ng8OHw_b5X3yrgqZAEhcd4ECS-iinRaWJkxBSnRkcg91GqQMJVGhH4LqaI7KZMa0ZVylMTKtBtDmhOYNwL6CLYcW6DPT5tAzxwvqIqZZIHnoX6ukjHlepZMLTpvtACqBF53TUg3ISDM3i4mavZHthukJs6QBxc_9-W8ga6VrveuFfpyk20Y7Jb6PK4Ti64jf70ymLpGGzxZzM7rouyMrxMMXjJeGCKMsfzDJM-HstZZqs_sT39sJQlBg-PwTLn2KVg4L4xK1xT187e4J5SpaXkwDLTeCDzwg4GU_nqoAF_KmWVslW9D8IIXNO1LmA8cwd9OZdluYt2s2Vm7iOsNJMJGGUFYQUNY18aJsGn1oTrWKYy6iC_ESKhalJ3e7fIQrR01E7wBAiecIInuh30sn1mVVGabO39wsqmsPYORlayLtuA-VnmMNHjEPNSS-PWQXtrPcFOqfXmRhpFbSdzcSqKHfS0bbZP2ty_zCzLXICDHTDCaAh97lXK0M6bhATcMD_ooGhNTdoOlj19vSWbHzkWdfCsYakpfOCrRqNO57VtPb5VWrf-Chcri5qg60gsSpEbsTqz8y7sxkpotBYsVUbQmPoiVsoXXWogZNFpEJn4wfY1eoKu7B-OR2I0nBw8RFcD8LerXNQ9tFuclOYRuqR-FvP85LGzSxh9P2_t_Qc08cnp |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQhiZeGHcCA4yExANEa2I7F94qSsTEVg0NpokXy_Glq9Sl1ZLwV_i7HDtuaCo0CfFsx3Gc4-98Jz7nC0JvktJEVKQ6ZKSEACWPVVjGWoS0LMFcrAMzTmf2OJ1Os4uL_HSjit9lu6-PJLuaBqvSVDWHK2UO-8I361ps8mwcgpHCloWgfZfaRHobr5-d91icjbIuiTGFnuB8fdnM38cYuKZtgN7wUNvZk_0R6pbcqHNRxf7_P9w9dNfTUzzu7Ok-uqWrB2jvxB_AP0S_xm2zdCqv-EzPrnzhUoWXBgOTxIVu2hrPK0wm-ETMKlshie0JgZX10PjoCtCrxi5NAU-0XmEv7zr7gMdStla2AotK4ULUjR0MpnLu4BN_bUWX1tTdD6g29pKmCxhPP0Lfi0_fPn4O_b8dQpmQuAlZGsdlJHNKlCm1yJhMqVYZoE9mJOCMNBkB62KSiJFhSjEqTWp0IgFhU-BU5DHaqZaVfoqwVEyUAFwSqDcE-5HQTADvVCRVuTAiC1C0fq1ceuFz-_-NBe8lm92Kc1hx7lacjwL0rr9m1cl-3Nj7rbUWbjEBRpbClzbA_Ky6Fh-nEBdSK3UWoINBT9jLcti8tjfusaTmBFgpTfOE0QC97pvtlTY_rtLLtuZAQmNGGE2gz5POPPt5k4QAVYniAGUDw-07WIXxYUs1v3RK48A-YakpPOD7tdn-mddN6_Gj2wfDW7h4knsRq0u-aHmt-Wrj6zS3Hx8SrRRnRmpOcxrxXMqIj6gGWq9MnOn82b_N5RXaO50U_Pho-uU5uhMDRe3SNw_QTnPd6hfotvzZzOvrlw44fgP-a2zm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Segmentation+of+the+Fetus+in+3D+Magnetic+Resonance+Images+Using+Deep+Learning%3A+Accurate+and+Fast+Fetal+Volume+Quantification+for+Clinical+Use&rft.jtitle=Pediatric+cardiology&rft.au=Ryd%2C+Daniel&rft.au=Nilsson%2C+Amanda&rft.au=Heiberg%2C+Einar&rft.au=Hedstr%C3%B6m%2C+Erik&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0172-0643&rft.eissn=1432-1971&rft.volume=44&rft.issue=6&rft.spage=1311&rft.epage=1318&rft_id=info:doi/10.1007%2Fs00246-022-03038-0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0172-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0172-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0172-0643&client=summon |