Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data
Background Target genes of a transcription factor (TF) Pou5f1 ( Oct3/4 or Oct4 ), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitat...
Gespeichert in:
| Veröffentlicht in: | BMC genomics Jg. 9; H. 1; S. 269 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
03.06.2008
BioMed Central Ltd BMC |
| Schlagworte: | |
| ISSN: | 1471-2164, 1471-2164 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Background
Target genes of a transcription factor (TF)
Pou5f1
(
Oct3/4
or
Oct4
), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to
Pou5f1
manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation.
Results
To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after
Pou5f1
suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for
Pou5f1
. The majority of TTGs (372) were down-regulated after
Pou5f1
suppression, indicating that the
Pou5f1
functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that
Sox2
and
Nanog
also function mostly as transcription activators in cooperation with
Pou5f1
.
Conclusion
We have identified the most reliable sets of direct target genes for key pluripotency genes –
Pou5f1
,
Sox2
, and
Nanog
, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly. |
|---|---|
| AbstractList | Abstract Background Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation. Results To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after Pou5f1 suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for Pou5f1. The majority of TTGs (372) were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1. Conclusion We have identified the most reliable sets of direct target genes for key pluripotency genes – Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly. Background Target genes of a transcription factor (TF) Pou5f1 ( Oct3/4 or Oct4 ), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation. Results To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after Pou5f1 suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for Pou5f1 . The majority of TTGs (372) were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1 . Conclusion We have identified the most reliable sets of direct target genes for key pluripotency genes – Pou5f1 , Sox2 , and Nanog , and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly. Background Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation. Results To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR & 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after Pou5f1 suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for Pou5f1. The majority of TTGs (372) were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1. Conclusion We have identified the most reliable sets of direct target genes for key pluripotency genes - Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly. Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation.BACKGROUNDTarget genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation.To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after Pou5f1 suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for Pou5f1. The majority of TTGs (372) were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1.RESULTSTo reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after Pou5f1 suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for Pou5f1. The majority of TTGs (372) were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1.We have identified the most reliable sets of direct target genes for key pluripotency genes - Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly.CONCLUSIONWe have identified the most reliable sets of direct target genes for key pluripotency genes - Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly. Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation. To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after Pou5f1 suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for Pou5f1. The majority of TTGs (372) were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1. We have identified the most reliable sets of direct target genes for key pluripotency genes - Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly. |
| ArticleNumber | 269 |
| Audience | Academic |
| Author | Piao, Yulan Matoba, Ryo Aiba, Kazuhiro Sharov, Alexei A Sharova, Lioudmila V Niwa, Hitoshi Ko, Minoru SH Xin, Li Masui, Shinji |
| AuthorAffiliation | 1 Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA 2 Laboratory of Pluripotent Cell Studies, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan |
| AuthorAffiliation_xml | – name: 1 Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA – name: 2 Laboratory of Pluripotent Cell Studies, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan |
| Author_xml | – sequence: 1 givenname: Alexei A surname: Sharov fullname: Sharov, Alexei A organization: Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH – sequence: 2 givenname: Shinji surname: Masui fullname: Masui, Shinji organization: Laboratory of Pluripotent Cell Studies, RIKEN Center for Developmental Biology – sequence: 3 givenname: Lioudmila V surname: Sharova fullname: Sharova, Lioudmila V organization: Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH – sequence: 4 givenname: Yulan surname: Piao fullname: Piao, Yulan organization: Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH – sequence: 5 givenname: Kazuhiro surname: Aiba fullname: Aiba, Kazuhiro organization: Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH – sequence: 6 givenname: Ryo surname: Matoba fullname: Matoba, Ryo organization: Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH – sequence: 7 givenname: Li surname: Xin fullname: Xin, Li organization: Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH – sequence: 8 givenname: Hitoshi surname: Niwa fullname: Niwa, Hitoshi organization: Laboratory of Pluripotent Cell Studies, RIKEN Center for Developmental Biology – sequence: 9 givenname: Minoru SH surname: Ko fullname: Ko, Minoru SH email: kom@mail.nih.gov organization: Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18522731$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFk1tv1DAQhSMEohd45g1ZQkJCalrbSZzkBamquKxUAaLwbDnOOHWV2IvttN1_yM9itltKF3FRHhKNv3NmbJ_sZQ-dd5Blzxg9ZKwRR6ysWc6ZKPM256J9kO3eVR7e-97J9mK8oJTVDa8eZzusqTivC7abfV_04JI1VqtkvSPekE9-rgw7IGf-mh8Q5XryQTk_kN5fuZgCqIkkFQZIZAAHkVzZdE5iQn1MaDMS7Z2xaKuBdCuilstxZd1AFHH-EkaixsEH1KCNJ8lOgII5RCCT1cGrENTqpiu6-wnyK7Qi-jz4CTs4Yqdpdn4ZQNulTZuhe5XUk-yRUWOEp7fv_ezr2zdfTt7npx_fLU6OT3MtCppyELUSStO2oZo3tKwNN5RBq3kvSl7QAjpdV7RqaGGqkum6NqKCvuZU1B3yxX622Pj2Xl3IZbCTCivplZU3BR8GqQKewwiSmgbaEljRM14aITpadKbitTZdRykv0Ov1xms5dxP0Gm8iqHHLdHvF2XM5-EvJS15SsR7m5a1B8N9miElONmoYR-XAz1HWTAjcS_FfkLWIVqxB8MUGHBTuwDrjsbFew_KY1W1btkK0SB3-gcKnB7xEjKixWN8SvNoSIJPgOg1qjlEuzj5vs8_vn8rdcfwMLQJHGwDjEmMA8wuhcv1byHXw5Tr4spX8xrL6TaFvs4Nz2_EfOrrRRezgBgjyAqPqMF9_lfwANS0hVA |
| CitedBy_id | crossref_primary_10_1016_j_ydbio_2010_10_036 crossref_primary_10_1016_j_taap_2009_12_021 crossref_primary_10_1371_journal_pone_0006799 crossref_primary_10_1007_s12015_020_10098_3 crossref_primary_10_1101_gad_1750709 crossref_primary_10_1093_stmcls_sxac012 crossref_primary_10_1371_journal_pone_0006952 crossref_primary_10_1093_nar_gkr332 crossref_primary_10_1016_j_stem_2010_12_010 crossref_primary_10_1038_s41467_019_14184_0 crossref_primary_10_1007_s11064_011_0422_5 crossref_primary_10_1164_rccm_201510_2084OC crossref_primary_10_1007_s11033_011_0928_6 crossref_primary_10_1016_j_stem_2010_02_014 crossref_primary_10_1038_msb_2010_9 crossref_primary_10_1089_scd_2010_0209 crossref_primary_10_1186_scrt67 crossref_primary_10_1158_0008_5472_CAN_10_2646 crossref_primary_10_3390_cells11152299 crossref_primary_10_3390_v17060763 crossref_primary_10_1186_s12859_022_04924_3 crossref_primary_10_1002_wsbm_1182 crossref_primary_10_1002_stem_428 crossref_primary_10_1074_jbc_RA118_001951 crossref_primary_10_1038_nature08113 crossref_primary_10_1038_nrm2727 crossref_primary_10_1073_pnas_1010708107 crossref_primary_10_7554_eLife_58178 crossref_primary_10_3390_ijms231911941 crossref_primary_10_1093_nar_gkaf274 crossref_primary_10_1095_biolreprod_112_103390 crossref_primary_10_1016_j_ydbio_2011_05_660 crossref_primary_10_1073_pnas_1611142114 crossref_primary_10_1016_j_cell_2012_09_034 crossref_primary_10_1186_s12859_014_0412_0 crossref_primary_10_1016_j_jtcvs_2016_05_036 crossref_primary_10_1038_s41420_021_00667_x crossref_primary_10_1007_s12551_018_0486_4 crossref_primary_10_1016_j_gep_2011_02_001 crossref_primary_10_1111_j_1478_3231_2011_02743_x crossref_primary_10_2217_epi_11_15 crossref_primary_10_1371_journal_pone_0107156 crossref_primary_10_1038_s41598_020_62235_0 crossref_primary_10_1093_nar_gkw840 crossref_primary_10_1242_dev_115436 crossref_primary_10_4161_cc_25402 crossref_primary_10_1002_wsbm_93 crossref_primary_10_3892_or_2016_4775 crossref_primary_10_1038_s41419_022_05385_5 crossref_primary_10_1089_scd_2012_0513 crossref_primary_10_1073_pnas_1323386111 crossref_primary_10_1016_j_jbiosc_2013_01_008 crossref_primary_10_1074_jbc_M113_486290 crossref_primary_10_1038_s41467_023_36421_3 crossref_primary_10_1146_annurev_genom_082410_101506 crossref_primary_10_1038_s41598_018_33235_y crossref_primary_10_1371_journal_pone_0164535 crossref_primary_10_1038_s41556_018_0086_3 crossref_primary_10_1186_1471_2202_15_95 crossref_primary_10_1038_bcj_2012_27 crossref_primary_10_1073_pnas_0912171106 crossref_primary_10_1002_stem_2607 crossref_primary_10_1186_1471_213X_10_98 crossref_primary_10_1111_brv_12117 crossref_primary_10_1016_j_cell_2024_05_051 crossref_primary_10_1038_cdd_2011_137 crossref_primary_10_1016_j_stem_2009_07_012 crossref_primary_10_1016_j_cub_2013_09_048 crossref_primary_10_1002_stem_752 crossref_primary_10_1016_j_stem_2010_03_015 crossref_primary_10_1089_cmb_2013_0126 crossref_primary_10_1016_j_scr_2018_02_012 crossref_primary_10_1002_bit_22517 crossref_primary_10_1128_MCB_01520_12 crossref_primary_10_1016_j_cell_2016_01_047 crossref_primary_10_1186_scrt24 crossref_primary_10_3390_genes10110941 crossref_primary_10_1007_s13277_014_1690_x crossref_primary_10_1074_jbc_M115_675595 crossref_primary_10_1016_j_stem_2012_03_001 crossref_primary_10_1016_j_ygeno_2019_07_001 crossref_primary_10_1038_srep07408 crossref_primary_10_1242_dev_024398 crossref_primary_10_1186_gb_2009_10_12_r139 crossref_primary_10_1007_s12015_010_9116_7 crossref_primary_10_1093_jb_mvp161 crossref_primary_10_1093_nar_gky210 crossref_primary_10_1186_s12862_016_0755_4 crossref_primary_10_1038_ncb0511_490 crossref_primary_10_1042_BJ20111491 crossref_primary_10_1093_molehr_gaw069 crossref_primary_10_1186_scrt39 crossref_primary_10_1016_j_ijsu_2014_11_036 crossref_primary_10_1038_ncomms8155 crossref_primary_10_1371_journal_pone_0052836 crossref_primary_10_3390_biom12111684 crossref_primary_10_1007_s00018_009_0095_2 crossref_primary_10_1016_j_virol_2016_09_020 crossref_primary_10_1109_TNB_2013_2263390 crossref_primary_10_1371_journal_pone_0010709 crossref_primary_10_1093_humupd_dmq035 crossref_primary_10_1038_s42003_022_03637_w crossref_primary_10_1186_s12859_016_0981_1 crossref_primary_10_1186_scrt163 crossref_primary_10_1371_journal_pone_0063794 crossref_primary_10_1089_cell_2012_0055 crossref_primary_10_1073_pnas_0905431106 crossref_primary_10_1093_nar_gku591 crossref_primary_10_1186_1471_2164_15_711 crossref_primary_10_1089_scd_2012_0300 crossref_primary_10_1016_j_pep_2011_06_017 crossref_primary_10_1371_journal_pbio_1001890 crossref_primary_10_1016_j_febslet_2014_02_033 crossref_primary_10_1016_j_ydbio_2013_02_014 |
| Cites_doi | 10.1074/jbc.M105316200 10.1038/nature05972 10.1073/pnas.0506945103 10.1242/dev.02787 10.1074/jbc.M512669200 10.1016/j.gde.2006.08.009 10.1371/journal.pcbi.0020158 10.1101/gr.3269805 10.1093/bioinformatics/btg014 10.1038/nature04915 10.1038/nature06008 10.1371/journal.pone.0000553 10.1038/nature04733 10.1186/gb-2005-6-7-r61 10.1038/nrm2143 10.1038/74199 10.1371/journal.pone.0000026 10.1093/bioinformatics/btg030 10.1128/MCB.25.14.6031-6046.2005 10.1101/gad.269303 10.1074/jbc.M502573200 10.1038/sj.onc.1204236 10.1016/S0092-8674(03)00392-1 10.1038/35021046 10.1038/nature05284 10.1101/gr.5391806 10.1093/nar/gkl887 10.1111/j.2517-6161.1995.tb02031.x 10.1128/MCB.00468-06 10.1074/jbc.M308278200 10.1007/s00018-003-3037-4 10.1093/dnares/dsl005 10.1038/sj.embor.embor917 10.1634/stemcells.2005-0332 10.1186/gb-2007-8-8-r163 10.1073/pnas.0504609102 10.1093/bioinformatics/bti343 10.1158/1078-0432.CCR-06-1034 10.1242/dev.01204 10.1016/j.cell.2005.08.040 10.1128/MCB.26.1.169-181.2006 10.1038/ng1760 10.1101/gr.878903 10.1016/j.cell.2005.08.020 10.1093/nar/24.19.3707 10.1038/ncb1314 10.1111/j.1365-2443.2006.00984.x 10.1038/ncb1589 10.1111/j.1440-169X.2004.00743.x |
| ContentType | Journal Article |
| Copyright | Sharov et al; licensee BioMed Central Ltd. 2008 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2008 BioMed Central Ltd. Copyright © 2008 Sharov et al; licensee BioMed Central Ltd. 2008 Sharov et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Sharov et al; licensee BioMed Central Ltd. 2008 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2008 BioMed Central Ltd. – notice: Copyright © 2008 Sharov et al; licensee BioMed Central Ltd. 2008 Sharov et al; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7QO 8FD FR3 P64 RC3 7X8 5PM DOA |
| DOI | 10.1186/1471-2164-9-269 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| EndPage | 269 |
| ExternalDocumentID | oai_doaj_org_article_0f8e94e13d124f66b03bf527cfbb0023 PMC2424064 A179949669 18522731 10_1186_1471_2164_9_269 |
| Genre | Journal Article Research Support, N.I.H., Intramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z01 AG000656 |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 AAFWJ AAHBH AAJSJ AASML ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C6C CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c630t-e67a6ac0980c28047f2f01e9c2d642303ebc7505803f541c77f65ed72067b8043 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000256921200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2164 |
| IngestDate | Fri Oct 03 12:50:49 EDT 2025 Thu Aug 21 18:20:51 EDT 2025 Fri Sep 05 06:16:14 EDT 2025 Tue Oct 07 09:22:41 EDT 2025 Mon Oct 20 23:19:07 EDT 2025 Mon Oct 20 17:19:08 EDT 2025 Thu Oct 16 15:52:44 EDT 2025 Fri May 30 11:01:53 EDT 2025 Sat Nov 29 03:38:41 EST 2025 Tue Nov 18 21:53:57 EST 2025 Sat Sep 06 07:28:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | False Discovery Rate Trophoblast Stem Cell Trophoblast Stem Embryonic Stem Cell ChIP Data |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c630t-e67a6ac0980c28047f2f01e9c2d642303ebc7505803f541c77f65ed72067b8043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/0f8e94e13d124f66b03bf527cfbb0023 |
| PMID | 18522731 |
| PQID | 19716518 |
| PQPubID | 23462 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0f8e94e13d124f66b03bf527cfbb0023 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2424064 proquest_miscellaneous_71660583 proquest_miscellaneous_19716518 gale_infotracmisc_A179949669 gale_infotracacademiconefile_A179949669 gale_incontextgauss_ISR_A179949669 pubmed_primary_18522731 crossref_primary_10_1186_1471_2164_9_269 crossref_citationtrail_10_1186_1471_2164_9_269 springer_journals_10_1186_1471_2164_9_269 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-06-03 |
| PublicationDateYYYYMMDD | 2008-06-03 |
| PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-03 day: 03 |
| PublicationDecade | 2000 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2008 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | MG Carter (1462_CR19) 2005; 6 Y Nakatake (1462_CR29) 2006; 26 TS Mikkelsen (1462_CR40) 2007; 448 A Remenyi (1462_CR9) 2003; 17 T Barrett (1462_CR50) 2007; 35 WH Press (1462_CR59) 1992 J Tocharus (1462_CR35) 2004; 46 A Suzuki (1462_CR42) 2006; 103 CH Glover (1462_CR22) 2006; 2 AA Sharov (1462_CR55) 2005; 15 RR Sokal (1462_CR20) 2001 PA Campbell (1462_CR31) 2007; 2 M Joaquin (1462_CR39) 2003; 60 MJ Vogel (1462_CR30) 2006; 16 LA Boyer (1462_CR23) 2006; 441 N Ivanova (1462_CR5) 2006; 442 A Tsumura (1462_CR32) 2006; 11 AL Ferri (1462_CR46) 2004; 131 YH Loh (1462_CR1) 2006; 38 R Matoba (1462_CR2) 2006; 1 S Miyagi (1462_CR47) 2006; 281 H Niwa (1462_CR4) 2000; 24 N Iwai (1462_CR38) 2001; 20 M Kanai (1462_CR28) 2006; 12 P Savatier (1462_CR37) 1996; 12 LV Sharova (1462_CR54) 2007 I Chambers (1462_CR48) 2003; 113 JL Chew (1462_CR10) 2005; 25 S Masui (1462_CR16) 2007; 9 Y Benjamini (1462_CR21) 1995; 57 Z Bar-Joseph (1462_CR13) 2003; 19 Y Luan (1462_CR14) 2003; 19 C Caron (1462_CR33) 2003; 4 H Niwa (1462_CR36) 2005; 123 LA Boyer (1462_CR18) 2006; 16 DJ Rodda (1462_CR8) 2005; 280 BD Rowland (1462_CR26) 2005; 7 J Liang (1462_CR41) 2008 PJ Tesar (1462_CR43) 2007; 448 1462_CR58 RJ Klose (1462_CR34) 2007; 8 1462_CR56 G Camenisch (1462_CR49) 1996; 24 W Ai (1462_CR27) 2004; 279 LA Boyer (1462_CR6) 2005; 122 K Aiba (1462_CR45) 2006; 24 AA Sharov (1462_CR52) 2005; 21 E Matsuda (1462_CR25) 2001; 276 MG Carter (1462_CR57) 2003; 13 F Ulloa-Montoya (1462_CR44) 2007; 8 GJ Filion (1462_CR24) 2006; 26 1462_CR51 H Niwa (1462_CR3) 2007; 134 AA Sharov (1462_CR17) 2006; 13 J Wang (1462_CR7) 2006; 444 1462_CR11 JD Storey (1462_CR15) 2005; 102 G Zhu (1462_CR12) 2000; 406 1462_CR53 |
| References_xml | – volume: 276 start-page: 14222 year: 2001 ident: 1462_CR25 publication-title: J Biol Chem doi: 10.1074/jbc.M105316200 – volume-title: Biometry. The principles and practice of statistics in biological research year: 2001 ident: 1462_CR20 – volume: 448 start-page: 196 year: 2007 ident: 1462_CR43 publication-title: Nature doi: 10.1038/nature05972 – volume: 103 start-page: 10294 year: 2006 ident: 1462_CR42 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0506945103 – volume: 134 start-page: 635 year: 2007 ident: 1462_CR3 publication-title: Development doi: 10.1242/dev.02787 – volume: 281 start-page: 13374 year: 2006 ident: 1462_CR47 publication-title: J Biol Chem doi: 10.1074/jbc.M512669200 – volume: 16 start-page: 455 year: 2006 ident: 1462_CR18 publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2006.08.009 – volume: 2 start-page: e158 year: 2006 ident: 1462_CR22 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020158 – volume: 15 start-page: 748 year: 2005 ident: 1462_CR55 publication-title: Genome Res doi: 10.1101/gr.3269805 – volume: 19 start-page: 474 year: 2003 ident: 1462_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg014 – volume: 442 start-page: 533 year: 2006 ident: 1462_CR5 publication-title: Nature doi: 10.1038/nature04915 – volume: 448 start-page: 553 year: 2007 ident: 1462_CR40 publication-title: Nature doi: 10.1038/nature06008 – volume: 2 start-page: e553 year: 2007 ident: 1462_CR31 publication-title: PLoS ONE doi: 10.1371/journal.pone.0000553 – ident: 1462_CR56 – volume: 441 start-page: 349 year: 2006 ident: 1462_CR23 publication-title: Nature doi: 10.1038/nature04733 – volume: 6 start-page: R61 year: 2005 ident: 1462_CR19 publication-title: Genome Biol doi: 10.1186/gb-2005-6-7-r61 – volume: 8 start-page: 307 year: 2007 ident: 1462_CR34 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2143 – volume: 24 start-page: 372 year: 2000 ident: 1462_CR4 publication-title: Nat Genet doi: 10.1038/74199 – volume: 1 start-page: e26 year: 2006 ident: 1462_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0000026 – volume: 19 start-page: 1070 year: 2003 ident: 1462_CR13 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg030 – volume: 25 start-page: 6031 year: 2005 ident: 1462_CR10 publication-title: Mol Cell Biol doi: 10.1128/MCB.25.14.6031-6046.2005 – volume: 17 start-page: 2048 year: 2003 ident: 1462_CR9 publication-title: Genes Dev doi: 10.1101/gad.269303 – volume-title: Dev Biol year: 2007 ident: 1462_CR54 – volume: 280 start-page: 24731 year: 2005 ident: 1462_CR8 publication-title: J Biol Chem doi: 10.1074/jbc.M502573200 – volume: 20 start-page: 1425 year: 2001 ident: 1462_CR38 publication-title: Oncogene doi: 10.1038/sj.onc.1204236 – volume: 113 start-page: 643 year: 2003 ident: 1462_CR48 publication-title: Cell doi: 10.1016/S0092-8674(03)00392-1 – volume: 406 start-page: 90 year: 2000 ident: 1462_CR12 publication-title: Nature doi: 10.1038/35021046 – volume: 444 start-page: 364 year: 2006 ident: 1462_CR7 publication-title: Nature doi: 10.1038/nature05284 – ident: 1462_CR51 – volume: 16 start-page: 1493 year: 2006 ident: 1462_CR30 publication-title: Genome Res doi: 10.1101/gr.5391806 – volume: 35 start-page: D760 year: 2007 ident: 1462_CR50 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl887 – volume: 57 start-page: 289 year: 1995 ident: 1462_CR21 publication-title: Journal of Royal Statistical Society, B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 26 start-page: 7772 year: 2006 ident: 1462_CR29 publication-title: Mol Cell Biol doi: 10.1128/MCB.00468-06 – volume: 279 start-page: 8684 year: 2004 ident: 1462_CR27 publication-title: J Biol Chem doi: 10.1074/jbc.M308278200 – volume: 60 start-page: 2389 year: 2003 ident: 1462_CR39 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-003-3037-4 – volume: 13 start-page: 123 year: 2006 ident: 1462_CR17 publication-title: DNA Res doi: 10.1093/dnares/dsl005 – volume: 4 start-page: 877 year: 2003 ident: 1462_CR33 publication-title: EMBO Rep doi: 10.1038/sj.embor.embor917 – volume: 24 start-page: 889 year: 2006 ident: 1462_CR45 publication-title: Stem Cells doi: 10.1634/stemcells.2005-0332 – volume: 8 start-page: R163 year: 2007 ident: 1462_CR44 publication-title: Genome Biol doi: 10.1186/gb-2007-8-8-r163 – volume: 102 start-page: 12837 year: 2005 ident: 1462_CR15 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504609102 – volume-title: Nat Cell Biol year: 2008 ident: 1462_CR41 – volume: 21 start-page: 2548 year: 2005 ident: 1462_CR52 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti343 – ident: 1462_CR58 – volume: 12 start-page: 6395 year: 2006 ident: 1462_CR28 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-1034 – volume: 12 start-page: 309 year: 1996 ident: 1462_CR37 publication-title: Oncogene – volume: 131 start-page: 3805 year: 2004 ident: 1462_CR46 publication-title: Development doi: 10.1242/dev.01204 – volume: 123 start-page: 917 year: 2005 ident: 1462_CR36 publication-title: Cell doi: 10.1016/j.cell.2005.08.040 – volume: 26 start-page: 169 year: 2006 ident: 1462_CR24 publication-title: Mol Cell Biol doi: 10.1128/MCB.26.1.169-181.2006 – volume: 38 start-page: 431 year: 2006 ident: 1462_CR1 publication-title: Nat Genet doi: 10.1038/ng1760 – volume: 13 start-page: 1011 year: 2003 ident: 1462_CR57 publication-title: Genome Res doi: 10.1101/gr.878903 – volume: 122 start-page: 947 year: 2005 ident: 1462_CR6 publication-title: Cell doi: 10.1016/j.cell.2005.08.020 – volume-title: Numerical recipes in C: the art of scientific computing year: 1992 ident: 1462_CR59 – volume: 24 start-page: 3707 year: 1996 ident: 1462_CR49 publication-title: Nucleic Acids Res doi: 10.1093/nar/24.19.3707 – volume: 7 start-page: 1074 year: 2005 ident: 1462_CR26 publication-title: Nat Cell Biol doi: 10.1038/ncb1314 – volume: 11 start-page: 805 year: 2006 ident: 1462_CR32 publication-title: Genes Cells doi: 10.1111/j.1365-2443.2006.00984.x – volume: 9 start-page: 625 year: 2007 ident: 1462_CR16 publication-title: Nat Cell Biol doi: 10.1038/ncb1589 – ident: 1462_CR11 – volume: 46 start-page: 257 year: 2004 ident: 1462_CR35 publication-title: Dev Growth Differ doi: 10.1111/j.1440-169X.2004.00743.x – ident: 1462_CR53 |
| SSID | ssj0017825 |
| Score | 2.2984164 |
| Snippet | Background
Target genes of a transcription factor (TF)
Pou5f1
(
Oct3/4
or
Oct4
), which is essential for pluripotency maintenance and self-renewal of embryonic... Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES)... Background Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic... Abstract Background Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 269 |
| SubjectTerms | Algorithms Analysis Animal Genetics and Genomics Animals Binding Sites Biomedical and Life Sciences Chromatin Chromatin Immunoprecipitation - methods DNA binding proteins DNA microarrays DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Embryonic Stem Cells - metabolism Genetic aspects Genome Health aspects HMGB Proteins - genetics HMGB Proteins - metabolism Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Humans Life Sciences Mice Microarrays Microbial Genetics and Genomics Nanog Homeobox Protein Octamer Transcription Factor-3 - genetics Octamer Transcription Factor-3 - metabolism Oligonucleotide Array Sequence Analysis Plant Genetics and Genomics Proteomics Research Article SOXB1 Transcription Factors Time Factors Transcription Factors - genetics Transcription Factors - metabolism |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKAYkL78dCAQshAVINsZM4ybEgKpBQVXUB9WY5jp2utBtX2W5h_yE_ixknu5DCHuAaj2PL9jzsmfmGkOdgNWg4O4K5SkcsKbhmOjaOganBTVmUVWrDTn_KDg7y4-PicIvwVS5MiHZfuSSDpA5sncs3HMQoE2Dds4IJWVwil0HX5Vit4Wj8de04AIWX9gg-f-k0UD4Bo_9PSfybKroYJnnBVxpU0P6N_5j8TXK9tzfpXndAbpEt29wmV7sKlMs75EeXqOv6lzvqHT30i9TxXTr238Uu1U1FQQL7mlb4Do1x6TPahY_TGuUkxZdcinlJAfIZxoIbtutKldJySdFDjqlUVNPGn9sp1dPat9AHfuMplraHDhhJQmcYG6jbVi_DqIgeO7PsG_yKmpPWo2nd0Anms2DlFjM57eHFKUa53iVf9t9_fveB9cUdmJFxdMaszLTUBrfQiDxKMidcxG1hRAVXIlCstjRgzaR5FLs04SbLnExtlSHcfAn08T2y3fjGPiBUuCxG_2buhE5iAcdSZrJMkkLDVTvRyYi8Xu26Mv3UsADHVIUbUC4Vbo_C7VGFgu0ZkZfrDqcd6Mdm0rd4jNZkiNYdPvi2Vj3zq8jltkgsjyuwppyUZRSXLhWZcWUwmkbkGR5ChXgcDQb81Hoxn6uP4yO1h4h9CdxJYaQXPZHzMHuj-_wJWAOE8BpQ7gwoQWCYQfPT1VlX2IRRdo31i7niiCeW8nwzBbSjHx1mfL_jjV_rk4Mln8V8RLIB1wxWZtjSTE4CnjlmKIFlPCKvVryjekE637TsD_-B9hG51gX5SBbFO2T7rF3Yx-SKOQe-aJ8E8fETrkFuMw priority: 102 providerName: Springer Nature |
| Title | Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data |
| URI | https://link.springer.com/article/10.1186/1471-2164-9-269 https://www.ncbi.nlm.nih.gov/pubmed/18522731 https://www.proquest.com/docview/19716518 https://www.proquest.com/docview/71660583 https://pubmed.ncbi.nlm.nih.gov/PMC2424064 https://doaj.org/article/0f8e94e13d124f66b03bf527cfbb0023 |
| Volume | 9 |
| WOSCitedRecordID | wos000256921200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokL4s1CKRZCAqSaxnnZORbUCiSoqi6g3izHsbcr7SZVtlvYC7-Pn8WM4102RSsuXHKIJ7Fjj-cRz3xDyEuwGjTwTsxcpSOWFlwznRjHwNTgpizKKrN-pT-JoyN5elocr5X6wpiwDh64m7i9yElbpJYnFWgil-dllJQui4VxpVc4KH0jUSydqXB-AHov83lFgrMYPIIA6sNlvre6xwoWY5zzmj7ysP1_C-c17XQ1cvLK8anXSod3yO1gTtL97jPukmu2vkdudgUmF_fJry4P14Ufc7Rx9LiZZ47v0mHzI96luq4oCNhmRCv8zYxh51PaRYfTEYpBij9qKaYdeURn6AscaNdVIqXlguIBOGZKUU3r5tJOqJ6Mmhaegdc0FCvXwwMYKEKnGPqn21YvfK8IDju17Du8ipqztkHLuaZjTFfBwixmfB7QwykGsT4gXw8Pvrz_wELtBmbyJLpgNhc61yYqZGRiGaXCxS7itjBxBR4P6E1bGjBWMhklLku5EcLlma0EosmXQJ88JFt1U9vHhMZOJHh8KV2s0yQGrstFXqZpocGTTnU6IG-XK6hMGBrW15go7-DIXOGSK1xyVShY8gF5vXrgvMP02Ez6DlliRYZg3P4GsKgKLKr-xaID8gIZSiHcRo3xPCM9n83Ux-GJ2kdAvhRcTujpVSByDYze6JAeAXOACF09yu0eJcgD02t-vuRbhU0YRFfbZj5THOHCMi43U0A7HpPDiB91fP5nfiQY6iLhAyJ6O6A3M_2Wenzm4coxAQkM3wF5s9wrKsjJ2aZpf_I_pv0pudUF9-QsSrbJ1kU7t8_IDXMJG6bdIdfFqdzxUgOun38ewPVk-O0312dxfw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGAMEL3x-FwSyEBEgzxPlwkseBmDZRqmkdaG-W49hdpTae0nXQ_5A_izsnLWTQB3iNz7Fl353PvrvfEfISrAYFvBMyW6qAxTlXTEXaMjA1uC7yokyM3-l-OhhkJyf54Qbhy1wYH-2-dEl6Te3FOhPvOKhRFoJ1z3IWivwKuRrDcYVw-UfDryvHARx4SYvg85dOncPHY_T_qYl_O4ouh0le8pX6I2jv9n9M_g651dqbdLdhkLtkw1T3yPWmAuXiPvnRJOra9uWOOksP3TyxfIcO3fdwh6qqpKCB3YiW-A6NcelT2oSP0xHqSYovuRTzkjzkM4wFN2zblCqlxYKihxxTqaiilbswE6omI1dDH_iNo1jaHjpgJAmdYmygqmu18KMieuzUsG_wK6pPa4emdUXHmM-ClVv0-KyFF6cY5fqAfNn7ePxhn7XFHZgWUXDOjEiVUDrIs0CHWRCnNrQBN7kOS7gSwcFqCg3WTJIFkU1irtPUisSUKcLNF0AfPSSblavMY0JDm0bo38xsqOIoBLYUqSjiOFdw1Y5V3CNvl7sudTs1LMAxkf4GlAmJ2yNxe2QuYXt65PWqw1kD-rGe9D2y0YoM0br9B1ePZCv8MrCZyWPDoxKsKStEEUSFTcJU28IbTT3yAplQIh5HhQE_IzWfzeTB8EjuImJfDHdSGOlVS2QdzF6rNn8C1gAhvDqUWx1KUBi607y95HWJTRhlVxk3n0mOeGIJz9ZTQDv60WHGjxrZ-LU-GVjyacR7JO1ITWdlui3V-NTjmWOGEljGPfJmKTuyVaSzdcv-5B9ot8mN_ePPfdk_GHx6Sm42AT-CBdEW2Tyv5-YZuaYvQEbq516V_ATXB3EX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELZgOcQL9xFYWAshwUprNqedPC5HxYpVVVFA-2Y5jt2t1MZV2i70H_KzmEnSQhb6gHitx7Frj8djzzefCXkBXoMC3QmZLZTP4ixQTEXaMnA1Ap1neZGYeqZPRL-fnp5mgxabM1-j3dchySanAVmaysXhrLDNEk_5YQAmlYXg6bOMhTy7TK7EiKLHw_rw6yaIAJtf0rL5_KVSZyOq-fr_tMq_bUsXIZMX4qb1dtS79Z9_5Da52fqh9KhRnDvkkinvkmvNy5Sre-RHk8Br2xs96iwduGVigwM6dN_DA6rKgoJldiNa4P004tWntIGV0xHaT4o3vBTzlWoqaGgLemabJ0xpvqIYOccUK6po6c7NhKrJyFVQBz7jKD55DxUQYUKniBlUVaVWdavIKjs17Bt8iuqzyqHLXdIx5rngiy56PGtpxymiX--TL733n99-YO2jD0zzyF8ww4XiSvtZ6usw9WNhQ-sHJtNhAUcl2HBNrsHLSVI_skkcaCEsT0whkIY-B_noAdkpXWkeERpaEWHcM7WhiqMQ1JULnsdxpuAIHqvYI6_XGiB12zV8mGMi65NRyiVOj8TpkZmE6fHIq02FWUMGsl30DarURgxZvOsfXDWSrVGQvk1NFpsgKsDLspznfpTbJBTa5rUz5ZHnqJASeTpKBAKN1HI-l8fDT_IImfxiOKtCSy9bIeug91q1eRUwBkjt1ZHc7UiCIdGd4r213kssQvRdadxyLgPkGUuCdLsElGN8HXr8sFknv8YnBQ9fRIFHRGcFdUamW1KOz2qec8xcAo_ZI_vrdSRbAzvfNuyP_0F2j1wfvOvJk-P-xyfkRoMD4syPdsnOolqap-SqPoclUj2rrcpPxBF5-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Pou5f1%2C+Sox2%2C+and+Nanog+downstream+target+genes+with+statistical+confidence+by+applying+a+novel+algorithm+to+time+course+microarray+and+genome-wide+chromatin+immunoprecipitation+data&rft.jtitle=BMC+genomics&rft.au=Xin+Li&rft.au=Matoba+Ryo&rft.au=Aiba+Kazuhiro&rft.au=Piao+Yulan&rft.date=2008-06-03&rft.pub=BMC&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=9&rft.issue=1&rft.spage=269&rft_id=info:doi/10.1186%2F1471-2164-9-269&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0f8e94e13d124f66b03bf527cfbb0023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |