ModelArray: An R package for statistical analysis of fixel-wise data

•ModelArray is an R package for statistical analysis of fixel-wise data.•ModelArray supports linear and nonlinear modeling and is extensible to more models.•ModelArray is scalable for large-scale datasets.•ModelArray facilitates easy statistical analysis of large-scale fixel-wise data. Diffusion MRI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Jg. 271; S. 120037
Hauptverfasser: Zhao, Chenying, Tapera, Tinashe M., Bagautdinova, Joëlle, Bourque, Josiane, Covitz, Sydney, Gur, Raquel E., Gur, Ruben C., Larsen, Bart, Mehta, Kahini, Meisler, Steven L., Murtha, Kristin, Muschelli, John, Roalf, David R., Sydnor, Valerie J., Valcarcel, Alessandra M., Shinohara, Russell T., Cieslak, Matthew, Satterthwaite, Theodore D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.05.2023
Elsevier Limited
Elsevier
Schlagworte:
ISSN:1053-8119, 1095-9572, 1095-9572
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •ModelArray is an R package for statistical analysis of fixel-wise data.•ModelArray supports linear and nonlinear modeling and is extensible to more models.•ModelArray is scalable for large-scale datasets.•ModelArray facilitates easy statistical analysis of large-scale fixel-wise data. Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort (n = 938). ModelArray revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data. [Display omitted]
AbstractList Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort (n = 938). ModelArray revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data.Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort (n = 938). ModelArray revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data.
Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort (n = 938). ModelArray revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data.
•ModelArray is an R package for statistical analysis of fixel-wise data.•ModelArray supports linear and nonlinear modeling and is extensible to more models.•ModelArray is scalable for large-scale datasets.•ModelArray facilitates easy statistical analysis of large-scale fixel-wise data. Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort (n = 938). ModelArray revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data. [Display omitted]
Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort ( n = 938). ModelArray revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data.
ArticleNumber 120037
Author Bagautdinova, Joëlle
Murtha, Kristin
Larsen, Bart
Sydnor, Valerie J.
Muschelli, John
Valcarcel, Alessandra M.
Cieslak, Matthew
Tapera, Tinashe M.
Meisler, Steven L.
Roalf, David R.
Satterthwaite, Theodore D.
Bourque, Josiane
Shinohara, Russell T.
Gur, Raquel E.
Zhao, Chenying
Mehta, Kahini
Covitz, Sydney
Gur, Ruben C.
AuthorAffiliation e Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02139, USA
h Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
f Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
b Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
g Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
a Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
c Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
d Department of Psychiatry, Perelman School of Medicine, Unive
AuthorAffiliation_xml – name: b Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
– name: a Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– name: e Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02139, USA
– name: c Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
– name: g Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
– name: d Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– name: f Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
– name: h Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
Author_xml – sequence: 1
  givenname: Chenying
  surname: Zhao
  fullname: Zhao, Chenying
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 2
  givenname: Tinashe M.
  surname: Tapera
  fullname: Tapera, Tinashe M.
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 3
  givenname: Joëlle
  surname: Bagautdinova
  fullname: Bagautdinova, Joëlle
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 4
  givenname: Josiane
  surname: Bourque
  fullname: Bourque, Josiane
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 5
  givenname: Sydney
  surname: Covitz
  fullname: Covitz, Sydney
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 6
  givenname: Raquel E.
  surname: Gur
  fullname: Gur, Raquel E.
  organization: Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
– sequence: 7
  givenname: Ruben C.
  surname: Gur
  fullname: Gur, Ruben C.
  organization: Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
– sequence: 8
  givenname: Bart
  surname: Larsen
  fullname: Larsen, Bart
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 9
  givenname: Kahini
  surname: Mehta
  fullname: Mehta, Kahini
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 10
  givenname: Steven L.
  surname: Meisler
  fullname: Meisler, Steven L.
  organization: Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02139, USA
– sequence: 11
  givenname: Kristin
  surname: Murtha
  fullname: Murtha, Kristin
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 12
  givenname: John
  surname: Muschelli
  fullname: Muschelli, John
  organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
– sequence: 13
  givenname: David R.
  surname: Roalf
  fullname: Roalf, David R.
  organization: Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
– sequence: 14
  givenname: Valerie J.
  surname: Sydnor
  fullname: Sydnor, Valerie J.
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 15
  givenname: Alessandra M.
  surname: Valcarcel
  fullname: Valcarcel, Alessandra M.
  organization: Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 16
  givenname: Russell T.
  surname: Shinohara
  fullname: Shinohara, Russell T.
  organization: Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 17
  givenname: Matthew
  surname: Cieslak
  fullname: Cieslak, Matthew
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 18
  givenname: Theodore D.
  orcidid: 0000-0001-7072-9399
  surname: Satterthwaite
  fullname: Satterthwaite, Theodore D.
  email: sattertt@pennmedicine.upenn.edu
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36931330$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wF5AlNmwy-JHENgtgKK9KRUgI1pZj3wyeeuLBTgrz73GaFuisZmXLPv7uuT73tDjqQw9FgQheEEyaF-tFD2MMbqNXsKCYsgWhGDP-oDghWNalrDk9mvY1KwUh8rg4TWmNMZakEo-KY9ZIRhjDJ8W7z8GCX8aody_Rskdf0Vabq4xFXYgoDXpwaXBGe6R77XfJJRQ61Lnf4MtfLgGyetCPi4ed9gme3K5nxfcP77-dfyovv3y8OF9elqZhZCh1a0SnOQVa10KLvLFV3VaGUEahw6xu6woEo5ZWljaAO9EKxprcWkctqww7Ky5mrg16rbYx9x93Kminbg5CXCkds1sPCmyT_6PiubCtOJeC16QztsKMSqJJk1mvZ9Z2bDdgDfRD1P4e9P5N736oVbhWOQAiuaCZ8PyWEMPPEdKgNi4Z8F73EMakKJeECZybzdJne9J1GGP-0BsVk4wTXmXV0_8t_fVyl1YWvJoFJoaUInTKuCmhMDl0Plub3DVqrf6Nh5rGQ83jkQFiD3BX44Cnb-enkAO-dhBVMg56A9ZFMENOwB0CebMHMd7103hdwe4wxB9jOO5e
CitedBy_id crossref_primary_10_1002_hbm_70010
Cites_doi 10.1016/j.dcn.2022.101171
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2021.118417
10.1016/j.neuroimage.2014.01.060
10.1371/journal.pone.0080713
10.1016/j.neuroimage.2015.10.019
10.1016/j.neuroimage.2020.117598
10.1016/j.neuroimage.2015.05.039
10.1038/s41592-021-01185-5
10.1111/j.1467-9868.2010.00749.x
10.1002/hbm.22099
10.1016/j.neuroimage.2016.09.029
10.1016/j.neuroimage.2013.07.064
10.1038/s41467-022-30244-4
10.1016/j.neuroimage.2019.116137
10.1109/TMI.2010.2046908
10.1002/mrm.26124
10.1198/016214504000000980
10.1016/j.neuroimage.2016.08.016
10.1006/jmrb.1996.0086
10.1002/mrm.26054
10.1016/j.neuroimage.2016.06.058
10.1016/j.neuroimage.2011.11.094
10.1016/j.neuroimage.2015.10.068
10.1016/j.mri.2018.11.014
10.1016/j.dcn.2020.100853
10.1016/j.neuroimage.2008.03.061
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
2023. The Author(s)
Copyright_xml – notice: 2023 The Author(s)
– notice: Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2023. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2023.120037
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


ProQuest One Psychology


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 120037
ExternalDocumentID oai_doaj_org_article_ed603747631d47798751fcd403291a16
PMC10119782
36931330
10_1016_j_neuroimage_2023_120037
S1053811923001830
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS085211
– fundername: NIMH NIH HHS
  grantid: K99 MH127293
– fundername: NINDS NIH HHS
  grantid: R01 NS112274
– fundername: NIMH NIH HHS
  grantid: R01 MH113550
– fundername: NIMH NIH HHS
  grantid: R01 MH123550
– fundername: NIBIB NIH HHS
  grantid: R01 EB022573
– fundername: NIMH NIH HHS
  grantid: RF1 MH116920
– fundername: NIMH NIH HHS
  grantid: R01 MH120482
– fundername: NIMH NIH HHS
  grantid: R01 MH120174
– fundername: NIMH NIH HHS
  grantid: R01 MH112847
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SEW
SNS
ZA5
29N
53G
9DU
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AFFHD
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
WUQ
XPP
ZMT
0SF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c631t-abc8fa72e2558a872ed45b4c1232ef035b54e832d24d26e0f8b8336120f2d34c3
IEDL.DBID M7P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030275700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Fri Oct 03 12:42:51 EDT 2025
Tue Nov 04 02:06:48 EST 2025
Sat Sep 27 20:42:34 EDT 2025
Tue Oct 07 06:56:20 EDT 2025
Wed Feb 19 02:04:27 EST 2025
Tue Nov 18 21:28:29 EST 2025
Sat Nov 29 08:03:03 EST 2025
Fri Feb 23 02:36:44 EST 2024
Tue Oct 14 19:35:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Development
Software
Big data
Statistical analysis
MRI
Fixel-based analysis
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631t-abc8fa72e2558a872ed45b4c1232ef035b54e832d24d26e0f8b8336120f2d34c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Contributed equally as senior authors.
ORCID 0000-0001-7072-9399
OpenAccessLink https://doaj.org/article/ed603747631d47798751fcd403291a16
PMID 36931330
PQID 2793937174
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ed603747631d47798751fcd403291a16
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10119782
proquest_miscellaneous_2791380255
proquest_journals_2793937174
pubmed_primary_36931330
crossref_citationtrail_10_1016_j_neuroimage_2023_120037
crossref_primary_10_1016_j_neuroimage_2023_120037
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2023_120037
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2023_120037
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2023
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Singh, Skippen, He, Thomson, Fuelscher, Caeyenberghs, Anderson, Nicholson, Hyde, Silk (bib0026) 2022; 58
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib0029) 2010; 29
Jeurissen, Leemans, Tournier, Jones, Sijbers (bib0013) 2013; 34
Wood (bib0036) 2011; 73
Andersson, Sotiropoulos (bib0003) 2016; 125
Bethlehem, Seidlitz, White, Vogel, Anderson, Adamson, Adler, Alexopoulos, Anagnostou, Areces-Gonzalez, Astle, Auyeung, Ayub, Bae, Ball, Baron-Cohen, Beare, Bedford, Benegal, Alexander-Bloch (bib0005) 2022
(R package version 0.18.0) [Computer software].
Pines, Larsen, Cui, Sydnor, Bertolero, Adebimpe, Alexander-Bloch, Davatzikos, Fair, Gur, Gur, Li, Milham, Moore, Murtha, Parkes, Thompson-Schill, Shanmugan, Shinohara, Satterthwaite (bib0019) 2022; 13
Satterthwaite, Elliott, Ruparel, Loughead, Prabhakaran, Calkins, Hopson, Jackson, Keefe, Riley, Mentch, Sleiman, Verma, Davatzikos, Hakonarson, Gur, Gur (bib0024) 2014; 86
(R package version 1.20.0) [Computer software].
Lebel, Gee, Camicioli, Wieler, Martin, Beaulieu (bib0015) 2012; 60
Alexander, Escalera, Ai, Andreotti, Febre, Mangone, Vega-Potler, Langer, Alexander, Kovacs, Litke, O'Hagan, Andersen, Bronstein, Bui, Bushey, Butler, Castagna, Camacho, Milham (bib0001) 2017; 4
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib0030) 2013; 80
Winkler, Ridgway, Webster, Smith, Nichols (bib0033) 2014; 92
Basser, Pierpaoli (bib0004) 1996; 111
Chahal, Delevich, Kirshenbaum, Borchers, Ho, Gotlib (bib0006) 2021; 226
pp. 3010.
Schilling, Daducci, Maier-Hein, Poupon, Houde, Nath, Anderson, Landman, Descoteaux (bib0025) 2018; 57
Kellner, Dhital, Kiselev, Reisert (bib0014) 2016; 76
Veraart, Novikov, Christiaens, Ades-aron, Sijbers, Fieremans (bib0031) 2016; 142
Dhollander, T., & Connelly, A. (2016). A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+b=0) diffusion MRI data.
Vos, Tax, Luijten, Ourselin, Leemans, Froeling (bib0032) 2017; 77
Raffelt, Smith, Ridgway, Tournier, Vaughan, Rose, Henderson, Connelly (bib0021) 2015; 117
Marek, Tervo-Clemmens, Calabro, Montez, Kay, Hatoum, Donohue, Foran, Miller, Hendrickson, Malone, Kandala, Feczko, Miranda-Dominguez, Graham, Earl, Perrone, Cordova, Doyle, Dosenbach (bib0016) 2022
Raffelt, Tournier, Smith, Vaughan, Jackson, Ridgway, Connelly (bib0022) 2017; 144
Dhollander, Raffelt, Connelly (bib0011) 2016
Dhollander, Clemente, Singh, Boonstra, Civier, Duque, Egorova, Enticott, Fuelscher, Gajamange, Genc, Gottlieb, Hyde, Imms, Kelly, Kirkovski, Kolbe, Liang, Malhotra, Caeyenberghs (bib0008) 2021; 241
Andersson, Graham, Zsoldos, Sotiropoulos (bib0002) 2016; 141
Pagès, H., Hickey, P., & Lun, A. (2021).
Genc, Malpas, Gulenc, Sciberras, Efron, Silk, Seal (bib0012) 2020; 45
Wood (bib0035) 2004; 99
Cieslak, Cook, He, Yeh, Dhollander, Adebimpe, Aguirre, Bassett, Betzel, Bourque, Cabral, Davatzikos, Detre, Earl, Elliott, Fadnavis, Fair, Foran, Fotiadis, Satterthwaite (bib0007) 2021; 18
Dhollander, T., Mito, R., Raffelt, D., & Connelly, A. (2019). Improved white matter response function estimation for 3-tissue constrained spherical deconvolution.
.
(bib0020) 2021
pp. 555.
Tournier, Smith, Raffelt, Tabbara, Dhollander, Pietsch, Christiaens, Jeurissen, Yeh, Connelly (bib0028) 2019; 202
Yeh, Verstynen, Wang, Fernández-Miranda, Tseng (bib0037) 2013; 8
Pagès, H. (2021).
Roalf, Quarmley, Elliott, Satterthwaite, Vandekar, Ruparel, Gennatas, Calkins, Moore, Hopson, Prabhakaran, Jackson, Verma, Hakonarson, Gur, Gur (bib0023) 2016; 125
Smith, Nichols (bib0027) 2009; 44
Wood, S.N, 2001. In: mgcv: GAMs and Generalized Ridge Regression for R. R News, 1/2, pp. 20–25.
Wood (10.1016/j.neuroimage.2023.120037_bib0036) 2011; 73
Marek (10.1016/j.neuroimage.2023.120037_bib0016) 2022
Roalf (10.1016/j.neuroimage.2023.120037_bib0023) 2016; 125
Tustison (10.1016/j.neuroimage.2023.120037_bib0029) 2010; 29
Yeh (10.1016/j.neuroimage.2023.120037_bib0037) 2013; 8
Raffelt (10.1016/j.neuroimage.2023.120037_bib0021) 2015; 117
Satterthwaite (10.1016/j.neuroimage.2023.120037_bib0024) 2014; 86
(10.1016/j.neuroimage.2023.120037_bib0020) 2021
Andersson (10.1016/j.neuroimage.2023.120037_bib0002) 2016; 141
10.1016/j.neuroimage.2023.120037_bib0009
Genc (10.1016/j.neuroimage.2023.120037_bib0012) 2020; 45
Singh (10.1016/j.neuroimage.2023.120037_bib0026) 2022; 58
Lebel (10.1016/j.neuroimage.2023.120037_bib0015) 2012; 60
Veraart (10.1016/j.neuroimage.2023.120037_bib0031) 2016; 142
Vos (10.1016/j.neuroimage.2023.120037_bib0032) 2017; 77
Wood (10.1016/j.neuroimage.2023.120037_bib0035) 2004; 99
Schilling (10.1016/j.neuroimage.2023.120037_bib0025) 2018; 57
Kellner (10.1016/j.neuroimage.2023.120037_bib0014) 2016; 76
Winkler (10.1016/j.neuroimage.2023.120037_bib0033) 2014; 92
Andersson (10.1016/j.neuroimage.2023.120037_bib0003) 2016; 125
10.1016/j.neuroimage.2023.120037_bib0010
10.1016/j.neuroimage.2023.120037_bib0034
Van Essen (10.1016/j.neuroimage.2023.120037_bib0030) 2013; 80
Chahal (10.1016/j.neuroimage.2023.120037_bib0006) 2021; 226
Bethlehem (10.1016/j.neuroimage.2023.120037_bib0005) 2022
10.1016/j.neuroimage.2023.120037_bib0017
10.1016/j.neuroimage.2023.120037_bib0018
Cieslak (10.1016/j.neuroimage.2023.120037_bib0007) 2021; 18
Pines (10.1016/j.neuroimage.2023.120037_bib0019) 2022; 13
Smith (10.1016/j.neuroimage.2023.120037_bib0027) 2009; 44
Tournier (10.1016/j.neuroimage.2023.120037_bib0028) 2019; 202
Raffelt (10.1016/j.neuroimage.2023.120037_bib0022) 2017; 144
Jeurissen (10.1016/j.neuroimage.2023.120037_bib0013) 2013; 34
Basser (10.1016/j.neuroimage.2023.120037_bib0004) 1996; 111
Dhollander (10.1016/j.neuroimage.2023.120037_bib0008) 2021; 241
Alexander (10.1016/j.neuroimage.2023.120037_bib0001) 2017; 4
Dhollander (10.1016/j.neuroimage.2023.120037_bib0011) 2016
References_xml – volume: 77
  start-page: 285
  year: 2017
  end-page: 299
  ident: bib0032
  article-title: The importance of correcting for signal drift in diffusion MRI
  publication-title: Magn. Reson. Med.
– reference: , pp. 555.
– volume: 226
  year: 2021
  ident: bib0006
  article-title: Sex differences in pubertal associations with fronto-accumbal white matter morphometry: implications for understanding sensitivity to reward and punishment
  publication-title: Neuroimage
– volume: 58
  year: 2022
  ident: bib0026
  article-title: Longitudinal developmental trajectories of inhibition and white-matter maturation of the fronto-basal-ganglia circuits
  publication-title: Dev. Cogn. Neurosci.
– volume: 111
  start-page: 209
  year: 1996
  end-page: 219
  ident: bib0004
  article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI
  publication-title: J. Magnet. Resonance, Ser. B
– reference: , pp. 3010.
– volume: 142
  start-page: 394
  year: 2016
  end-page: 406
  ident: bib0031
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
– volume: 18
  start-page: 775
  year: 2021
  end-page: 778
  ident: bib0007
  article-title: QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data
  publication-title: Nat. Methods
– volume: 60
  start-page: 340
  year: 2012
  end-page: 352
  ident: bib0015
  article-title: Diffusion tensor imaging of white matter tract evolution over the lifespan
  publication-title: Neuroimage
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib0029
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imag.
– reference: (R package version 1.20.0) [Computer software].
– reference: Wood, S.N, 2001. In: mgcv: GAMs and Generalized Ridge Regression for R. R News, 1/2, pp. 20–25.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0030
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 8
  start-page: e80713
  year: 2013
  ident: bib0037
  article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy
  publication-title: PLoS ONE
– volume: 13
  start-page: 2647
  year: 2022
  ident: bib0019
  article-title: Dissociable multi-scale patterns of development in personalized brain networks
  publication-title: Nat. Commun.
– start-page: 1
  year: 2022
  end-page: 11
  ident: bib0005
  article-title: Brain charts for the human lifespan
  publication-title: Nature
– reference: . (R package version 0.18.0) [Computer software].
– start-page: 1
  year: 2022
  end-page: 7
  ident: bib0016
  article-title: Reproducible brain-wide association studies require thousands of individuals
  publication-title: Nature
– reference: Pagès, H., Hickey, P., & Lun, A. (2021).
– volume: 117
  start-page: 40
  year: 2015
  end-page: 55
  ident: bib0021
  article-title: Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres
  publication-title: Neuroimage
– volume: 125
  start-page: 903
  year: 2016
  end-page: 919
  ident: bib0023
  article-title: The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort
  publication-title: Neuroimage
– volume: 141
  start-page: 556
  year: 2016
  end-page: 572
  ident: bib0002
  article-title: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
  publication-title: Neuroimage
– volume: 45
  year: 2020
  ident: bib0012
  article-title: Longitudinal patterns of white matter fibre density and morphology in children are associated with age and pubertal stage
  publication-title: Dev. Cogn. Neurosci.
– volume: 86
  start-page: 544
  year: 2014
  end-page: 553
  ident: bib0024
  article-title: Neuroimaging of the Philadelphia neurodevelopmental cohort
  publication-title: Neuroimage
– volume: 4
  year: 2017
  ident: bib0001
  article-title: An open resource for transdiagnostic research in pediatric mental health and learning disorders
  publication-title: Sci. Data
– volume: 57
  start-page: 194
  year: 2018
  end-page: 209
  ident: bib0025
  article-title: Challenges in diffusion MRI tractography – Lessons learned from international benchmark competitions
  publication-title: Magn. Reson. Imag.
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: bib0003
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
– reference: Dhollander, T., & Connelly, A. (2016). A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+b=0) diffusion MRI data.
– year: 2021
  ident: bib0020
  article-title: R: A Language and Environment for Statistical Computing
– volume: 44
  start-page: 83
  year: 2009
  end-page: 98
  ident: bib0027
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: Neuroimage
– volume: 241
  year: 2021
  ident: bib0008
  article-title: Fixel-based analysis of diffusion MRI: methods, applications, challenges and opportunities
  publication-title: Neuroimage
– volume: 34
  start-page: 2747
  year: 2013
  end-page: 2766
  ident: bib0013
  article-title: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging
  publication-title: Hum. Brain Mapp.
– reference: Dhollander, T., Mito, R., Raffelt, D., & Connelly, A. (2019). Improved white matter response function estimation for 3-tissue constrained spherical deconvolution.
– reference: .
– volume: 144
  start-page: 58
  year: 2017
  end-page: 73
  ident: bib0022
  article-title: Investigating white matter fibre density and morphology using fixel-based analysis
  publication-title: Neuroimage
– volume: 99
  start-page: 673
  year: 2004
  end-page: 686
  ident: bib0035
  article-title: Stable and efficient multiple smoothing parameter estimation for generalized additive models
  publication-title: J. Am. Stat. Assoc.
– start-page: 5
  year: 2016
  ident: bib0011
  article-title: Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image
  publication-title: ISMRM Workshop on Breaking the Barriers of Diffusion MRI
– volume: 92
  start-page: 381
  year: 2014
  end-page: 397
  ident: bib0033
  article-title: Permutation inference for the general linear model
  publication-title: Neuroimage
– volume: 202
  year: 2019
  ident: bib0028
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
– volume: 76
  start-page: 1574
  year: 2016
  end-page: 1581
  ident: bib0014
  article-title: Gibbs-ringing artifact removal based on local subvoxel-shifts
  publication-title: Magn. Reson. Med.
– reference: Pagès, H. (2021).
– volume: 73
  start-page: 3
  year: 2011
  end-page: 36
  ident: bib0036
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
– ident: 10.1016/j.neuroimage.2023.120037_bib0009
– ident: 10.1016/j.neuroimage.2023.120037_bib0034
– volume: 58
  year: 2022
  ident: 10.1016/j.neuroimage.2023.120037_bib0026
  article-title: Longitudinal developmental trajectories of inhibition and white-matter maturation of the fronto-basal-ganglia circuits
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2022.101171
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2023.120037_bib0030
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 241
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120037_bib0008
  article-title: Fixel-based analysis of diffusion MRI: methods, applications, challenges and opportunities
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118417
– ident: 10.1016/j.neuroimage.2023.120037_bib0017
– volume: 92
  start-page: 381
  issue: 100
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120037_bib0033
  article-title: Permutation inference for the general linear model
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.060
– volume: 8
  start-page: e80713
  issue: 11
  year: 2013
  ident: 10.1016/j.neuroimage.2023.120037_bib0037
  article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0080713
– volume: 125
  start-page: 1063
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120037_bib0003
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– start-page: 1
  year: 2022
  ident: 10.1016/j.neuroimage.2023.120037_bib0016
  article-title: Reproducible brain-wide association studies require thousands of individuals
  publication-title: Nature
– volume: 226
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120037_bib0006
  article-title: Sex differences in pubertal associations with fronto-accumbal white matter morphometry: implications for understanding sensitivity to reward and punishment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117598
– volume: 117
  start-page: 40
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120037_bib0021
  article-title: Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.039
– volume: 18
  start-page: 775
  issue: 7
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120037_bib0007
  article-title: QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01185-5
– start-page: 5
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120037_bib0011
  article-title: Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image
– ident: 10.1016/j.neuroimage.2023.120037_bib0010
– volume: 73
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2023.120037_bib0036
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2010.00749.x
– volume: 34
  start-page: 2747
  issue: 11
  year: 2013
  ident: 10.1016/j.neuroimage.2023.120037_bib0013
  article-title: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22099
– year: 2021
  ident: 10.1016/j.neuroimage.2023.120037_bib0020
– volume: 144
  start-page: 58
  issue: Pt A
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120037_bib0022
  article-title: Investigating white matter fibre density and morphology using fixel-based analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.029
– volume: 86
  start-page: 544
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120037_bib0024
  article-title: Neuroimaging of the Philadelphia neurodevelopmental cohort
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.07.064
– volume: 13
  start-page: 2647
  issue: 1
  year: 2022
  ident: 10.1016/j.neuroimage.2023.120037_bib0019
  article-title: Dissociable multi-scale patterns of development in personalized brain networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30244-4
– volume: 202
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120037_bib0028
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.neuroimage.2023.120037_bib0029
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2010.2046908
– volume: 77
  start-page: 285
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120037_bib0032
  article-title: The importance of correcting for signal drift in diffusion MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26124
– ident: 10.1016/j.neuroimage.2023.120037_bib0018
– volume: 99
  start-page: 673
  issue: 467
  year: 2004
  ident: 10.1016/j.neuroimage.2023.120037_bib0035
  article-title: Stable and efficient multiple smoothing parameter estimation for generalized additive models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214504000000980
– volume: 142
  start-page: 394
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120037_bib0031
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.016
– volume: 111
  start-page: 209
  issue: 3
  year: 1996
  ident: 10.1016/j.neuroimage.2023.120037_bib0004
  article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI
  publication-title: J. Magnet. Resonance, Ser. B
  doi: 10.1006/jmrb.1996.0086
– volume: 76
  start-page: 1574
  issue: 5
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120037_bib0014
  article-title: Gibbs-ringing artifact removal based on local subvoxel-shifts
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26054
– start-page: 1
  year: 2022
  ident: 10.1016/j.neuroimage.2023.120037_bib0005
  article-title: Brain charts for the human lifespan
  publication-title: Nature
– volume: 141
  start-page: 556
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120037_bib0002
  article-title: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.06.058
– volume: 60
  start-page: 340
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2023.120037_bib0015
  article-title: Diffusion tensor imaging of white matter tract evolution over the lifespan
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.094
– volume: 4
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120037_bib0001
  article-title: An open resource for transdiagnostic research in pediatric mental health and learning disorders
– volume: 125
  start-page: 903
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120037_bib0023
  article-title: The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.068
– volume: 57
  start-page: 194
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120037_bib0025
  article-title: Challenges in diffusion MRI tractography – Lessons learned from international benchmark competitions
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/j.mri.2018.11.014
– volume: 45
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120037_bib0012
  article-title: Longitudinal patterns of white matter fibre density and morphology in children are associated with age and pubertal stage
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2020.100853
– volume: 44
  start-page: 83
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2023.120037_bib0027
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.061
SSID ssj0009148
Score 2.4387634
Snippet •ModelArray is an R package for statistical analysis of fixel-wise data.•ModelArray supports linear and nonlinear modeling and is extensible to more...
Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120037
SubjectTerms Big data
Development
Diffusion Magnetic Resonance Imaging - methods
Efficiency
Fixel-based analysis
Humans
Hypotheses
Hypothesis testing
Life span
Mathematical models
Models, Statistical
MRI
Research Design
Software
Statistical analysis
Substantia alba
White Matter
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZQhRAXxE6gICNxTfGW2IHTY6m4UCEEUm-W40WEPvLQa8vy7xkvCQ0ceAduURJbzucZ-xt58g1CT2znjOI-1KQPEKBQyaPPtTWljhjKe-WaXGxCHh2p4-Pu3YVSXzEnLMsDZ-CeetdGiRRwA-qElBAiNzRYJwhnHTU0iW0D65mCqUluF1h-ydvJ2VxJHXL4Aj56EAuGH9CYlCUXm1HS7F_sSX9zzj9TJy_sRYfX0bVCIvEqD_4GuuTHm-jK23JMfgu9ihXO1qvt1vx8hlcjfo8hMj6BUWGgqDj-Q5TkmaELUzRJ8CbgMPzw6_r7cOpxzBu9jT4evv7w8k1dyiXUFsA5q01vVTCSeYgSlFFw4UTTCxtJkw-EN30jPDiwY8Kx1pOgesU5MBwSmOPC8jtob9yM_h7CLEjfGGmJCV5wRgx3VpnWdx0sCLbtKyQn3LQtWuKxpMVaT0ljn_VvxHVEXGfEK0Tnll-znsYObV7EqZnfj4rY6QbYiS52ov9lJxXqponV00-nsExCR8MOA3g-ty3EJBOOHVvvT3akywJxqhmsi1GKUIoKPZ4fg2vH8xoz-s15eodyFYO-Ct3NZjdjwNuOU85JhdTCIBcgLZ-Mw6ckH05TrTnF7v8PWB-gq_FTcwroPto72577h-iy_QaGvH2UnPIXEgw6bA
  priority: 102
  providerName: Directory of Open Access Journals
Title ModelArray: An R package for statistical analysis of fixel-wise data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811923001830
https://dx.doi.org/10.1016/j.neuroimage.2023.120037
https://www.ncbi.nlm.nih.gov/pubmed/36931330
https://www.proquest.com/docview/2793937174
https://www.proquest.com/docview/2791380255
https://pubmed.ncbi.nlm.nih.gov/PMC10119782
https://doaj.org/article/ed603747631d47798751fcd403291a16
Volume 271
WOSCitedRecordID wos001030275700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiEuvB-BsjIS15Q4dmIHDmgLrbjsalWBtLfI8QMCS1J2Wx7_HttxsgQktBIXK0piy4_xeMb-_A3AM1kowYk2cVIZ66BgRtycy2OMVSIwqbjKumATbD7ny2WxCBtumwCr7HWiV9SqlW6P_HlqBclxtzH66vxr7KJGudPVEEJjDw4cSwLx0L3FlnQX0-4qXGZrgHERkDwdvsvzRdZf7Kw9ciHEj7CDabHR8uRZ_Eer1N9W6J9gyt9Wp9Ob_9uuW3Aj2KVo2gnSbbiimztwbRZO3u_CGxc0bTVdr8XPF2jaoDNkne3PtlnIWr3IXUvyjM-2CBFoTlBrkKl_6FX8vd5o5KCo9-D96cm712_jEIEhljnBF7GoJDeCpdo6Hlxw-6BoVlHp7DBtEpJVGdVWJ6iUqjTXieEVJ8QaTYlJFaGS3If9pm30Q0CpYToTTCbCaErSRBAluch1UVgdI_MqAtZ3fCkDPbmLkrEqexzap3I7ZKUbsrIbsgjwkPO8o-jYIc-xG9vhf0ey7V-06w9lmLOlVrlj57EaGCvKWGFdO2ykoglJCyxwHkHRS0bZ32O1mtcWVO9QgZdD3mDrdDbMjrkPe2Eqg87ZlFtJiuDp8NlqC3cEJBrdXvp_MOHOj4zgQSe3Qx-QvCCYkCQCPpLoUSeNvzT1R89Ijn34Op4--ne9HsN114gOL3oI-xfrS_0ErspvVkTXE9hjS-ZTPoGD45P54mzit0hsOktnEz-3fwH5wlF-
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJHgmBI_kjgghBZK1ardFUJF6s11_ICFJbvstpT-KX4j4zx2WZBQLz1wi5LYip1vxjPJ-PsAnpjCasmdj5PSY4JCcx5sLosptYmmvJQ2bcQm8sFA7u8X71bgZ7cXJpRVdj6xdtR2bMI38mcMgRS423LxavItDqpR4e9qJ6HRwGLHnRxjyjZ7ub2B7_cpY5tv995sxa2qQGwyTg9jXRrpdc4cBtNSSzywIi2FCbGF8wlPy1Q4xLllwrLMJV6WknMMBBLPLBeGY7_n4LzATChIRfRZf0HyS0Wz9S7FEVNatJVDTT1ZzU85_IpeYj1Ilq_TUBaWLy2HtWrA0qr4d9T7Z_Hmb6vh5tX_bR6vwZU27ia9xlCuw4qrbsDFfltZcBM2gijcqDed6pPnpFeR92SizRecRoJRPQnbrmpGa-xCtzQuZOyJH_5wo_h4OHMklNregg9nMobbsFqNK3cXCPO5S3VuEu2d4CzR3BqpM1cU6ENNVkaQdy9amZZ-PaiAjFRXZ_dZLSCiAkRUA5EI6LzlpKEgOUWb1wFL8_sDiXh9Yjz9qFqfpJzNAvsQrjDUijwvMHWl3liRcFZQTbMIig6JqtuniysLdjQ8xQO8mLdtY7kmRjtl67UOvKr1qTO1QG4Ej-eX0RuGX1y6cuOj-h7KZciTI7jT2Ml8DnhWcMp5EoFcsqClSVq-Ug0_1YzrtJbnk-zev5_rEVza2uvvqt3twc59uBwG1NTGrsHq4fTIPYAL5jvCdfqw9hsEDs7awH4Bb0Kn9g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aA028cL8EBhgJHrPFdi4OCKFCqZgGVYVA2pvn-AKFkpZ0Y-yv8es4zqWlIKG-7IG3KImt2PnOxcnn7wA80rlRglsXRoXDBQrNuLe5NKTURIryQpikKTaRDYfi4CAfbcDPbi-Mp1V2PrF21Gaq_TfyXYZA8tptWbzrWlrEqD94PvsW-gpS_k9rV06jgci-PT3B5dv82V4f3_Vjxgav3r98HbYVBkKdcnoUqkILpzJmMbEWSuCBiZMi1j7PsC7iSZHEFjFvWGxYaiMnCsE5JgWRY4bHmmO_5-B85kXLa9rgaCn4S-NmG16Co6c0b1lEDbes1qocf0WPsePLl-9QTxHLVkJjXUFgJUL-nQH_SeT8LTIOLv_Pc3oFLrX5OOk1BnQVNmx5DbbetoyD69D3xeImvapSp09IryTvyEzpLzilBLN94rdj1UrX2IVq5V3I1BE3_mEn4cl4bomn4N6AD2cyhpuwWU5LexsIc5lNVKYj5WzMWaS40UKlNs_Rt-q0CCDrXrrUrSy7rw4ykR3_7rNcwkV6uMgGLgHQRctZI02yRpsXHleL-724eH1iWn2Ura-S1qRelQgjDzVxluW4pKVOmzjiLKeKpgHkHSplt38XIw52NF7jAZ4u2rY5XpO7rdl6uwOybH3tXC5RHMDDxWX0kv7Xlyrt9Li-h3Lh188B3GpsZjEHPM055TwKQKxY08okrV4px59qJXZal-0T7M6_n-sBbKFdyTd7w_27cNGPp6HMbsPmUXVs78EF_R3RWt2vXQiBw7O2r190UrDH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ModelArray%3A+An+R+package+for+statistical+analysis+of+fixel-wise+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Zhao%2C+Chenying&rft.au=Tapera%2C+Tinashe+M.&rft.au=Bagautdinova%2C+Jo%C3%ABlle&rft.au=Bourque%2C+Josiane&rft.date=2023-05-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=271&rft_id=info:doi/10.1016%2Fj.neuroimage.2023.120037&rft.externalDocID=S1053811923001830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon