Estimation of Multiple Sclerosis lesion age on magnetic resonance imaging

We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating lesion age is an important step when studying the longitudinal behavior of MS lesions and can be used in applications such as studying the tem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NeuroImage (Orlando, Fla.) Ročník 225; s. 117451
Hlavní autoři: Sweeney, Elizabeth M., Nguyen, Thanh D., Kuceyeski, Amy, Ryan, Sarah M., Zhang, Shun, Zexter, Lily, Wang, Yi, Gauthier, Susan A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 15.01.2021
Elsevier Limited
Elsevier
Témata:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating lesion age is an important step when studying the longitudinal behavior of MS lesions and can be used in applications such as studying the temporal dynamics of chronic active MS lesions. Our lesion age estimation models use first order radiomic features over a lesion derived from conventional T1 (T1w) and T2 weighted (T2w) and fluid attenuated inversion recovery (FLAIR), T1w with gadolinium contrast (T1w+c), and Quantitative Susceptibility Mapping (QSM) MRI sequences as well as demographic information. For this analysis, we have a total of 32 patients with 53 new lesions observed at 244 time points. A one or two step random forest model for lesion age is fit on a training set using a lesion volume cutoff of 15 mm3 or 50 mm3. We explore the performance of nine different modeling scenarios that included various combinations of the MRI sequences and demographic information and a one or two step random forest models, as well as simpler models that only uses the mean radiomic feature from each MRI sequence. The best performing model on a validation set is a model that uses a two-step random forest model on the radiomic features from all of the MRI sequences with demographic information using a lesion volume cutoff of 50 mm3. This model has a mean absolute error of 7.23 months (95% CI: [6.98, 13.43]) and a median absolute error of 5.98 months (95% CI: [5.26, 13.25]) in the validation set. For this model, the predicted age and actual age have a statistically significant association (p-value <0.001) in the validation set.
AbstractList We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating lesion age is an important step when studying the longitudinal behavior of MS lesions and can be used in applications such as studying the temporal dynamics of chronic active MS lesions. Our lesion age estimation models use first order radiomic features over a lesion derived from conventional T1 (T1w) and T2 weighted (T2w) and fluid attenuated inversion recovery (FLAIR), T1w with gadolinium contrast (T1w+c), and Quantitative Susceptibility Mapping (QSM) MRI sequences as well as demographic information. For this analysis, we have a total of 32 patients with 53 new lesions observed at 244 time points. A one or two step random forest model for lesion age is fit on a training set using a lesion volume cutoff of 15 mm3 or 50 mm3. We explore the performance of nine different modeling scenarios that included various combinations of the MRI sequences and demographic information and a one or two step random forest models, as well as simpler models that only uses the mean radiomic feature from each MRI sequence. The best performing model on a validation set is a model that uses a two-step random forest model on the radiomic features from all of the MRI sequences with demographic information using a lesion volume cutoff of 50 mm3. This model has a mean absolute error of 7.23 months (95% CI: [6.98, 13.43]) and a median absolute error of 5.98 months (95% CI: [5.26, 13.25]) in the validation set. For this model, the predicted age and actual age have a statistically significant association (p-value <0.001) in the validation set.
We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating lesion age is an important step when studying the longitudinal behavior of MS lesions and can be used in applications such as studying the temporal dynamics of chronic active MS lesions. Our lesion age estimation models use first order radiomic features over a lesion derived from conventional T1 (T1w) and T2 weighted (T2w) and fluid attenuated inversion recovery (FLAIR), T1w with gadolinium contrast (T1w+c), and Quantitative Susceptibility Mapping (QSM) MRI sequences as well as demographic information. For this analysis, we have a total of 32 patients with 53 new lesions observed at 244 time points. A one or two step random forest model for lesion age is fit on a training set using a lesion volume cutoff of 15 mm3 or 50 mm3 . We explore the performance of nine different modeling scenarios that included various combinations of the MRI sequences and demographic information and a one or two step random forest models, as well as simpler models that only uses the mean radiomic feature from each MRI sequence. The best performing model on a validation set is a model that uses a two-step random forest model on the radiomic features from all of the MRI sequences with demographic information using a lesion volume cutoff of 50 mm3 . This model has a mean absolute error of 7.23 months (95% CI: [6.98, 13.43]) and a median absolute error of 5.98 months (95% CI: [5.26, 13.25]) in the validation set. For this model, the predicted age and actual age have a statistically significant association (p-value <0.001) in the validation set.
We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating lesion age is an important step when studying the longitudinal behavior of MS lesions and can be used in applications such as studying the temporal dynamics of chronic active MS lesions. Our lesion age estimation models use first order radiomic features over a lesion derived from conventional T1 (T1w) and T2 weighted (T2w) and fluid attenuated inversion recovery (FLAIR), T1w with gadolinium contrast (T1w+c), and Quantitative Susceptibility Mapping (QSM) MRI sequences as well as demographic information. For this analysis, we have a total of 32 patients with 53 new lesions observed at 244 time points. A one or two step random forest model for lesion age is fit on a training set using a lesion volume cutoff of 15 mm or 50 mm . We explore the performance of nine different modeling scenarios that included various combinations of the MRI sequences and demographic information and a one or two step random forest models, as well as simpler models that only uses the mean radiomic feature from each MRI sequence. The best performing model on a validation set is a model that uses a two-step random forest model on the radiomic features from all of the MRI sequences with demographic information using a lesion volume cutoff of 50 mm . This model has a mean absolute error of 7.23 months (95% CI: [6.98, 13.43]) and a median absolute error of 5.98 months (95% CI: [5.26, 13.25]) in the validation set. For this model, the predicted age and actual age have a statistically significant association (p-value <0.001) in the validation set.
We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating lesion age is an important step when studying the longitudinal behavior of MS lesions and can be used in applications such as studying the temporal dynamics of chronic active MS lesions. Our lesion age estimation models use first order radiomic features over a lesion derived from conventional T1 (T1w) and T2 weighted (T2w) and fluid attenuated inversion recovery (FLAIR), T1w with gadolinium contrast (T1w+c), and Quantitative Susceptibility Mapping (QSM) MRI sequences as well as demographic information. For this analysis, we have a total of 32 patients with 53 new lesions observed at 244 time points. A one or two step random forest model for lesion age is fit on a training set using a lesion volume cutoff of 15 mm3 or 50 mm3. We explore the performance of nine different modeling scenarios that included various combinations of the MRI sequences and demographic information and a one or two step random forest models, as well as simpler models that only uses the mean radiomic feature from each MRI sequence. The best performing model on a validation set is a model that uses a two-step random forest model on the radiomic features from all of the MRI sequences with demographic information using a lesion volume cutoff of 50 mm3. This model has a mean absolute error of 7.23 months (95% CI: [6.98, 13.43]) and a median absolute error of 5.98 months (95% CI: [5.26, 13.25]) in the validation set. For this model, the predicted age and actual age have a statistically significant association (p-value <0.001) in the validation set.We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating lesion age is an important step when studying the longitudinal behavior of MS lesions and can be used in applications such as studying the temporal dynamics of chronic active MS lesions. Our lesion age estimation models use first order radiomic features over a lesion derived from conventional T1 (T1w) and T2 weighted (T2w) and fluid attenuated inversion recovery (FLAIR), T1w with gadolinium contrast (T1w+c), and Quantitative Susceptibility Mapping (QSM) MRI sequences as well as demographic information. For this analysis, we have a total of 32 patients with 53 new lesions observed at 244 time points. A one or two step random forest model for lesion age is fit on a training set using a lesion volume cutoff of 15 mm3 or 50 mm3. We explore the performance of nine different modeling scenarios that included various combinations of the MRI sequences and demographic information and a one or two step random forest models, as well as simpler models that only uses the mean radiomic feature from each MRI sequence. The best performing model on a validation set is a model that uses a two-step random forest model on the radiomic features from all of the MRI sequences with demographic information using a lesion volume cutoff of 50 mm3. This model has a mean absolute error of 7.23 months (95% CI: [6.98, 13.43]) and a median absolute error of 5.98 months (95% CI: [5.26, 13.25]) in the validation set. For this model, the predicted age and actual age have a statistically significant association (p-value <0.001) in the validation set.
ArticleNumber 117451
Author Wang, Yi
Sweeney, Elizabeth M.
Zhang, Shun
Zexter, Lily
Nguyen, Thanh D.
Gauthier, Susan A.
Ryan, Sarah M.
Kuceyeski, Amy
AuthorAffiliation c Brain and Mind Institute, Weill Cornell Medical College, New York, NY, United States
b Department of Radiology, Weill Cornell Medical College, New York, NY, United States
e Department of Radiology, Tongji Hospital, Wuhan, China
a Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, United States
d Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
f Department of Neurology, Weill Cornell Medical College, New York, NY, United States
AuthorAffiliation_xml – name: c Brain and Mind Institute, Weill Cornell Medical College, New York, NY, United States
– name: d Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
– name: e Department of Radiology, Tongji Hospital, Wuhan, China
– name: b Department of Radiology, Weill Cornell Medical College, New York, NY, United States
– name: f Department of Neurology, Weill Cornell Medical College, New York, NY, United States
– name: a Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, United States
Author_xml – sequence: 1
  givenname: Elizabeth M.
  surname: Sweeney
  fullname: Sweeney, Elizabeth M.
  email: ems4003@med.cornell.edu
  organization: Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, United States
– sequence: 2
  givenname: Thanh D.
  orcidid: 0000-0002-1411-7694
  surname: Nguyen
  fullname: Nguyen, Thanh D.
  organization: Department of Radiology, Weill Cornell Medical College, New York, NY, United States
– sequence: 3
  givenname: Amy
  surname: Kuceyeski
  fullname: Kuceyeski, Amy
  organization: Department of Radiology, Weill Cornell Medical College, New York, NY, United States
– sequence: 4
  givenname: Sarah M.
  orcidid: 0000-0002-4395-1696
  surname: Ryan
  fullname: Ryan, Sarah M.
  organization: Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
– sequence: 5
  givenname: Shun
  orcidid: 0000-0002-0001-1880
  surname: Zhang
  fullname: Zhang, Shun
  organization: Department of Radiology, Tongji Hospital, Wuhan, China
– sequence: 6
  givenname: Lily
  surname: Zexter
  fullname: Zexter, Lily
  organization: Department of Neurology, Weill Cornell Medical College, New York, NY, United States
– sequence: 7
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  organization: Department of Radiology, Weill Cornell Medical College, New York, NY, United States
– sequence: 8
  givenname: Susan A.
  surname: Gauthier
  fullname: Gauthier, Susan A.
  organization: Department of Radiology, Weill Cornell Medical College, New York, NY, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33069865$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhleoiH7AX0ArceGS4M-1fUHQqkCkIg7A2fJ6J8HBsYO9W6n_nknTUppTT7Zmxs-88vueNkcpJ2ialpI5JbR7t54nmEoOG7eCOSMMy1QJSZ81J5QYOTNSsaPdXfKZptQcN6e1rgkhhgr9ojnmnHRGd_KkWVzWETFjyKnNy_brFMewjdB-9xFKrqG2EequiZtaPHBjgjH4tkDNySUP7U5FSKuXzfOlixVe3Z1nzc9Plz8uvsyuvn1eXHy8mvmOk3EGmhPlfCfFwIUTjIoewHWCeKfVkg79YCSAVFjoec81FaCU1wNRhirGGD9rFnvukN3abguuLzc2u2BvC7msrCuoMILVRnZO9lpJKQSnwhHOiOup7phmXBtkvd-ztlO_gcFDGouLj6CPOyn8sqt8bZUmEhUh4O0doOQ_E9TRbkL1EKNLkKdqmZCMGMM0x9E3B6PrPJWEX4VTijBFONU49fp_Rf-k3Dv2INmjPbXA0vow3vqHAkO0lNhdROzaPkTE7iJi9xFBgD4A3O94wtPz_VNAf68DFFt9AMzAEAr4EQ0IT4F8OID4GFLwLv6Gm6ch_gLjo_Cs
CitedBy_id crossref_primary_10_1212_NXI_0000000000001138
crossref_primary_10_1007_s11910_024_01354_x
crossref_primary_10_13005_bpj_2827
crossref_primary_10_1016_j_neuroimage_2022_119787
crossref_primary_10_1016_j_nicl_2022_102979
crossref_primary_10_1098_rsos_241052
crossref_primary_10_1016_j_media_2025_103619
crossref_primary_10_1016_j_nicl_2021_102796
crossref_primary_10_1016_j_acra_2023_11_011
crossref_primary_10_7759_cureus_20080
crossref_primary_10_1016_j_msard_2023_104869
crossref_primary_10_3174_ajnr_A8453
Cites_doi 10.1001/jamaneurol.2019.2399
10.1002/ana.22366
10.1007/s00401-016-1653-y
10.1109/42.906424
10.1002/mrm.25420
10.1002/jmri.25144
10.1212/WNL.0b013e31829bfd63
10.1093/brain/awy296
10.1097/RTI.0000000000000268
10.1148/radiol.12120707
10.1016/j.neuroimage.2006.04.181
10.1016/S1474-4422(17)30470-2
10.1148/radiol.13130353
10.1002/ana.1032
10.1016/S1474-4422(15)00393-2
10.1002/hbm.10062
10.1177/1352458514551594
10.1007/s00401-016-1636-z
10.1002/mrm.27410
10.1016/S0730-725X(98)00210-0
10.1002/jmri.24943
10.3390/ijms17010100
10.1016/j.nicl.2018.01.013
10.1002/mrm.22187
10.1016/S1053-8119(03)00354-9
10.18637/jss.v082.i13
10.1016/j.nicl.2014.08.008
10.1002/jmri.25997
10.1007/978-1-4757-7107-7
10.1097/00004728-200105000-00022
10.1002/mrm.26946
10.18637/jss.v067.i01
10.1191/1352458502ms860oa
10.1172/JCI86198
10.1002/jmri.25693
10.1016/j.nicl.2015.10.013
10.3174/ajnr.A4539
10.1006/nimg.2002.1132
10.1002/ana.20703
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Inc.
Copyright Elsevier Limited Jan 15, 2021
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Jan 15, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2020.117451
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
ProQuest One Psychology

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 117451
ExternalDocumentID oai_doaj_org_article_8956a5b875544314a0320ab186282389
PMC7805079
33069865
10_1016_j_neuroimage_2020_117451
S1053811920309368
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS090464
– fundername: NINDS NIH HHS
  grantid: R01 NS105144
– fundername: NINDS NIH HHS
  grantid: R01 NS104283
– fundername: NINDS NIH HHS
  grantid: R21 NS104634
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
9DU
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AFFHD
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
SEW
WUQ
XPP
ZMT
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c630t-e8307ac654d34a4214beea640ca87f1dbd95ee5740cb3b3814e77c8d079172223
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600797900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Fri Oct 03 12:43:09 EDT 2025
Tue Nov 04 01:53:08 EST 2025
Sat Sep 27 16:25:10 EDT 2025
Thu Nov 27 00:18:03 EST 2025
Thu Apr 03 06:49:04 EDT 2025
Sat Nov 29 07:05:55 EST 2025
Tue Nov 18 20:38:45 EST 2025
Fri Feb 23 02:44:39 EST 2024
Tue Oct 14 19:39:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-e8307ac654d34a4214beea640ca87f1dbd95ee5740cb3b3814e77c8d079172223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
EMS, TDN, YW, AK and SG conceptualized the problem. EMS developed the methodology and analyzed the data. TDN processed the data. SR assisted in methodology development. SZ made manual segmentations. LZ compiled patient demographics. TDN, YW, and SG recruited the participants and acquired the data. EMS TDN and SG wrote the manuscript. SG supervised the work. All authors read and approved the final manuscript.
Contributions
ORCID 0000-0002-0001-1880
0000-0002-4395-1696
0000-0002-1411-7694
OpenAccessLink https://doaj.org/article/8956a5b875544314a0320ab186282389
PMID 33069865
PQID 2470270318
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_8956a5b875544314a0320ab186282389
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7805079
proquest_miscellaneous_2452099283
proquest_journals_2470270318
pubmed_primary_33069865
crossref_citationtrail_10_1016_j_neuroimage_2020_117451
crossref_primary_10_1016_j_neuroimage_2020_117451
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117451
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_117451
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Filippi (bib0037) 2016; 15
Deh (bib0029) 2015; 42
He (bib0002) 2001; 22
Polman (bib0045) 2011; 69
Meier, Guttmann (bib0006) 2003; 20
Zhang (bib0010) 2016; 44
Wang, Liu (bib0023) 2014; 73(1)
Sweeney (bib0005) 2016; 10
Kaunzner (bib0043) 2019; 142
Liaw, Wiener (bib0040) 2002; 2
Jenkinson (bib0033) 2002; 17
McDonald (bib0044) 2001; 50
Langkammer (bib0011) 2013; 267
Wang (bib0024) 2017; 46
Ghassemi (bib0008) 2015; 21
Zhang (bib0020) 2016; 44
Liu (bib0030) 2018; 79
Sahraian, Radue (bib0001) 2007
2014.
Meier, Guttmann (bib0007) 2006; 32
Zhang, Brady, Smith (bib0032) 2001; 20
Kuhlmann (bib0015) 2017; 133
Wisnieff (bib0013) 2015; 74
Bates, D., et al., Fitting Linear Mixed-Effects Models Using lme4. arXiv preprint arXiv
Fazekas (bib0048) 2002; 8
Absinta (bib0016) 2016; 126
Kuznetsova, Brockhoff, Christensen (bib0042) 2017; 82
Kolossváry (bib0035) 2017; 10
Dal-Bianco (bib0017) 2017; 133
Zhang (bib0026) 2018; 18
Smith (bib0047) 2001; 25
Smith (bib0031) 2002; 17
Thompson (bib0003) 2018; 17
Chen (bib0027) 2014; 271
Ho (bib0039) 1995
de Rochefort (bib0022) 2010; 63
Traboulsee (bib0004) 2016; 37
Shinohara (bib0034) 2014; 6
Kolossváry (bib0036) 2018; 33
Ramsay, Silverman (bib0019) 1997
Marron (bib0018) 2015
Wiggermann (bib0049) 2013; 81
Deh (bib0028) 2019; 81
Deh (bib0025) 2018; 48
Zhang (bib0009) 2019; 40
Polman (bib0046) 2005; 58
Stüber, Pitt, Wang (bib0012) 2016; 17
Zhang (bib0021) 2019; 40
Absinta (bib0014) 2019; 76
Firbank (bib0038) 1999; 17
Ghassemi (10.1016/j.neuroimage.2020.117451_bib0008) 2015; 21
Absinta (10.1016/j.neuroimage.2020.117451_bib0014) 2019; 76
Zhang (10.1016/j.neuroimage.2020.117451_bib0021) 2019; 40
Kolossváry (10.1016/j.neuroimage.2020.117451_bib0035) 2017; 10
Ramsay (10.1016/j.neuroimage.2020.117451_bib0019) 1997
Deh (10.1016/j.neuroimage.2020.117451_bib0028) 2019; 81
Zhang (10.1016/j.neuroimage.2020.117451_bib0026) 2018; 18
Sahraian (10.1016/j.neuroimage.2020.117451_bib0001) 2007
Kolossváry (10.1016/j.neuroimage.2020.117451_bib0036) 2018; 33
10.1016/j.neuroimage.2020.117451_bib0041
Langkammer (10.1016/j.neuroimage.2020.117451_bib0011) 2013; 267
Deh (10.1016/j.neuroimage.2020.117451_bib0025) 2018; 48
Zhang (10.1016/j.neuroimage.2020.117451_bib0009) 2019; 40
Polman (10.1016/j.neuroimage.2020.117451_bib0045) 2011; 69
Stüber (10.1016/j.neuroimage.2020.117451_bib0012) 2016; 17
Kuznetsova (10.1016/j.neuroimage.2020.117451_bib0042) 2017; 82
de Rochefort (10.1016/j.neuroimage.2020.117451_bib0022) 2010; 63
Polman (10.1016/j.neuroimage.2020.117451_bib0046) 2005; 58
Kaunzner (10.1016/j.neuroimage.2020.117451_bib0043) 2019; 142
McDonald (10.1016/j.neuroimage.2020.117451_bib0044) 2001; 50
Marron (10.1016/j.neuroimage.2020.117451_bib0018) 2015
Wang (10.1016/j.neuroimage.2020.117451_bib0023) 2014; 73(1)
Sweeney (10.1016/j.neuroimage.2020.117451_bib0005) 2016; 10
Meier (10.1016/j.neuroimage.2020.117451_bib0007) 2006; 32
Chen (10.1016/j.neuroimage.2020.117451_bib0027) 2014; 271
Absinta (10.1016/j.neuroimage.2020.117451_bib0016) 2016; 126
Firbank (10.1016/j.neuroimage.2020.117451_bib0038) 1999; 17
Liu (10.1016/j.neuroimage.2020.117451_bib0030) 2018; 79
Wang (10.1016/j.neuroimage.2020.117451_bib0024) 2017; 46
Meier (10.1016/j.neuroimage.2020.117451_bib0006) 2003; 20
Thompson (10.1016/j.neuroimage.2020.117451_bib0003) 2018; 17
Dal-Bianco (10.1016/j.neuroimage.2020.117451_bib0017) 2017; 133
Ho (10.1016/j.neuroimage.2020.117451_bib0039) 1995
Fazekas (10.1016/j.neuroimage.2020.117451_bib0048) 2002; 8
Jenkinson (10.1016/j.neuroimage.2020.117451_bib0033) 2002; 17
Zhang (10.1016/j.neuroimage.2020.117451_bib0010) 2016; 44
Smith (10.1016/j.neuroimage.2020.117451_bib0031) 2002; 17
Smith (10.1016/j.neuroimage.2020.117451_bib0047) 2001; 25
Kuhlmann (10.1016/j.neuroimage.2020.117451_bib0015) 2017; 133
Traboulsee (10.1016/j.neuroimage.2020.117451_bib0004) 2016; 37
Wisnieff (10.1016/j.neuroimage.2020.117451_bib0013) 2015; 74
Filippi (10.1016/j.neuroimage.2020.117451_bib0037) 2016; 15
He (10.1016/j.neuroimage.2020.117451_bib0002) 2001; 22
Shinohara (10.1016/j.neuroimage.2020.117451_bib0034) 2014; 6
Wiggermann (10.1016/j.neuroimage.2020.117451_bib0049) 2013; 81
Zhang (10.1016/j.neuroimage.2020.117451_bib0020) 2016; 44
Zhang (10.1016/j.neuroimage.2020.117451_bib0032) 2001; 20
Deh (10.1016/j.neuroimage.2020.117451_bib0029) 2015; 42
Liaw (10.1016/j.neuroimage.2020.117451_bib0040) 2002; 2
References_xml – volume: 22
  start-page: 664
  year: 2001
  end-page: 669
  ident: bib0002
  article-title: Enhancing patterns in multiple sclerosis: evolution and persistence
  publication-title: Am. J. Neuroradiol.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib0032
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
– volume: 8
  start-page: 479
  year: 2002
  end-page: 484
  ident: bib0048
  article-title: Quantitative magnetization transfer imaging of pre-lesional white-matter changes in multiple sclerosis
  publication-title: Mult. Scler. J.
– start-page: 468
  year: 2015
  end-page: 484
  ident: bib0018
  article-title: Functional data analysis of amplitude and phase variation
  publication-title: Stat. Sci.
– volume: 25
  start-page: 466
  year: 2001
  end-page: 475
  ident: bib0047
  article-title: Normalized accurate measurement of longitudinal brain change
  publication-title: J. Comput. Assist. Tomogr.
– volume: 18
  start-page: 143
  year: 2018
  end-page: 148
  ident: bib0026
  article-title: Diagnostic accuracy of semiautomatic lesion detection plus quantitative susceptibility mapping in the identification of new and enhancing multiple sclerosis lesions
  publication-title: NeuroImage Clin.
– volume: 76
  start-page: 1474
  year: 2019
  end-page: 1483
  ident: bib0014
  article-title: Association of chronic active multiple sclerosis lesions with disability in vivo
  publication-title: JAMA Neurol.
– volume: 44
  start-page: 426
  year: 2016
  end-page: 432
  ident: bib0010
  article-title: Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM)
  publication-title: J. Magn. Reson. Imaging
– volume: 63
  start-page: 194
  year: 2010
  end-page: 206
  ident: bib0022
  article-title: Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging
  publication-title: Magn. Reson. Med.
– volume: 17
  start-page: 593
  year: 1999
  end-page: 601
  ident: bib0038
  article-title: Partial volume effects in MRI studies of multiple sclerosis
  publication-title: Magn. Reson. Imaging
– volume: 40
  start-page: 987
  year: 2019
  end-page: 993
  ident: bib0021
  article-title: Quantitative susceptibility mapping of time-dependent susceptibility changes in multiple sclerosis lesions
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 44
  start-page: 426
  year: 2016
  end-page: 432
  ident: bib0020
  article-title: Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM)
  publication-title: J. Magn. Reson. Imaging
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib0040
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 46
  start-page: 951
  year: 2017
  end-page: 971
  ident: bib0024
  article-title: Clinical quantitative susceptibility mapping (QSM): biometal imaging and its emerging roles in patient care
  publication-title: J. Magn. Reson. Imaging
– volume: 10
  start-page: 1
  year: 2016
  end-page: 17
  ident: bib0005
  article-title: Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions
  publication-title: NeuroImage: Clin.
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bib0031
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 48
  start-page: 1281
  year: 2018
  end-page: 1287
  ident: bib0025
  article-title: Magnetic susceptibility increases as diamagnetic molecules breakdown: myelin digestion during multiple sclerosis lesion formation contributes to increase on QSM
  publication-title: J. Magn. Reson. Imaging
– volume: 133
  start-page: 13
  year: 2017
  end-page: 24
  ident: bib0015
  article-title: An updated histological classification system for multiple sclerosis lesions
  publication-title: Acta Neuropathol.
– volume: 32
  start-page: 531
  year: 2006
  end-page: 537
  ident: bib0007
  article-title: MRI time series modeling of MS lesion development
  publication-title: NeuroImage
– volume: 81
  start-page: 211
  year: 2013
  end-page: 218
  ident: bib0049
  article-title: Magnetic resonance frequency shifts during acute MS lesion formation
  publication-title: Neurology
– volume: 42
  start-page: 1592
  year: 2015
  end-page: 1600
  ident: bib0029
  article-title: Reproducibility of quantitative susceptibility mapping in the brain at two field strengths from two vendors
  publication-title: J. Magn. Reson. Imaging
– volume: 74
  start-page: 564
  year: 2015
  end-page: 570
  ident: bib0013
  article-title: Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron
  publication-title: Magn. Reson. Med.
– volume: 73(1)
  start-page: 82
  year: 2014
  end-page: 101
  ident: bib0023
  article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker
  publication-title: Magn. Reson. Med.
– reference: , 2014.
– volume: 17
  start-page: 100
  year: 2016
  ident: bib0012
  article-title: Iron in multiple sclerosis and its noninvasive imaging with quantitative susceptibility mapping
  publication-title: Int. J. Mol. Sci.
– volume: 37
  start-page: 394
  year: 2016
  end-page: 401
  ident: bib0004
  article-title: Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis
  publication-title: Am. J. Neuroradiol.
– volume: 126
  start-page: 2597
  year: 2016
  end-page: 2609
  ident: bib0016
  article-title: Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions
  publication-title: J. Clin. Invest.
– year: 2007
  ident: bib0001
  article-title: MRI Atlas of MS Lesions
– volume: 40
  start-page: 987
  year: 2019
  end-page: 993
  ident: bib0009
  article-title: Quantitative susceptibility mapping of time-dependent susceptibility changes in multiple sclerosis lesions
  publication-title: Am. J. Neuroradiol.
– volume: 82
  start-page: 1
  year: 2017
  end-page: 26
  ident: bib0042
  article-title: lmerTest package: tests in linear mixed effects models
  publication-title: J. Stat. Softw.
– volume: 133
  start-page: 25
  year: 2017
  end-page: 42
  ident: bib0017
  article-title: Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging
  publication-title: Acta Neuropathol.
– volume: 20
  start-page: 1193
  year: 2003
  end-page: 1209
  ident: bib0006
  article-title: Time-series analysis of MRI intensity patterns in multiple sclerosis
  publication-title: NeuroImage
– volume: 79
  start-page: 2795
  year: 2018
  end-page: 2803
  ident: bib0030
  article-title: MEDI+ 0: morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping
  publication-title: Magn. Reson. Med.
– year: 1997
  ident: bib0019
  article-title: Functional data analysis
  publication-title: Springer Series in Statistics
– year: 1995
  ident: bib0039
  article-title: Random decision forests
  publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition
– volume: 21
  start-page: 718
  year: 2015
  end-page: 725
  ident: bib0008
  article-title: Quantitative measurement of tissue damage and recovery within new T2w lesions in pediatric-and adult-onset multiple sclerosis
  publication-title: Mult. Scler. J.
– volume: 58
  start-page: 840
  year: 2005
  end-page: 846
  ident: bib0046
  article-title: Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”
  publication-title: Ann. Neurol.: Off. J. Am. Neurol. Assoc. Child Neurol. Soc.
– volume: 81
  start-page: 1229
  year: 2019
  end-page: 1236
  ident: bib0028
  article-title: Multicenter reproducibility of quantitative susceptibility mapping in a gadolinium phantom using MEDI+ 0 automatic zero referencing
  publication-title: Magn. Reson. Med.
– reference: Bates, D., et al., Fitting Linear Mixed-Effects Models Using lme4. arXiv preprint arXiv:
– volume: 271
  start-page: 183
  year: 2014
  end-page: 192
  ident: bib0027
  article-title: Quantitative susceptibility mapping of multiple sclerosis lesions at various ages
  publication-title: Radiology
– volume: 17
  start-page: 162
  year: 2018
  end-page: 173
  ident: bib0003
  article-title: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria
  publication-title: Lancet Neurol.
– volume: 33
  start-page: 26
  year: 2018
  end-page: 34
  ident: bib0036
  article-title: Cardiac computed tomography radiomics
  publication-title: J. Thorac. Imaging
– volume: 50
  start-page: 121
  year: 2001
  end-page: 127
  ident: bib0044
  article-title: Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis
  publication-title: Ann. Neurol.: Off. J. Am. Neurol. Assoc. Child Neurol. Soc.
– volume: 6
  start-page: 9
  year: 2014
  end-page: 19
  ident: bib0034
  article-title: Statistical normalization techniques for magnetic resonance imaging
  publication-title: NeuroImage: Clin.
– volume: 142
  start-page: 133
  year: 2019
  end-page: 145
  ident: bib0043
  article-title: Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions
  publication-title: Brain
– volume: 267
  start-page: 551
  year: 2013
  end-page: 559
  ident: bib0011
  article-title: Quantitative susceptibility mapping in multiple sclerosis
  publication-title: Radiology
– volume: 15
  start-page: 292
  year: 2016
  end-page: 303
  ident: bib0037
  article-title: MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines
  publication-title: Lancet Neurol.
– volume: 10
  year: 2017
  ident: bib0035
  article-title: Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign
  publication-title: Circ.: Cardiovasc. Imaging
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib0033
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 69
  start-page: 292
  year: 2011
  end-page: 302
  ident: bib0045
  article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria
  publication-title: Ann. Neurol.
– volume: 76
  start-page: 1474
  issue: 12
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117451_bib0014
  article-title: Association of chronic active multiple sclerosis lesions with disability in vivo
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2019.2399
– volume: 73(1)
  start-page: 82
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117451_bib0023
  article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker
  publication-title: Magn. Reson. Med.
– volume: 10
  issue: 12
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117451_bib0035
  article-title: Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign
  publication-title: Circ.: Cardiovasc. Imaging
– volume: 69
  start-page: 292
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117451_bib0045
  article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22366
– volume: 133
  start-page: 13
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117451_bib0015
  article-title: An updated histological classification system for multiple sclerosis lesions
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-016-1653-y
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2020.117451_bib0032
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 74
  start-page: 564
  issue: 2
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117451_bib0013
  article-title: Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25420
– volume: 44
  start-page: 426
  issue: 2
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117451_bib0010
  article-title: Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM)
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25144
– volume: 81
  start-page: 211
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117451_bib0049
  article-title: Magnetic resonance frequency shifts during acute MS lesion formation
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31829bfd63
– volume: 142
  start-page: 133
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117451_bib0043
  article-title: Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions
  publication-title: Brain
  doi: 10.1093/brain/awy296
– volume: 33
  start-page: 26
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117451_bib0036
  article-title: Cardiac computed tomography radiomics
  publication-title: J. Thorac. Imaging
  doi: 10.1097/RTI.0000000000000268
– volume: 267
  start-page: 551
  issue: 2
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117451_bib0011
  article-title: Quantitative susceptibility mapping in multiple sclerosis
  publication-title: Radiology
  doi: 10.1148/radiol.12120707
– volume: 32
  start-page: 531
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2020.117451_bib0007
  article-title: MRI time series modeling of MS lesion development
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.04.181
– volume: 17
  start-page: 162
  issue: 2
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117451_bib0003
  article-title: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(17)30470-2
– year: 2007
  ident: 10.1016/j.neuroimage.2020.117451_bib0001
– volume: 40
  start-page: 987
  issue: 6
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117451_bib0009
  article-title: Quantitative susceptibility mapping of time-dependent susceptibility changes in multiple sclerosis lesions
  publication-title: Am. J. Neuroradiol.
– year: 1995
  ident: 10.1016/j.neuroimage.2020.117451_bib0039
  article-title: Random decision forests
– volume: 271
  start-page: 183
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117451_bib0027
  article-title: Quantitative susceptibility mapping of multiple sclerosis lesions at various ages
  publication-title: Radiology
  doi: 10.1148/radiol.13130353
– volume: 50
  start-page: 121
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2020.117451_bib0044
  article-title: Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis
  publication-title: Ann. Neurol.: Off. J. Am. Neurol. Assoc. Child Neurol. Soc.
  doi: 10.1002/ana.1032
– volume: 15
  start-page: 292
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117451_bib0037
  article-title: MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(15)00393-2
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2020.117451_bib0031
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 21
  start-page: 718
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117451_bib0008
  article-title: Quantitative measurement of tissue damage and recovery within new T2w lesions in pediatric-and adult-onset multiple sclerosis
  publication-title: Mult. Scler. J.
  doi: 10.1177/1352458514551594
– volume: 133
  start-page: 25
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117451_bib0017
  article-title: Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-016-1636-z
– volume: 81
  start-page: 1229
  issue: 2
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117451_bib0028
  article-title: Multicenter reproducibility of quantitative susceptibility mapping in a gadolinium phantom using MEDI+ 0 automatic zero referencing
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27410
– volume: 17
  start-page: 593
  issue: 4
  year: 1999
  ident: 10.1016/j.neuroimage.2020.117451_bib0038
  article-title: Partial volume effects in MRI studies of multiple sclerosis
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(98)00210-0
– volume: 42
  start-page: 1592
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117451_bib0029
  article-title: Reproducibility of quantitative susceptibility mapping in the brain at two field strengths from two vendors
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24943
– volume: 17
  start-page: 100
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117451_bib0012
  article-title: Iron in multiple sclerosis and its noninvasive imaging with quantitative susceptibility mapping
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17010100
– volume: 18
  start-page: 143
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117451_bib0026
  article-title: Diagnostic accuracy of semiautomatic lesion detection plus quantitative susceptibility mapping in the identification of new and enhancing multiple sclerosis lesions
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2018.01.013
– volume: 63
  start-page: 194
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117451_bib0022
  article-title: Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22187
– volume: 20
  start-page: 1193
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2020.117451_bib0006
  article-title: Time-series analysis of MRI intensity patterns in multiple sclerosis
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00354-9
– volume: 82
  start-page: 1
  issue: 13
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117451_bib0042
  article-title: lmerTest package: tests in linear mixed effects models
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v082.i13
– volume: 6
  start-page: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117451_bib0034
  article-title: Statistical normalization techniques for magnetic resonance imaging
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2014.08.008
– start-page: 468
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117451_bib0018
  article-title: Functional data analysis of amplitude and phase variation
  publication-title: Stat. Sci.
– volume: 44
  start-page: 426
  issue: 2
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117451_bib0020
  article-title: Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM)
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25144
– volume: 48
  start-page: 1281
  issue: 5
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117451_bib0025
  article-title: Magnetic susceptibility increases as diamagnetic molecules breakdown: myelin digestion during multiple sclerosis lesion formation contributes to increase on QSM
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25997
– volume: 22
  start-page: 664
  issue: 4
  year: 2001
  ident: 10.1016/j.neuroimage.2020.117451_bib0002
  article-title: Enhancing patterns in multiple sclerosis: evolution and persistence
  publication-title: Am. J. Neuroradiol.
– year: 1997
  ident: 10.1016/j.neuroimage.2020.117451_bib0019
  article-title: Functional data analysis
  doi: 10.1007/978-1-4757-7107-7
– volume: 25
  start-page: 466
  issue: 3
  year: 2001
  ident: 10.1016/j.neuroimage.2020.117451_bib0047
  article-title: Normalized accurate measurement of longitudinal brain change
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-200105000-00022
– volume: 79
  start-page: 2795
  issue: 5
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117451_bib0030
  article-title: MEDI+ 0: morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26946
– ident: 10.1016/j.neuroimage.2020.117451_bib0041
  doi: 10.18637/jss.v067.i01
– volume: 8
  start-page: 479
  issue: 6
  year: 2002
  ident: 10.1016/j.neuroimage.2020.117451_bib0048
  article-title: Quantitative magnetization transfer imaging of pre-lesional white-matter changes in multiple sclerosis
  publication-title: Mult. Scler. J.
  doi: 10.1191/1352458502ms860oa
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2020.117451_bib0040
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 126
  start-page: 2597
  issue: 7
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117451_bib0016
  article-title: Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI86198
– volume: 46
  start-page: 951
  issue: 4
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117451_bib0024
  article-title: Clinical quantitative susceptibility mapping (QSM): biometal imaging and its emerging roles in patient care
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25693
– volume: 40
  start-page: 987
  issue: 6
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117451_bib0021
  article-title: Quantitative susceptibility mapping of time-dependent susceptibility changes in multiple sclerosis lesions
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 10
  start-page: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117451_bib0005
  article-title: Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2015.10.013
– volume: 37
  start-page: 394
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117451_bib0004
  article-title: Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4539
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.neuroimage.2020.117451_bib0033
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 58
  start-page: 840
  issue: 6
  year: 2005
  ident: 10.1016/j.neuroimage.2020.117451_bib0046
  article-title: Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”
  publication-title: Ann. Neurol.: Off. J. Am. Neurol. Assoc. Child Neurol. Soc.
  doi: 10.1002/ana.20703
SSID ssj0009148
Score 2.4167233
Snippet We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117451
SubjectTerms Adult
Age
Age determination
Algorithms
Brain - diagnostic imaging
Contrast Media
Female
Gadolinium
Humans
Lesions
Longitudinal studies
Machine Learning
Magnetic Resonance Imaging
Male
Middle Aged
Multiple sclerosis
Multiple Sclerosis - diagnostic imaging
Patients
Radiomics
Reproducibility of Results
Scanners
Statistical analysis
Time Factors
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA96ityL3x_VUyL4GmyaZJPgg6jcoeAdgh_sW0jTVCtne7e759_vTJt2rYIs-FSaJqGZmUzml0xmCHkmBAKfGJmvjWCSV5EZGz0rta9UNLYqey_fL-_1yYlZLu2HtOG2Tm6Vo07sFXXVBdwjf15IDQgKRfDl2TnDrFF4uppSaFwmVzBtNsq5Xupt0F0uh6twSjDDuU2ePIN_Vx8vsvkBsxZQYtGfXkrFZ8tTH8V_tkr9bYX-6Uz52-p0dON_x3WTXE92KX01CNItcim2t8m143Tyfoe8OwRdMFxzpF1Nj5MfIv0ItWEkzZqeRtx4ozBSCg8YcYv3IynA-Q6DekSKVICF8i75fHT46c1bltIwsLAQ-YZFA3rAh4WSlZBeFlyWMfqFzIM3uuZVWVkVo9JQUIoSLAAZtQ6myjVAQTQ_7pG9tmvjA6B-CNrUua1NbWQMhfGCwyvYDDD5obuM6JH6LqQY5Zgq49SNzmjf3ZZvDvnmBr5lhE8tz4Y4HTu0eY0MnupjpO2-oFt9dWniOgMA0qsSYB1GCuTSY8Z5X3JAggbMHZsRO4qHGy-zgvqFjpodfuDF1DYZPIMhs2Prg1GiXFI8a7cVp4w8nT6DysBzIN_G7gLroO-TBcMyI_cH4Z1oIABCWrNQwImZWM-INP_SNt_6sOSYHQN4_vDfv_WI7BfoFpRzxtUB2dusLuJjcjX83DTr1ZN-_v4CCQ5ORw
  priority: 102
  providerName: ProQuest
Title Estimation of Multiple Sclerosis lesion age on magnetic resonance imaging
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811920309368
https://dx.doi.org/10.1016/j.neuroimage.2020.117451
https://www.ncbi.nlm.nih.gov/pubmed/33069865
https://www.proquest.com/docview/2470270318
https://www.proquest.com/docview/2452099283
https://pubmed.ncbi.nlm.nih.gov/PMC7805079
https://doaj.org/article/8956a5b875544314a0320ab186282389
Volume 225
WOSCitedRecordID wos000600797900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgIMTLxDdlozISrxFx4tS2eNpQJ5BoVfGlvlmOc9GCRorWjr-fO8fJFnigD7y4amJH15_vcj_X5zvGXuc5LXwAElfrPJGigkQbcEmpXFWANlUZony_fVTLpV6vzepGqS-KCevSA3fAvdFI4F1RIq2mTG1COqr47UqBTFyjuwlH91Jl-sVUn24XWX6M2-miuUJ2yOYH2iiuCbOwVykLMXJGIWf_yCf9zTn_DJ284YvOHrDDSCL5SSf8Q3YL2kfs3iJukz9mH-ZouN2ZRL6p-SIGDfLP2BsFabb8AuhfMo6CcvxAgVs6zMhx7b2hDBzA6UegV3vCvp7Nv7x7n8SaCYmf5ekuAY1G6_yskFUuncyELAHcTKbeaVWLqqxMAVAovFDmJbprCUp5XSGESGWQKzxlB-2mhecInvdK16mpda0l-Ey7XOBXdPBoqfi4CVM9eNbHhOJU1-LC9pFj3-017JZgtx3sEyaGkT-7pBp7jDml-Rn6U1rscAGVxUZlsf9Slgkz_eza_uQpvivxQc0eArwdxkZ20rGOPUcf98pk41tiazOp0owKCCCWr4bbaN-0aeNa2FxRHwpUMsgCJ-xZp3sDBjmu94yeFTgTI60cgTS-0zbnIYc4lbLAOX_xP1A9YvczivRJRSKKY3awu7yCl-yu_7VrtpdTdlutVWj1lN05nS9Xn6bBWLFdZAtq1eo3pWZBUw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCF9yNQwEhwtIhjZ2MLIcSjVVfdXVWioN5cx3EgqCRldwviT_EbmclrCUhoLz1wWm1iW8nMeB7xNzOEPBECAx_vmc2VYJJnnintLUsTm8Ve6SytUb4fJslspg4P9f4G-dnlwiCsstOJtaLOKoffyJ9FMoEICkXw5clXhl2j8HS1a6HRiMWe__EdQrbFi_Fb4O_TKNrZPnizy9quAsyNRLhkXoFYWzeKZSaklRGXqfd2JENnVZLzLM107H2cwIVUpGDQpE8Sp7IwgcgGrSmse46cBzciCmuo4P6qyC-XTepdLJjiXLfIoQZPVtenLL6AloCoNKpPS2XMB-aw7howsIp_e71_gjd_s4Y7V_83Ol4jV1q_m75qNsp1suHLG-TitEUW3CTjbdB1TRonrXI6bXGW9B2MBsoVC3rs8cMiBcpS-AEKl5j_SecegxnYOhSpDo7ALfL-TF7kNtksq9LfBW47l6g81LnKlfQuUlZw-As-ESg3WC4gScdt49oa7NgK5Nh0YLvPZiUnBuXENHISEN7PPGnqkKwx5zUKVD8eK4nXF6r5R9MqJqMgQLZxCmErVkLk0oYiCm3KIdJV4M7pgOhOHE2XrAvmBRYq1niA5_3c1qFrHLU1Z291EmxaxbowK_ENyOP-NqhEPOeypa9OcQxiuzQ4zgG502yWngYCQmStRjFwYrCNBkQa3imLT3XZdez-ATy_9-_HekQu7R5MJ2Yynu3dJ5cjhECFnPF4i2wu56f-Abngvi2LxfxhrTsoOTrrTfYLLKeqRQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHZp44X4JDAgSPEaLY6d2hBBirBXVtqripr0ZJ3G2opGOtgPx1_h1nJM4KQEJ9WUPPFVJbCs99xN_PgfgKeeU-FgbmELxQLDcBiqxJkilyWOrkjytUL4fD-R4rI6OkskG_GzOwhCssrGJlaHOZxl9I9-JhMQMikRwp3CwiMne8OXZ14A6SNFOa9NOoxaRffvjO6ZvixejPeT1sygaDt6_fhO4DgNB1ufhMrAKRdxk_VjkXBgRMZFaa_oizIySBcvTPImtjSXeSHmKzk1YKTOVhxKzHPKsuO4l2JQcL3uwuTsYT96uSv4yUR_Ei3mgGEscjqhGl1XVKqdf0GZgjhpVe6ciZh3nWPUQ6PjIv2PgP6Gcv_nG4bX_marX4aqLyP1XtQrdgA1b3oStQ4c5uAWjAVrB-oCnPyv8Q4fA9N_haKTidOGfWvrk6COVffxBapd0MtSfW0pzUKl84gCGCLfhw4X8kTvQK2elvYeczzKpijApVKGEzSJlOMNLjJbQ7OFyHsiG8zpz1dmpScipbmB4n_VKZjTJjK5lxgPWzjyrK5SsMWeXhKsdTzXGqxuz-bF2JksrTJ1NnGJCSzUSmTAhj0KTMsyBFQZ6iQdJI5q6OcaLjgcXmq7xAs_buS7Uq0O4NWdvN9Ksncld6JUoe_CkfYzGknbATGln5zSGUF8JhtQe3K0Vp6UBx-Q5Uf0YOdFRqQ6Ruk_K6UlVkJ36giDP7__7tR7DFuqWPhiN9x_AlYiwUSELWLwNveX83D6Ey9m35XQxf-QMiQ-fLlrLfgGA57Rd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Multiple+Sclerosis+lesion+age+on+magnetic+resonance+imaging&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sweeney%2C+Elizabeth+M.&rft.au=Nguyen%2C+Thanh+D.&rft.au=Kuceyeski%2C+Amy&rft.au=Ryan%2C+Sarah+M.&rft.date=2021-01-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=225&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117451&rft.externalDocID=S1053811920309368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon