Deep learning classification of reading disability with regional brain volume features

•Deformation-based deep learning was used to classify reading disability.•Autoencoder pretraining optimized neural network classification accuracy.•Reading disability classification precision (0.75) and recall (0.78) was observed.•Brain regions were differentially predictive of cases and controls.•C...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Vol. 273; p. 120075
Main Authors: Joshi, Foram, Wang, James Z., Vaden, Kenneth I., Eckert, Mark A.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.06.2023
Elsevier Limited
Elsevier
Subjects:
ISSN:1053-8119, 1095-9572, 1095-9572
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Deformation-based deep learning was used to classify reading disability.•Autoencoder pretraining optimized neural network classification accuracy.•Reading disability classification precision (0.75) and recall (0.78) was observed.•Brain regions were differentially predictive of cases and controls.•Classification probability related to non-word and real word reading abilities. Developmental reading disability is a prevalent and often enduring problem with varied mechanisms that contribute to its phenotypic heterogeneity. This mechanistic and phenotypic variation, as well as relatively modest sample sizes, may have limited the development of accurate neuroimaging-based classifiers for reading disability, including because of the large feature space of neuroimaging datasets. An unsupervised learning model was used to reduce deformation-based data to a lower-dimensional manifold and then supervised learning models were used to classify these latent representations in a dataset of 96 reading disability cases and 96 controls (mean age: 9.86 ± 1.56 years). A combined unsupervised autoencoder and supervised convolutional neural network approach provided an effective classification of cases and controls (accuracy: 77%; precision: 0.75; recall: 0.78). Brain regions that contributed to this classification accuracy were identified by adding noise to the voxel-level image data, which showed that reading disability classification accuracy was most influenced by the superior temporal sulcus, dorsal cingulate, and lateral occipital cortex. Regions that were most important for the accurate classification of controls included the supramarginal gyrus, orbitofrontal, and medial occipital cortex. The contribution of these regions reflected individual differences in reading-related abilities, such as non-word decoding or verbal comprehension. Together, the results demonstrate an optimal deep learning solution for classification using neuroimaging data. In contrast with standard mass-univariate test results, results from the deep learning model also provided evidence for regions that may be specifically affected in reading disability cases.
AbstractList Developmental reading disability is a prevalent and often enduring problem with varied mechanisms that contribute to its phenotypic heterogeneity. This mechanistic and phenotypic variation, as well as relatively modest sample sizes, may have limited the development of accurate neuroimaging-based classifiers for reading disability, including because of the large feature space of neuroimaging datasets. An unsupervised learning model was used to reduce deformation-based data to a lower-dimensional manifold and then supervised learning models were used to classify these latent representations in a dataset of 96 reading disability cases and 96 controls (mean age: 9.86 ± 1.56 years). A combined unsupervised autoencoder and supervised convolutional neural network approach provided an effective classification of cases and controls (accuracy: 77%; precision: 0.75; recall: 0.78) Brain regions that contributed to this classification accuracy were identified by adding noise to the voxel-leve image data, which showed that reading disability classification accuracy was most influenced by the superior temporal sulcus, dorsal cingulate, and lateral occipital cortex. Regions that were most important for the accurate classification of controls included the supramarginal gyrus, orbitofrontal, and medial occipital cortex. The contribution of these regions reflected individual differences in reading-related abilities, such as non-word decoding or verbal comprehension. Together, the results demonstrate an optimal deep learning solution for classification using neuroimaging data. In contrast with standard mass-univariate test results, results from the deep learning model also provided evidence for regions that may be specifically affected in reading disability cases.
Developmental reading disability is a prevalent and often enduring problem with varied mechanisms that contribute to its phenotypic heterogeneity. This mechanistic and phenotypic variation, as well as relatively modest sample sizes, may have limited the development of accurate neuroimaging-based classifiers for reading disability, including because of the large feature space of neuroimaging datasets. An unsupervised learning model was used to reduce deformation-based data to a lower-dimensional manifold and then supervised learning models were used to classify these latent representations in a dataset of 96 reading disability cases and 96 controls (mean age: 9.86 ± 1.56 years). A combined unsupervised autoencoder and supervised convolutional neural network approach provided an effective classification of cases and controls (accuracy: 77%; precision: 0.75; recall: 0.78). Brain regions that contributed to this classification accuracy were identified by adding noise to the voxel-level image data, which showed that reading disability classification accuracy was most influenced by the superior temporal sulcus, dorsal cingulate, and lateral occipital cortex. Regions that were most important for the accurate classification of controls included the supramarginal gyrus, orbitofrontal, and medial occipital cortex. The contribution of these regions reflected individual differences in reading-related abilities, such as non-word decoding or verbal comprehension. Together, the results demonstrate an optimal deep learning solution for classification using neuroimaging data. In contrast with standard mass-univariate test results, results from the deep learning model also provided evidence for regions that may be specifically affected in reading disability cases.
•Deformation-based deep learning was used to classify reading disability.•Autoencoder pretraining optimized neural network classification accuracy.•Reading disability classification precision (0.75) and recall (0.78) was observed.•Brain regions were differentially predictive of cases and controls.•Classification probability related to non-word and real word reading abilities. Developmental reading disability is a prevalent and often enduring problem with varied mechanisms that contribute to its phenotypic heterogeneity. This mechanistic and phenotypic variation, as well as relatively modest sample sizes, may have limited the development of accurate neuroimaging-based classifiers for reading disability, including because of the large feature space of neuroimaging datasets. An unsupervised learning model was used to reduce deformation-based data to a lower-dimensional manifold and then supervised learning models were used to classify these latent representations in a dataset of 96 reading disability cases and 96 controls (mean age: 9.86 ± 1.56 years). A combined unsupervised autoencoder and supervised convolutional neural network approach provided an effective classification of cases and controls (accuracy: 77%; precision: 0.75; recall: 0.78). Brain regions that contributed to this classification accuracy were identified by adding noise to the voxel-level image data, which showed that reading disability classification accuracy was most influenced by the superior temporal sulcus, dorsal cingulate, and lateral occipital cortex. Regions that were most important for the accurate classification of controls included the supramarginal gyrus, orbitofrontal, and medial occipital cortex. The contribution of these regions reflected individual differences in reading-related abilities, such as non-word decoding or verbal comprehension. Together, the results demonstrate an optimal deep learning solution for classification using neuroimaging data. In contrast with standard mass-univariate test results, results from the deep learning model also provided evidence for regions that may be specifically affected in reading disability cases.
Developmental reading disability is a prevalent and often enduring problem with varied mechanisms that contribute to its phenotypic heterogeneity. This mechanistic and phenotypic variation, as well as relatively modest sample sizes, may have limited the development of accurate neuroimaging-based classifiers for reading disability, including because of the large feature space of neuroimaging datasets. An unsupervised learning model was used to reduce deformation-based data to a lower-dimensional manifold and then supervised learning models were used to classify these latent representations in a dataset of 96 reading disability cases and 96 controls (mean age: 9.86 ± 1.56 years). A combined unsupervised autoencoder and supervised convolutional neural network approach provided an effective classification of cases and controls (accuracy: 77%; precision: 0.75; recall: 0.78). Brain regions that contributed to this classification accuracy were identified by adding noise to the voxel-level image data, which showed that reading disability classification accuracy was most influenced by the superior temporal sulcus, dorsal cingulate, and lateral occipital cortex. Regions that were most important for the accurate classification of controls included the supramarginal gyrus, orbitofrontal, and medial occipital cortex. The contribution of these regions reflected individual differences in reading-related abilities, such as non-word decoding or verbal comprehension. Together, the results demonstrate an optimal deep learning solution for classification using neuroimaging data. In contrast with standard mass-univariate test results, results from the deep learning model also provided evidence for regions that may be specifically affected in reading disability cases.
Developmental reading disability is a prevalent and often enduring problem with varied mechanisms that contribute to its phenotypic heterogeneity. This mechanistic and phenotypic variation, as well as relatively modest sample sizes, may have limited the development of accurate neuroimaging-based classifiers for reading disability, including because of the large feature space of neuroimaging datasets. An unsupervised learning model was used to reduce deformation-based data to a lower-dimensional manifold and then supervised learning models were used to classify these latent representations in a dataset of 96 reading disability cases and 96 controls (mean age: 9.86 ± 1.56 years). A combined unsupervised autoencoder and supervised convolutional neural network approach provided an effective classification of cases and controls (accuracy: 77%; precision: 0.75; recall: 0.78). Brain regions that contributed to this classification accuracy were identified by adding noise to the voxel-level image data, which showed that reading disability classification accuracy was most influenced by the superior temporal sulcus, dorsal cingulate, and lateral occipital cortex. Regions that were most important for the accurate classification of controls included the supramarginal gyrus, orbitofrontal, and medial occipital cortex. The contribution of these regions reflected individual differences in reading-related abilities, such as non-word decoding or verbal comprehension. Together, the results demonstrate an optimal deep learning solution for classification using neuroimaging data. In contrast with standard mass-univariate test results, results from the deep learning model also provided evidence for regions that may be specifically affected in reading disability cases.Developmental reading disability is a prevalent and often enduring problem with varied mechanisms that contribute to its phenotypic heterogeneity. This mechanistic and phenotypic variation, as well as relatively modest sample sizes, may have limited the development of accurate neuroimaging-based classifiers for reading disability, including because of the large feature space of neuroimaging datasets. An unsupervised learning model was used to reduce deformation-based data to a lower-dimensional manifold and then supervised learning models were used to classify these latent representations in a dataset of 96 reading disability cases and 96 controls (mean age: 9.86 ± 1.56 years). A combined unsupervised autoencoder and supervised convolutional neural network approach provided an effective classification of cases and controls (accuracy: 77%; precision: 0.75; recall: 0.78). Brain regions that contributed to this classification accuracy were identified by adding noise to the voxel-level image data, which showed that reading disability classification accuracy was most influenced by the superior temporal sulcus, dorsal cingulate, and lateral occipital cortex. Regions that were most important for the accurate classification of controls included the supramarginal gyrus, orbitofrontal, and medial occipital cortex. The contribution of these regions reflected individual differences in reading-related abilities, such as non-word decoding or verbal comprehension. Together, the results demonstrate an optimal deep learning solution for classification using neuroimaging data. In contrast with standard mass-univariate test results, results from the deep learning model also provided evidence for regions that may be specifically affected in reading disability cases.
ArticleNumber 120075
Author Vaden, Kenneth I.
Wang, James Z.
Eckert, Mark A.
Joshi, Foram
AuthorAffiliation b Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, Charleston, S.C, U.S.A
a School of Computing, Clemson University, Clemson, S.C, U.S.A
AuthorAffiliation_xml – name: b Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, Charleston, S.C, U.S.A
– name: a School of Computing, Clemson University, Clemson, S.C, U.S.A
Author_xml – sequence: 1
  givenname: Foram
  surname: Joshi
  fullname: Joshi, Foram
  organization: School of Computing, Clemson University, Clemson, S.C, U.S.A
– sequence: 2
  givenname: James Z.
  surname: Wang
  fullname: Wang, James Z.
  organization: School of Computing, Clemson University, Clemson, S.C, U.S.A
– sequence: 3
  givenname: Kenneth I.
  surname: Vaden
  fullname: Vaden, Kenneth I.
  organization: Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, Charleston, S.C, U.S.A
– sequence: 4
  givenname: Mark A.
  orcidid: 0000-0001-9286-7717
  surname: Eckert
  fullname: Eckert, Mark A.
  email: eckert@musc.edu
  organization: Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, Charleston, S.C, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37054828$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEUhUeoiD7gL6CR2LBJsD3jGXvDq7wqVWIDbC0_7qQ3OHaxZ4Ly73GSUmhWkRe27HM_Hd9zz6uTEANUVU3JnBLavVrOA0wp4kovYM4Ia-aUEdLzR9UZJZLPJO_ZyfbMm5mgVJ5W5zkvCSGStuJJddr0hLeCibPqxweA29qDTgHDorZe54wDWj1iDHUc6gTabV8cZm3Q47ipf-N4U-4XRaF9bZLGUK-jn1ZQD6DHKUF-Wj0etM_w7G6_qL5_-vjt8svs-uvnq8t31zPbNXScNbxvO0q7RgrbU9mRzjhHDZdAuGmFY0aDGIpR6KBtBuGEG4w2VnYNGO5Ic1Fd7bku6qW6TaUjaaOiRrW7iGmhdBrRelCkeNOybw1h0DrHtGiZ4aKlTkjWDqyw3uxZt5NZgbMQxqT9A-jDl4A3ahHXahtJX1YhvLwjpPhrgjyqFWYL3usAccqKCUKloLKRRfriQLqMUyr93Kk6KamQvKie_2_p3svf_IpA7AU2xZwTDPcSSna-1FL9GxW1HRW1H5VS-vqg1OK4i718Dv0xgPd7AJSA1whJZYsQLDhMYMeSAB4DeXsAsR5DmT__EzbHIf4AFC_3_Q
CitedBy_id crossref_primary_10_1016_j_cortex_2024_08_012
crossref_primary_10_1016_j_dcn_2024_101470
crossref_primary_10_1162_imag_a_00219
Cites_doi 10.1177/0022219409355476
10.1016/j.neuroimage.2011.02.040
10.1111/desc.12422
10.7554/eLife.69523
10.1371/journal.pone.0103537
10.1037/dev0001340
10.1002/hbm.24995
10.1093/cercor/bhq045
10.1016/B978-0-12-407794-2.00065-1
10.1038/nprot.2015.014
10.1111/j.1460-9568.2007.05701.x
10.1002/mrm.10606
10.1016/j.cub.2018.07.018
10.1089/brain.2012.0116
10.1007/s00429-013-0687-3
10.1177/0022219411410042
10.1196/annals.1416.024
10.1007/s11881-003-0001-9
10.1146/annurev-clinpsy-032814-112842
10.3390/sym12111809
10.1002/hbm.23426
10.1016/S0010-9452(08)70268-5
10.1037/amp0000452
10.1523/ENEURO.0103-15.2015
10.1109/ACCESS.2021.3062709
10.1523/JNEUROSCI.2092-13.2013
10.1093/cercor/bhy037
10.1002/jmri.22003
10.1523/JNEUROSCI.2131-07.2007
10.1162/jocn_a_00721
10.1016/j.neuroimage.2009.07.063
10.1016/j.brainres.2018.01.014
10.1016/j.neubiorev.2017.08.001
10.3389/fnhum.2014.00830
10.1044/2015_JSLHR-L-13-0310
10.1016/j.neuroimage.2007.07.007
10.1017/S1355617709090900
10.1037/a0019319
10.1037/a0025323
10.1016/j.neuroimage.2008.05.057
10.1037/0033-2909.130.6.858
10.1016/j.cobeha.2016.06.007
10.1371/journal.pone.0043122
10.1016/j.neuropsychologia.2012.07.017
10.1002/hbm.22127
10.1016/j.jneumeth.2019.04.007
10.1207/s1532799xssr0803_5
10.1002/hbm.23112
10.1001/jama.1990.03450080084036
10.1016/j.tics.2016.06.012
10.1016/j.nicl.2016.03.014
10.1002/hbm.20752
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
2023. The Author(s)
Copyright_xml – notice: 2023 The Author(s)
– notice: Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2023. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T9
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2023.120075
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Linguistics and Language Behavior Abstracts (LLBA)
Neurosciences Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database (ProQuest)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology


MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 120075
ExternalDocumentID oai_doaj_org_article_0feaa974b02e4dd2a842b5841d8924f2
PMC10167676
37054828
10_1016_j_neuroimage_2023_120075
S1053811923002215
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD069374
– fundername: NCRR NIH HHS
  grantid: C06 RR014516
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
9DU
AAYXX
AFFHD
CITATION
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7T9
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c631t-35746116398c719606bdd1b59e05b48d2bae8f828e6e43f8d8dfbabc963eb5d03
IEDL.DBID M7P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000984006700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Fri Oct 03 12:51:05 EDT 2025
Tue Nov 04 02:06:35 EST 2025
Thu Oct 02 11:24:35 EDT 2025
Sat Nov 08 05:58:53 EST 2025
Mon Jul 21 05:58:47 EDT 2025
Sat Nov 29 06:56:33 EST 2025
Tue Nov 18 22:11:52 EST 2025
Fri Feb 23 02:38:00 EST 2024
Tue Oct 14 19:35:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Specific learning disorder in reading
Reading disability
Dyslexia
Brain morphology
Convolutional neural network
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631t-35746116398c719606bdd1b59e05b48d2bae8f828e6e43f8d8dfbabc963eb5d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9286-7717
OpenAccessLink https://doaj.org/article/0feaa974b02e4dd2a842b5841d8924f2
PMID 37054828
PQID 2806991895
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_0feaa974b02e4dd2a842b5841d8924f2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10167676
proquest_miscellaneous_2801981939
proquest_journals_2806991895
pubmed_primary_37054828
crossref_primary_10_1016_j_neuroimage_2023_120075
crossref_citationtrail_10_1016_j_neuroimage_2023_120075
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2023_120075
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2023_120075
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2023
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Ashburner (bib0003) 2007; 38
Kusner, Paige, Hernández-Lobato (bib0031) 2017
Kinga, Adam (bib0026) 2015
O'Hare, Lu, Houston, Bookheimer, Sowell (bib0043) 2008; 42
Moll, Kunze, Neuhoff, Bruder, Schulte-Körne (bib0039) 2014; 9
Zhang, Peng (bib0077) 2022; 58
Eden, Olulade, Evans, Krafnick, Alkire (bib0018) 2016
Usman, Muniyandi, Omar, Mohamad (bib0063) 2021
Costanzo, Menghini, Caltagirone, Oliveri, Vicari (bib0009) 2012; 50
Wagner, Torgesen, Rashotte (bib0064) 1999
Woodcock, Mather, McGrew, Shrank (bib0069) 2001
Wechsler (bib0065) 1999
Cain, Oakhill (bib0007) 2011; 44
Gosztolya, Pintér, Tóth, Grósz, Markó, Csapó (bib0021) 2019
Nair, Hinton (bib0041) 2010
Ramus, Altarelli, Jednoróg, Zhao, Di Covella (bib0050) 2018; 84
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib0045) 2011; 12
Yan, Jiang, Li, Wang, Perkins, Cao (bib0075) 2021; 10
Hadsell, Chopra, LeCun (bib0024) 2006
Kurth, Gaser, Luders (bib0030) 2015; 10
Vandermosten, Hoeft, Norton (bib0071) 2016; 10
He, Zhang, Ren, Sun (bib0025) 2016
Krishnan, Watkins, Bishop (bib0028) 2016; 20
Richlan, Kronbichler, Wimmer (bib0052) 2009; 30
Wechsler (bib0066) 2004
Peterson, Pennington (bib0046) 2015; 11
Sliwinska, James, Devlin (bib0059) 2015; 27
Bishop, Snowling (bib0006) 2004; 130
Cutting, Clements-Stephens, Pugh, Burns, Cao, Pekar, Davis, Rimrodt (bib0011) 2013; 3
Eckert, Vaden, Maxwell, Cute, Gebregziabher, Berninger (bib0015) 2017; 7
Ballard (bib0004) 1987
Fletcher (bib0019) 2009; 15
Mohajer, Abbasi, Mohammadi, Khazaie, Osorio, Rosenzweig, Eickhoff, Zarei, Tahmasian, Eickhoff (bib0038) 2020; 41
Locascio, Mahone, Eason, Cutting (bib0034) 2010; 43
Vincent, Larochelle, Lajoie, Bengio, Manzagol, Bottou (bib0072) 2010; 11
Yue, Martin, Hamilton, Rose (bib0076) 2019; 29
Wolf, Denckla (bib0067) 2005
Krafnick, Flowers, Luetje, Napoliello, Eden (bib0027) 2014; 34
Petersson, Silva, Castro-Caldas, Ingvar, Reis (bib0047) 2007; 26
Ha, D., Schmidhuber, J., 2018. Recurrent world models facilitate policy evolution. arXiv preprint arXiv:1809.01999.
Lyon, Shaywitz, Shaywitz (bib0035) 2003; 53
Rumelhart, Hinton, Williams (bib0056) 1985
Liebenthal, Desai, Ellingson, Ramachandran, Desai, Binder (bib0032) 2010; 20
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0060) 2014; 15
Catts, Compton, Tomblin, Bridges (bib0008) 2012; 104
Tamboer, Vorst, Ghebreab, Scholte (bib0062) 2016; 11
Eckert, Leonard, Wilke, Eckert, Richards, Richards, Berninger (bib0013) 2005; 41
Berninger, Abbott (bib0005) 2010; 102
Linkersdörfer, Lonnemann, Lindberg, Hasselhorn, Fiebach (bib0033) 2012
Newell, Deng (bib0042) 2020
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
Grigorenko, Compton, Fuchs, Wagner, Willcutt, Fletcher (bib0022) 2020; 75
Vaden, Muftuler, Hickok (bib0070) 2010; 49
Ribeiro, Singh, Guestrin (bib0051) 2016
Płoński, Gradkowski, Altarelli, Monzalvo, van Ermingen-Marbach, Grande, Heim, Marchewka, Bogorodzki, Ramus (bib0049) 2017; 38
Moreau, Stonyer, McKay, Waldie (bib0040) 2018; 1683
Eckert, Berninger, Vaden, Gebregziabher, Tsu (bib0014) 2016; 3
Goodfellow, Bengio, Courville (bib0020) 2016
Suk, Lee, Shen (bib0061) 2015; 220
Wang, Guan, Ma, Luo, Chu, Hu, Zhao, Men, Tan, Gao, Qin (bib0073) 2022
Wilke, Schmithorst, Holland (bib0074) 2003; 50
Richlan, Kronbichler, Wimmer (bib0053) 2011; 56
Rudebeck, Rich (bib0055) 2018; 28
Maisog, Einbinder, Flowers, Turkeltaub, Eden (bib0036) 2008; 1145
Richlan, Kronbichler, Wimmer (bib0054) 2013; 34
Salmelin, Helenius (bib0057) 2004; 8
Woodcock (bib0068) 1987
Manjon, Coupe, Marti-Bonmati, Collins, Robles (bib0037) 2010; 31
Shaywitz, Shaywitz, Fletcher, Escobar (bib0058) 1990; 264
Aboud, Bailey, Petrill, Cutting (bib0002) 2016; 19
Eckert, Iuricich, Vaden, Glaze, Consortium (bib0017) 2020; 12
Plassmann, O'doherty, Rangel (bib0048) 2007; 27
Paulesu, Danelli, Berlingeri (bib0044) 2014; 8
Krizhevsky, Sutskever, Hinton (bib0029) 2012; 25
Cui, Xia, Su, Shu, Gong (bib0010) 2016; 37
Eckert, Vaden (bib0016) 2019; 322
Duff, Tomblin, Catts (bib0012) 2015; 58
Zeiler, Krishnan, Taylor, Fergus (bib0078) 2010
Duff (10.1016/j.neuroimage.2023.120075_bib0012) 2015; 58
Richlan (10.1016/j.neuroimage.2023.120075_bib0054) 2013; 34
Richlan (10.1016/j.neuroimage.2023.120075_bib0053) 2011; 56
Srivastava (10.1016/j.neuroimage.2023.120075_bib0060) 2014; 15
He (10.1016/j.neuroimage.2023.120075_bib0025) 2016
Suk (10.1016/j.neuroimage.2023.120075_bib0061) 2015; 220
Liebenthal (10.1016/j.neuroimage.2023.120075_bib0032) 2010; 20
Mohajer (10.1016/j.neuroimage.2023.120075_bib0038) 2020; 41
Richlan (10.1016/j.neuroimage.2023.120075_bib0052) 2009; 30
Eckert (10.1016/j.neuroimage.2023.120075_bib0016) 2019; 322
Cutting (10.1016/j.neuroimage.2023.120075_bib0011) 2013; 3
Locascio (10.1016/j.neuroimage.2023.120075_bib0034) 2010; 43
Gosztolya (10.1016/j.neuroimage.2023.120075_bib0021) 2019
Moll (10.1016/j.neuroimage.2023.120075_bib0039) 2014; 9
Moreau (10.1016/j.neuroimage.2023.120075_bib0040) 2018; 1683
Ramus (10.1016/j.neuroimage.2023.120075_bib0050) 2018; 84
10.1016/j.neuroimage.2023.120075_bib0001
Costanzo (10.1016/j.neuroimage.2023.120075_bib0009) 2012; 50
Catts (10.1016/j.neuroimage.2023.120075_bib0008) 2012; 104
Lyon (10.1016/j.neuroimage.2023.120075_bib0035) 2003; 53
Wolf (10.1016/j.neuroimage.2023.120075_bib0067) 2005
Rudebeck (10.1016/j.neuroimage.2023.120075_bib0055) 2018; 28
Krishnan (10.1016/j.neuroimage.2023.120075_bib0028) 2016; 20
Berninger (10.1016/j.neuroimage.2023.120075_bib0005) 2010; 102
Yue (10.1016/j.neuroimage.2023.120075_bib0076) 2019; 29
Petersson (10.1016/j.neuroimage.2023.120075_bib0047) 2007; 26
Cain (10.1016/j.neuroimage.2023.120075_bib0007) 2011; 44
Wilke (10.1016/j.neuroimage.2023.120075_bib0074) 2003; 50
Eckert (10.1016/j.neuroimage.2023.120075_bib0014) 2016; 3
Eckert (10.1016/j.neuroimage.2023.120075_bib0017) 2020; 12
Ribeiro (10.1016/j.neuroimage.2023.120075_bib0051) 2016
Plassmann (10.1016/j.neuroimage.2023.120075_bib0048) 2007; 27
Płoński (10.1016/j.neuroimage.2023.120075_bib0049) 2017; 38
Wechsler (10.1016/j.neuroimage.2023.120075_bib0065) 1999
Kinga (10.1016/j.neuroimage.2023.120075_bib0026) 2015
Maisog (10.1016/j.neuroimage.2023.120075_bib0036) 2008; 1145
Zhang (10.1016/j.neuroimage.2023.120075_bib0077) 2022; 58
Woodcock (10.1016/j.neuroimage.2023.120075_bib0068) 1987
Manjon (10.1016/j.neuroimage.2023.120075_bib0037) 2010; 31
Bishop (10.1016/j.neuroimage.2023.120075_bib0006) 2004; 130
Shaywitz (10.1016/j.neuroimage.2023.120075_bib0058) 1990; 264
Krizhevsky (10.1016/j.neuroimage.2023.120075_bib0029) 2012; 25
Krafnick (10.1016/j.neuroimage.2023.120075_bib0027) 2014; 34
O'Hare (10.1016/j.neuroimage.2023.120075_bib0043) 2008; 42
Hadsell (10.1016/j.neuroimage.2023.120075_bib0024) 2006
Linkersdörfer (10.1016/j.neuroimage.2023.120075_bib0033) 2012
Pedregosa (10.1016/j.neuroimage.2023.120075_bib0045) 2011; 12
Usman (10.1016/j.neuroimage.2023.120075_bib0063) 2021
Peterson (10.1016/j.neuroimage.2023.120075_bib0046) 2015; 11
Yan (10.1016/j.neuroimage.2023.120075_bib0075) 2021; 10
Grigorenko (10.1016/j.neuroimage.2023.120075_bib0022) 2020; 75
Eckert (10.1016/j.neuroimage.2023.120075_bib0013) 2005; 41
Tamboer (10.1016/j.neuroimage.2023.120075_bib0062) 2016; 11
Kurth (10.1016/j.neuroimage.2023.120075_bib0030) 2015; 10
Newell (10.1016/j.neuroimage.2023.120075_bib0042) 2020
Salmelin (10.1016/j.neuroimage.2023.120075_bib0057) 2004; 8
Wechsler (10.1016/j.neuroimage.2023.120075_bib0066) 2004
Ashburner (10.1016/j.neuroimage.2023.120075_bib0003) 2007; 38
Fletcher (10.1016/j.neuroimage.2023.120075_bib0019) 2009; 15
Wang (10.1016/j.neuroimage.2023.120075_bib0073) 2022
Paulesu (10.1016/j.neuroimage.2023.120075_bib0044) 2014; 8
10.1016/j.neuroimage.2023.120075_bib0023
Nair (10.1016/j.neuroimage.2023.120075_bib0041) 2010
Kusner (10.1016/j.neuroimage.2023.120075_bib0031) 2017
Ballard (10.1016/j.neuroimage.2023.120075_bib0004) 1987
Eckert (10.1016/j.neuroimage.2023.120075_bib0015) 2017; 7
Vaden (10.1016/j.neuroimage.2023.120075_bib0070) 2010; 49
Vandermosten (10.1016/j.neuroimage.2023.120075_bib0071) 2016; 10
Rumelhart (10.1016/j.neuroimage.2023.120075_bib0056) 1985
Wagner (10.1016/j.neuroimage.2023.120075_bib0064) 1999
Vincent (10.1016/j.neuroimage.2023.120075_bib0072) 2010; 11
Woodcock (10.1016/j.neuroimage.2023.120075_bib0069) 2001
Zeiler (10.1016/j.neuroimage.2023.120075_bib0078) 2010
Sliwinska (10.1016/j.neuroimage.2023.120075_bib0059) 2015; 27
Cui (10.1016/j.neuroimage.2023.120075_bib0010) 2016; 37
Aboud (10.1016/j.neuroimage.2023.120075_bib0002) 2016; 19
Goodfellow (10.1016/j.neuroimage.2023.120075_bib0020) 2016
Eden (10.1016/j.neuroimage.2023.120075_bib0018) 2016
References_xml – start-page: 1135
  year: 2016
  end-page: 1144
  ident: bib0051
  article-title: "Why should I trust you?" Explaining the predictions of any classifier
  publication-title: Proc 22nd ACM SIGKDD Int Conf Knowl Discovery Data Mining
– volume: 30
  start-page: 3299
  year: 2009
  end-page: 3308
  ident: bib0052
  article-title: Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies
  publication-title: Hum. Brain Mapp.
– volume: 27
  start-page: 593
  year: 2015
  end-page: 604
  ident: bib0059
  article-title: Inferior parietal lobule contributions to visual word recognition
  publication-title: J. Cog. Neurosci.
– volume: 58
  start-page: 853
  year: 2015
  end-page: 864
  ident: bib0012
  article-title: The influence of reading on vocabulary growth: a case for a Matthew effect
  publication-title: Jl Speech Lang. Hear. Res.
– volume: 1683
  start-page: 36
  year: 2018
  end-page: 47
  ident: bib0040
  article-title: No evidence for systematic white matter correlates of dyslexia: an activation likelihood estimation meta-analysis
  publication-title: Brain Res.
– volume: 84
  start-page: 434
  year: 2018
  end-page: 452
  ident: bib0050
  article-title: Neuroanatomy of developmental dyslexia: pitfalls and promise
  publication-title: Neurosci. Biobehav. Rev.
– volume: 49
  start-page: 1018
  year: 2010
  end-page: 1023
  ident: bib0070
  article-title: Phonological repetition-suppression in bilateral superior temporal sulci
  publication-title: Neuroimage
– volume: 20
  start-page: 701
  year: 2016
  end-page: 714
  ident: bib0028
  article-title: Neurobiological basis of language learning difficulties
  publication-title: Trend. Cogn. Sci.
– volume: 130
  start-page: 858
  year: 2004
  ident: bib0006
  article-title: Developmental dyslexia and specific language impairment: same or different?
  publication-title: Psychol. Bull.
– volume: 34
  start-page: 3055
  year: 2013
  end-page: 3065
  ident: bib0054
  article-title: Structural abnormalities in the dyslexic brain: a meta-analysis of voxel-based morphometry studies
  publication-title: Hum. Brain Mapp.
– volume: 264
  start-page: 998
  year: 1990
  end-page: 1002
  ident: bib0058
  article-title: Prevalence of reading disability in boys and girls: results of the Connecticut Longitudinal Study
  publication-title: JAMA
– volume: 104
  start-page: 166
  year: 2012
  ident: bib0008
  article-title: Prevalence and nature of late-emerging poor readers
  publication-title: J.l Educ Psychol
– start-page: e43122
  year: 2012
  ident: bib0033
  article-title: Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: an ALE meta-analysis
  publication-title: PLoS One
– volume: 44
  start-page: 431
  year: 2011
  end-page: 443
  ident: bib0007
  article-title: Matthew effects in young readers: reading comprehension and reading experience aid vocabulary development
  publication-title: J. Learn. Disabil.
– year: 2001
  ident: bib0069
  article-title: Woodcock-Johnson III Tests of Cognitive Abilities
– volume: 58
  start-page: 1035
  year: 2022
  end-page: 1050
  ident: bib0077
  article-title: Reading real words versus pseudowords: a meta-analysis of research in developmental dyslexia
  publication-title: Devel. Psychol.
– year: 1985
  ident: bib0056
  article-title: Learning Internal Representations By Error Propagation
– volume: 56
  start-page: 1735
  year: 2011
  end-page: 1742
  ident: bib0053
  article-title: Meta-analyzing brain dysfunctions in dyslexic children and adults
  publication-title: Neuroimage
– volume: 15
  start-page: 501
  year: 2009
  end-page: 508
  ident: bib0019
  article-title: Dyslexia: the evolution of a scientific concept
  publication-title: J. Int. Neuropsychol. Soc.
– volume: 31
  start-page: 192
  year: 2010
  end-page: 203
  ident: bib0037
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: JMRI
– volume: 75
  start-page: 37
  year: 2020
  end-page: 51
  ident: bib0022
  article-title: Understanding, educating, and supporting children with specific learning disabilities: 50 years of science and practice
  publication-title: Am. Psychol.
– year: 2021
  ident: bib0063
  article-title: Advance machine learning methods for dyslexia biomarker detection: a review of implementation details and challenges
  publication-title: IEEE Access
– start-page: 1735
  year: 2006
  end-page: 1742
  ident: bib0024
  article-title: Dimensionality reduction by learning an invariant mapping
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– volume: 28
  start-page: R1083
  year: 2018
  end-page: R1088
  ident: bib0055
  article-title: Orbitofrontal cortex
  publication-title: Curr. Biol.
– volume: 50
  start-page: 749
  year: 2003
  end-page: 757
  ident: bib0074
  article-title: Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data
  publication-title: Magn. Reson. Med.
– volume: 12
  start-page: 1809
  year: 2020
  ident: bib0017
  article-title: The topology of pediatric structural asymmetries in language-related cortex
  publication-title: Symmetry (Basel)
– reference: Ha, D., Schmidhuber, J., 2018. Recurrent world models facilitate policy evolution. arXiv preprint arXiv:1809.01999.
– volume: 9
  year: 2014
  ident: bib0039
  article-title: Specific learning disorder: prevalence and gender differences
  publication-title: PLoS One
– volume: 102
  start-page: 635
  year: 2010
  end-page: 651
  ident: bib0005
  article-title: Listening comprehension, oral expression, reading comprehension, and written expression: related yet unique language systems in grades 1, 3, 5, and 7
  publication-title: J. Ed. Psychol.
– start-page: 1945
  year: 2017
  end-page: 1954
  ident: bib0031
  article-title: Grammar variational autoencoder
  publication-title: Int. Conf. Mach. Learn.
– volume: 29
  start-page: 1398
  year: 2019
  end-page: 1413
  ident: bib0076
  article-title: Non-perceptual regions in the left inferior parietal lobe support phonological short-term memory: evidence for a buffer account?
  publication-title: Cereb. Cortex
– volume: 34
  start-page: 901
  year: 2014
  end-page: 908
  ident: bib0027
  article-title: An investigation into the origin of anatomical differences in dyslexia
  publication-title: J. Neurosci.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0029
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
– year: 1999
  ident: bib0064
  article-title: Comprehensive Test of Phonological Processing
– volume: 26
  start-page: 791
  year: 2007
  end-page: 799
  ident: bib0047
  article-title: Literacy: a cultural influence on functional left–right differences in the inferior parietal cortex
  publication-title: Eur. J. Neurosci.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0025
  article-title: Deep residual learning for image recognition
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– year: 2015
  ident: bib0026
  article-title: Adam: a method for stochastic optimization
  publication-title: Int Conf Learning Representations
– start-page: 2528
  year: 2010
  end-page: 2535
  ident: bib0078
  article-title: Deconvolutional networks
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– volume: 41
  start-page: 3034
  year: 2020
  end-page: 3044
  ident: bib0038
  article-title: Gray matter volume and estimated brain age gap are not linked with sleep-disordered breathing
  publication-title: Hum. Brain Mapp.
– year: 2005
  ident: bib0067
  article-title: Rapid Automatized Naming and Rapid Alternating Stimulus Tests (RAN/RAS)
– volume: 10
  start-page: 155
  year: 2016
  end-page: 161
  ident: bib0071
  article-title: Integrating MRI brain imaging studies of pre-reading children with current theories of developmental dyslexia: a review and quantitative meta-analysis
  publication-title: Curr Opin Behav Sci
– year: 2016
  ident: bib0020
  article-title: Deep Learning
– volume: 41
  start-page: 304
  year: 2005
  end-page: 315
  ident: bib0013
  article-title: Anatomical signatures of dyslexia in children: unique information from manual and voxel based morphometry brain measures
  publication-title: Cortex
– reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
– volume: 3
  start-page: 199
  year: 2013
  end-page: 211
  ident: bib0011
  article-title: Not all reading disabilities are dyslexia: distinct neurobiology of specific comprehension deficits
  publication-title: Brain Connect.
– volume: 10
  start-page: 293
  year: 2015
  end-page: 304
  ident: bib0030
  article-title: A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM)
  publication-title: Nat. Prot.
– start-page: 7345
  year: 2020
  end-page: 7354
  ident: bib0042
  article-title: How useful is self-supervised pretraining for visual tasks?
  publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit
– volume: 37
  start-page: 1443
  year: 2016
  end-page: 1458
  ident: bib0010
  article-title: Disrupted white matter connectivity underlying developmental dyslexia: a machine learning approach
  publication-title: Human Brain Mapp.
– year: 1999
  ident: bib0065
  article-title: Wechsler Abbreviated Scale of Intelligence
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0045
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 3
  year: 2016
  ident: bib0014
  article-title: Gray matter features of reading disability: a combined meta-analytic and direct analysis approach
  publication-title: eNeuro
– volume: 43
  start-page: 441
  year: 2010
  end-page: 454
  ident: bib0034
  article-title: Executive dysfunction among children with reading comprehension deficits
  publication-title: J. Learm. Disabil.
– volume: 27
  start-page: 9984
  year: 2007
  end-page: 9988
  ident: bib0048
  article-title: Orbitofrontal cortex encodes willingness to pay in everyday economic transactions
  publication-title: J. Neurosci.
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: bib0003
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– year: 2010
  ident: bib0041
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Icml
– volume: 11
  start-page: 283
  year: 2015
  end-page: 307
  ident: bib0046
  article-title: Developmental dyslexia
  publication-title: Annu. Rev. Clinl. Psychol.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib0072
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib0021
  article-title: Autoencoder-based articulatory-to-acoustic mapping for ultrasound silent speech interfaces
  publication-title: 2019 Int J Conf Neural Networks
– volume: 8
  start-page: 830
  year: 2014
  ident: bib0044
  article-title: Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies
  publication-title: Front. Hum. Neurosci.
– volume: 38
  start-page: 900
  year: 2017
  end-page: 908
  ident: bib0049
  article-title: Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia
  publication-title: Hum. Brain Mapp.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0015
  article-title: Common brain structure findings across children with varied reading disability profiles
  publication-title: SciRep
– volume: 8
  start-page: 257
  year: 2004
  end-page: 272
  ident: bib0057
  article-title: Functional neuroanatomy of impaired reading in dyslexia
  publication-title: Sci. Stud. Read.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0060
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 50
  start-page: 2645
  year: 2012
  end-page: 2651
  ident: bib0009
  article-title: High frequency rTMS over the left parietal lobule increases non-word reading accuracy
  publication-title: J. Neuropsychologia
– volume: 1145
  start-page: 237
  year: 2008
  end-page: 259
  ident: bib0036
  article-title: A meta-analysis of functional neuroimaging studies of dyslexia
  publication-title: Ann. N.Y. Acad. Sci.
– year: 2004
  ident: bib0066
  article-title: The Wechsler Intelligence Scale for Children—fourth edition
– volume: 19
  start-page: 632
  year: 2016
  end-page: 656
  ident: bib0002
  article-title: Comprehending text versus reading words in young readers with varying reading ability: distinct patterns of functional connectivity from common processing hubs
  publication-title: Dev. Sci.
– volume: 322
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib0016
  article-title: A deformation-based approach for characterizing brain asymmetries at different spatial scales of resolution
  publication-title: J. Neurosci. Meth.
– volume: 53
  start-page: 1
  year: 2003
  end-page: 14
  ident: bib0035
  article-title: A definition of dyslexia
  publication-title: Ann. Dyslexia
– start-page: bhac206
  year: 2022
  ident: bib0073
  article-title: Learning to read may help promote attention by increasing the volume of the left middle frontal gyrus and enhancing its connectivity to the ventral attention network
  publication-title: Cereb. Cortex
– volume: 10
  start-page: e69523
  year: 2021
  ident: bib0075
  article-title: Convergent and divergent brain structural and functional abnormalities associated with developmental dyslexia
  publication-title: Elife
– start-page: 279
  year: 1987
  end-page: 284
  ident: bib0004
  article-title: Modular learning in neural networks
  publication-title: Proceedings of the Sixth National Conference on Artificial Intelligence - Volume 1 AAAI
– start-page: 815
  year: 2016
  end-page: 826
  ident: bib0018
  article-title: Developmental dyslexia
  publication-title: Neurobiol. Lang.
– year: 1987
  ident: bib0068
  article-title: Woodcock Reading Mastery Test: Revised
– volume: 20
  start-page: 2958
  year: 2010
  end-page: 2970
  ident: bib0032
  article-title: Specialization along the left superior temporal sulcus for auditory categorization
  publication-title: Cereb. Cortex
– volume: 220
  start-page: 841
  year: 2015
  end-page: 859
  ident: bib0061
  article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct. Funct.
– volume: 11
  start-page: 508
  year: 2016
  end-page: 514
  ident: bib0062
  article-title: Machine learning and dyslexia: classification of individual structural neuro-imaging scans of students with and without dyslexia
  publication-title: NeuroImage Clin.
– volume: 42
  start-page: 1678
  year: 2008
  end-page: 1685
  ident: bib0043
  article-title: Neurodevelopmental changes in verbal working memory load-dependency: an fMRI investigation
  publication-title: Neuroimage
– year: 2005
  ident: 10.1016/j.neuroimage.2023.120075_bib0067
– volume: 43
  start-page: 441
  year: 2010
  ident: 10.1016/j.neuroimage.2023.120075_bib0034
  article-title: Executive dysfunction among children with reading comprehension deficits
  publication-title: J. Learm. Disabil.
  doi: 10.1177/0022219409355476
– volume: 56
  start-page: 1735
  year: 2011
  ident: 10.1016/j.neuroimage.2023.120075_bib0053
  article-title: Meta-analyzing brain dysfunctions in dyslexic children and adults
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.040
– volume: 19
  start-page: 632
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120075_bib0002
  article-title: Comprehending text versus reading words in young readers with varying reading ability: distinct patterns of functional connectivity from common processing hubs
  publication-title: Dev. Sci.
  doi: 10.1111/desc.12422
– year: 1999
  ident: 10.1016/j.neuroimage.2023.120075_bib0064
– volume: 10
  start-page: e69523
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120075_bib0075
  article-title: Convergent and divergent brain structural and functional abnormalities associated with developmental dyslexia
  publication-title: Elife
  doi: 10.7554/eLife.69523
– volume: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120075_bib0039
  article-title: Specific learning disorder: prevalence and gender differences
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0103537
– volume: 58
  start-page: 1035
  issue: 6
  year: 2022
  ident: 10.1016/j.neuroimage.2023.120075_bib0077
  article-title: Reading real words versus pseudowords: a meta-analysis of research in developmental dyslexia
  publication-title: Devel. Psychol.
  doi: 10.1037/dev0001340
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.neuroimage.2023.120075_bib0029
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 41
  start-page: 3034
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120075_bib0038
  article-title: Gray matter volume and estimated brain age gap are not linked with sleep-disordered breathing
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24995
– start-page: 2528
  year: 2010
  ident: 10.1016/j.neuroimage.2023.120075_bib0078
  article-title: Deconvolutional networks
– volume: 20
  start-page: 2958
  year: 2010
  ident: 10.1016/j.neuroimage.2023.120075_bib0032
  article-title: Specialization along the left superior temporal sulcus for auditory categorization
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq045
– start-page: 815
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120075_bib0018
  article-title: Developmental dyslexia
  publication-title: Neurobiol. Lang.
  doi: 10.1016/B978-0-12-407794-2.00065-1
– year: 2015
  ident: 10.1016/j.neuroimage.2023.120075_bib0026
  article-title: Adam: a method for stochastic optimization
– volume: 10
  start-page: 293
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120075_bib0030
  article-title: A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM)
  publication-title: Nat. Prot.
  doi: 10.1038/nprot.2015.014
– volume: 26
  start-page: 791
  year: 2007
  ident: 10.1016/j.neuroimage.2023.120075_bib0047
  article-title: Literacy: a cultural influence on functional left–right differences in the inferior parietal cortex
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2007.05701.x
– volume: 50
  start-page: 749
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2023.120075_bib0074
  article-title: Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10606
– volume: 28
  start-page: R1083
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120075_bib0055
  article-title: Orbitofrontal cortex
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.07.018
– year: 2010
  ident: 10.1016/j.neuroimage.2023.120075_bib0041
  article-title: Rectified linear units improve restricted boltzmann machines
– start-page: 1735
  year: 2006
  ident: 10.1016/j.neuroimage.2023.120075_bib0024
  article-title: Dimensionality reduction by learning an invariant mapping
– volume: 3
  start-page: 199
  year: 2013
  ident: 10.1016/j.neuroimage.2023.120075_bib0011
  article-title: Not all reading disabilities are dyslexia: distinct neurobiology of specific comprehension deficits
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0116
– volume: 220
  start-page: 841
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120075_bib0061
  article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0687-3
– volume: 44
  start-page: 431
  year: 2011
  ident: 10.1016/j.neuroimage.2023.120075_bib0007
  article-title: Matthew effects in young readers: reading comprehension and reading experience aid vocabulary development
  publication-title: J. Learn. Disabil.
  doi: 10.1177/0022219411410042
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.neuroimage.2023.120075_bib0045
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– start-page: 1945
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120075_bib0031
  article-title: Grammar variational autoencoder
  publication-title: Int. Conf. Mach. Learn.
– year: 2016
  ident: 10.1016/j.neuroimage.2023.120075_bib0020
– volume: 1145
  start-page: 237
  year: 2008
  ident: 10.1016/j.neuroimage.2023.120075_bib0036
  article-title: A meta-analysis of functional neuroimaging studies of dyslexia
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1196/annals.1416.024
– volume: 53
  start-page: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2023.120075_bib0035
  article-title: A definition of dyslexia
  publication-title: Ann. Dyslexia
  doi: 10.1007/s11881-003-0001-9
– start-page: 1135
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120075_bib0051
  article-title: "Why should I trust you?" Explaining the predictions of any classifier
– year: 2004
  ident: 10.1016/j.neuroimage.2023.120075_bib0066
– ident: 10.1016/j.neuroimage.2023.120075_bib0001
– volume: 11
  start-page: 283
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120075_bib0046
  article-title: Developmental dyslexia
  publication-title: Annu. Rev. Clinl. Psychol.
  doi: 10.1146/annurev-clinpsy-032814-112842
– volume: 12
  start-page: 1809
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120075_bib0017
  article-title: The topology of pediatric structural asymmetries in language-related cortex
  publication-title: Symmetry (Basel)
  doi: 10.3390/sym12111809
– volume: 38
  start-page: 900
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120075_bib0049
  article-title: Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23426
– year: 1987
  ident: 10.1016/j.neuroimage.2023.120075_bib0068
– volume: 41
  start-page: 304
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2023.120075_bib0013
  article-title: Anatomical signatures of dyslexia in children: unique information from manual and voxel based morphometry brain measures
  publication-title: Cortex
  doi: 10.1016/S0010-9452(08)70268-5
– volume: 75
  start-page: 37
  issue: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120075_bib0022
  article-title: Understanding, educating, and supporting children with specific learning disabilities: 50 years of science and practice
  publication-title: Am. Psychol.
  doi: 10.1037/amp0000452
– volume: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120075_bib0014
  article-title: Gray matter features of reading disability: a combined meta-analytic and direct analysis approach
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0103-15.2015
– year: 2021
  ident: 10.1016/j.neuroimage.2023.120075_bib0063
  article-title: Advance machine learning methods for dyslexia biomarker detection: a review of implementation details and challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062709
– year: 1999
  ident: 10.1016/j.neuroimage.2023.120075_bib0065
– volume: 34
  start-page: 901
  issue: 3
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120075_bib0027
  article-title: An investigation into the origin of anatomical differences in dyslexia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2092-13.2013
– volume: 29
  start-page: 1398
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120075_bib0076
  article-title: Non-perceptual regions in the left inferior parietal lobe support phonological short-term memory: evidence for a buffer account?
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhy037
– start-page: 7345
  year: 2020
  ident: 10.1016/j.neuroimage.2023.120075_bib0042
  article-title: How useful is self-supervised pretraining for visual tasks?
– volume: 31
  start-page: 192
  year: 2010
  ident: 10.1016/j.neuroimage.2023.120075_bib0037
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: JMRI
  doi: 10.1002/jmri.22003
– volume: 27
  start-page: 9984
  year: 2007
  ident: 10.1016/j.neuroimage.2023.120075_bib0048
  article-title: Orbitofrontal cortex encodes willingness to pay in everyday economic transactions
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2131-07.2007
– volume: 27
  start-page: 593
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120075_bib0059
  article-title: Inferior parietal lobule contributions to visual word recognition
  publication-title: J. Cog. Neurosci.
  doi: 10.1162/jocn_a_00721
– ident: 10.1016/j.neuroimage.2023.120075_bib0023
– year: 2001
  ident: 10.1016/j.neuroimage.2023.120075_bib0069
– volume: 49
  start-page: 1018
  year: 2010
  ident: 10.1016/j.neuroimage.2023.120075_bib0070
  article-title: Phonological repetition-suppression in bilateral superior temporal sulci
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.07.063
– volume: 1683
  start-page: 36
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120075_bib0040
  article-title: No evidence for systematic white matter correlates of dyslexia: an activation likelihood estimation meta-analysis
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2018.01.014
– volume: 84
  start-page: 434
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120075_bib0050
  article-title: Neuroanatomy of developmental dyslexia: pitfalls and promise
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2017.08.001
– volume: 8
  start-page: 830
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120075_bib0044
  article-title: Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00830
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.neuroimage.2023.120075_bib0072
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 58
  start-page: 853
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120075_bib0012
  article-title: The influence of reading on vocabulary growth: a case for a Matthew effect
  publication-title: Jl Speech Lang. Hear. Res.
  doi: 10.1044/2015_JSLHR-L-13-0310
– volume: 38
  start-page: 95
  year: 2007
  ident: 10.1016/j.neuroimage.2023.120075_bib0003
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– year: 1985
  ident: 10.1016/j.neuroimage.2023.120075_bib0056
– volume: 15
  start-page: 501
  year: 2009
  ident: 10.1016/j.neuroimage.2023.120075_bib0019
  article-title: Dyslexia: the evolution of a scientific concept
  publication-title: J. Int. Neuropsychol. Soc.
  doi: 10.1017/S1355617709090900
– start-page: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120075_bib0021
  article-title: Autoencoder-based articulatory-to-acoustic mapping for ultrasound silent speech interfaces
– volume: 102
  start-page: 635
  year: 2010
  ident: 10.1016/j.neuroimage.2023.120075_bib0005
  article-title: Listening comprehension, oral expression, reading comprehension, and written expression: related yet unique language systems in grades 1, 3, 5, and 7
  publication-title: J. Ed. Psychol.
  doi: 10.1037/a0019319
– start-page: 770
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120075_bib0025
  article-title: Deep residual learning for image recognition
– volume: 104
  start-page: 166
  year: 2012
  ident: 10.1016/j.neuroimage.2023.120075_bib0008
  article-title: Prevalence and nature of late-emerging poor readers
  publication-title: J.l Educ Psychol
  doi: 10.1037/a0025323
– volume: 42
  start-page: 1678
  year: 2008
  ident: 10.1016/j.neuroimage.2023.120075_bib0043
  article-title: Neurodevelopmental changes in verbal working memory load-dependency: an fMRI investigation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.057
– volume: 130
  start-page: 858
  year: 2004
  ident: 10.1016/j.neuroimage.2023.120075_bib0006
  article-title: Developmental dyslexia and specific language impairment: same or different?
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.130.6.858
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120075_bib0015
  article-title: Common brain structure findings across children with varied reading disability profiles
  publication-title: SciRep
– volume: 10
  start-page: 155
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120075_bib0071
  article-title: Integrating MRI brain imaging studies of pre-reading children with current theories of developmental dyslexia: a review and quantitative meta-analysis
  publication-title: Curr Opin Behav Sci
  doi: 10.1016/j.cobeha.2016.06.007
– start-page: 279
  year: 1987
  ident: 10.1016/j.neuroimage.2023.120075_bib0004
  article-title: Modular learning in neural networks
– start-page: e43122
  year: 2012
  ident: 10.1016/j.neuroimage.2023.120075_bib0033
  article-title: Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: an ALE meta-analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043122
– volume: 50
  start-page: 2645
  year: 2012
  ident: 10.1016/j.neuroimage.2023.120075_bib0009
  article-title: High frequency rTMS over the left parietal lobule increases non-word reading accuracy
  publication-title: J. Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2012.07.017
– volume: 34
  start-page: 3055
  year: 2013
  ident: 10.1016/j.neuroimage.2023.120075_bib0054
  article-title: Structural abnormalities in the dyslexic brain: a meta-analysis of voxel-based morphometry studies
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22127
– volume: 322
  start-page: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120075_bib0016
  article-title: A deformation-based approach for characterizing brain asymmetries at different spatial scales of resolution
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2019.04.007
– start-page: bhac206
  year: 2022
  ident: 10.1016/j.neuroimage.2023.120075_bib0073
  article-title: Learning to read may help promote attention by increasing the volume of the left middle frontal gyrus and enhancing its connectivity to the ventral attention network
  publication-title: Cereb. Cortex
– volume: 8
  start-page: 257
  year: 2004
  ident: 10.1016/j.neuroimage.2023.120075_bib0057
  article-title: Functional neuroanatomy of impaired reading in dyslexia
  publication-title: Sci. Stud. Read.
  doi: 10.1207/s1532799xssr0803_5
– volume: 37
  start-page: 1443
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120075_bib0010
  article-title: Disrupted white matter connectivity underlying developmental dyslexia: a machine learning approach
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.23112
– volume: 264
  start-page: 998
  year: 1990
  ident: 10.1016/j.neuroimage.2023.120075_bib0058
  article-title: Prevalence of reading disability in boys and girls: results of the Connecticut Longitudinal Study
  publication-title: JAMA
  doi: 10.1001/jama.1990.03450080084036
– volume: 20
  start-page: 701
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120075_bib0028
  article-title: Neurobiological basis of language learning difficulties
  publication-title: Trend. Cogn. Sci.
  doi: 10.1016/j.tics.2016.06.012
– volume: 11
  start-page: 508
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120075_bib0062
  article-title: Machine learning and dyslexia: classification of individual structural neuro-imaging scans of students with and without dyslexia
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2016.03.014
– volume: 30
  start-page: 3299
  year: 2009
  ident: 10.1016/j.neuroimage.2023.120075_bib0052
  article-title: Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20752
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120075_bib0060
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
SSID ssj0009148
Score 2.452116
Snippet •Deformation-based deep learning was used to classify reading disability.•Autoencoder pretraining optimized neural network classification accuracy.•Reading...
Developmental reading disability is a prevalent and often enduring problem with varied mechanisms that contribute to its phenotypic heterogeneity. This...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120075
SubjectTerms Accuracy
Brain
Brain - diagnostic imaging
Brain morphology
Brain research
Child
Classification
Comprehension
Convolutional neural network
Cortex
Data
Data compression
Decoding
Deep Learning
Disability
Discussion groups
Dyslexia
Dyslexia - diagnostic imaging
Humans
Individual differences
Language
Learning
Learning disabilities
Medical imaging
Morphology
Neural networks
Neuroimaging
Neuroimaging - methods
Occipital lobe
People with disabilities
Phenotypic variations
Phonology
Reading comprehension
Reading disabilities
Reading disability
Regions
Specific learning disorder in reading
Superior temporal sulcus
Support vector machines
Temporal lobe
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhRAXVN5pCzIS15Q4iWNbPfGqOEDFAareLL8CW0G22t1W6r9nxnZCAwf2gHKL48iZGdvfeCbfEPKykka4uvGlYzyULccgITjOpeqCEKYJXsW_-E8_ipMTeXamPt8o9YU5YYkeOAnuVdUHYwD02qoOrfe1kW1tYddkXoLr0MfVtxJqdKZGul1A-TlvJ2VzRXbIxU-Yo4dYMPyQ4Rkdn21GkbN_tif9jTn_TJ28sRcd75J7GUTS12nw98mtMDwgdz7lMPlDcvouhAuaC0J8ow4RMqYERS3QZU9XKXWe-sywu7mmeCBLsUwDQnNqsXIETUsXBdlgnGH9iHw9fv_l7YcyF1AoXdewTdlw0XYMEJeSTjD0Vaz3zHIVKm5b6WtrguzB5wpdaJteeul7a6yDSRks91XzmOwMyyE8JdSCE9147vrQ1S1vmXQMQ5zwjtqo3rGCiFGS2mV2cSxy8UOPaWTn-rcONOpAJx0UhE09LxLDxhZ93qCypueRIzveAMvR2XL0vyynIGpUtR5_Q4WFE1602GIAR1PfDFUSBNmy98FoWTovGWuNIW4A61JB84upGSY7RnDMEJaX8RmmAMM1qiBPkiFOMmgEoG_QZUHkzERnQpq3DIvvkVAcByvg2vsfYt0nd_FTUzrdAdnZrC7DM3LbXW0W69XzOE1_Ab0HRNs
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep learning classification of reading disability with regional brain volume features
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811923002215
https://dx.doi.org/10.1016/j.neuroimage.2023.120075
https://www.ncbi.nlm.nih.gov/pubmed/37054828
https://www.proquest.com/docview/2806991895
https://www.proquest.com/docview/2801981939
https://pubmed.ncbi.nlm.nih.gov/PMC10167676
https://doaj.org/article/0feaa974b02e4dd2a842b5841d8924f2
Volume 273
WOSCitedRecordID wos000984006700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDaG98M0IjMpIvGbUSRzb4gEx2MQDrSoEU9-i-CNbESSl7ZD47_E5TkpAQpVQpTw0ceT4zuff-c6_A3gxFiXXSWpiTZmNM4ZBQuc4xzK3nJepNdKf4r_4wKdTMZ_LWdhwW4e0ys4mekNtGo175C8xAuiwjJDs9fJ7jFWjMLoaSmjswQGyJCQ-dW-2Jd2lWXsUjqWxoFSGTJ42v8vzRS6-uVl7giXETyju2rHB8uRZ_Aer1N8o9M9kyt9Wp_M7__tdd-F2wKXkTatI9-CGre_DrUmIvD-Ai3fWLkmoMXFJNIJuzDLygiVNRVZtNj4xgbR385PgHi_Byg-I9onCYhSktYaksp5QdP0QPp-ffXr7Pg41GWKdp3QTp4xnOXUgTgrNKbo_yhiqmLRjpjJhElVaUTk3zuY2SythhKlUqbSb51YxM04fwX7d1PYxEOX88tQwXdk8yVhGhaYYNXXvSEpZaRoB70RR6EBYjnUzvhZdZtqXYivEAoVYtEKMgPYtly1pxw5tTlHa_fNIu-3_aFaXRZjFxdiNTuk8MDVObGZMUoosUQ7CUSOcH1slEchOV4ruZKuzxe5Fix068KpvG9BPi2p2bH3cqVcRrNC62OpWBM_7285-YFCorG1z7Z-h0sHCVEZw1GpyPwYpd4DeyTICMdDxwSAN79SLK89Rjp3l7vfk3_16Cof4EW3u3THsb1bX9hnc1D82i_VqBHt8zv1VjODg9Gw6-zjymybuOkkmIz_bfwHnQVor
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VgoAL78dCASPBcUvsXWdtIYSAUrVqUnEoVW_u-rElCJKQpKD-KX4jM-vdhICEcukB5ZZdW1778-cZzwvgWUeVhROZTx2XIc0lGQlRcU51NxRFmQWv6yj-w16xv6-OjvSHNfjZxsKQW2XLiTVR-5GjO_IXZAFEWUZp-Xr8LaWqUWRdbUtoRFjshbMfqLJNX-1u4fo-F2L7_cG7nbSpKpC6bsZnaSaLvMtRDNHKFZwEeOs9t1KHjrS58sKWQVWoiIRuyLNKeeUrW1qHSA1W-k6G_V6AizmFjJKroOgvkvzyPIbeySxVnOvGcyj6k9X5KQdfkSU2qWT5JqdbQrl0HNZVA5ZOxb-l3j-dN387Dbev_2_zeAOuNXI3exM3yk1YC8NbcLnfeBbchsOtEMasqaFxwhwpFeRFVQOXjSo2idEGzDdJiWdnjO6wGVW2IG2GWSq2wSLbsyrUCVOnd-DjuXzVXVgfjobhPjCrkT69dFXoilzmXDlOVmHsQ5S6cjyBol1645qE7FQX5ItpPe8-mwVoDIHGRNAkwOctxzEpyQpt3hK65u9TWvH6j9HkxDQsZTo4OyVqmLYjQu69KFUuLIqo3CvU0yuRgG6xadrIXTxrsKPBCgN4OW_bSHdRalux9UYLZ9Ow7NQssJzA0_lj5EcyepXDMDqt3-Eaxd5MJ3Av7pz5HGQFKiy4lgmopT21NEnLT4aDT3UOdhpsgb8H_x7XE7iyc9Dvmd7u_t5DuEofFP0MN2B9NjkNj-CS-z4bTCePayZhcHzeW-4XZFayQQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHZp44X4JDDASPGark7ixhRBidBXTRlUhmPZm4ktGEbSl7UD7a_w6zkmcloKE-rIHlLckthznOzefG8DTtixym6Qutlz4OBPkJETDOVYdn-dF6p2qsviPj_J-X56cqMEG_GxyYSissuGJFaN2Y0tn5LvkAURdRiqxW4awiEG393LyLaYOUuRpbdpp1BA59Oc_0HybvTjo4r9-liS9_fev38Shw0BsOymfx6nIsw5HlURJm3NS5o1z3Ajl28Jk0iWm8LJEo8R3fJaW0klXmsJYRK03wrVTnPcSbOaoZGQt2Nzb7w_eLUv-8qxOxBNpLDlXIY6oji6rqlUOvyLP2KEG5juczgzFinCsegisyMi_deA_Qzl_k429a__zrl6Hq0EjZ69qEroBG350E7behpiDW3Dc9X7CQneNU2bJ3KD4qgrSbFyyaZ2HwFwoVzw_Z3S6zajnBdk5zFAbDlbLAVb6qpTq7DZ8uJCvugOt0Xjk7wEzChmrE7b0nSQTGZeWk78Y50gKVVoeQd7AQNtQqp06hnzRTUzeZ70EkCYA6RpAEfDFyEldrmSNMXuEtMX7VHC8ujGenurAv3Qbd6dA29O0E585lxQySwwqr9xJxH6ZRKAanOompxelEE40XGMBzxdjg95X63Nrjt5uoK0D_53pJa4jeLJ4jJyT3GHFyI_Pqne4QoU4VRHcralosQdpjqYM_ssI5Ap9rWzS6pPR8FNVnZ0Wm-N1_9_regxbSGn66KB_-ACu0PfUAYjb0JpPz_xDuGy_z4ez6aPAVhh8vGia-wUjhrxb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+classification+of+reading+disability+with+regional+brain+volume+features&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Joshi%2C+am&rft.au=Wang%2C+James+Z&rft.au=Vaden%2C+Kenneth+I&rft.au=Eckert%2C+Mark+A&rft.date=2023-06-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=273&rft_id=info:doi/10.1016%2Fj.neuroimage.2023.120075&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon