A comparison of Freesurfer and multi-atlas MUSE for brain anatomy segmentation: Findings about size and age bias, and inter-scanner stability in multi-site aging studies
Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy...
Uložené v:
| Vydané v: | NeuroImage (Orlando, Fla.) Ročník 223; s. 117248 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
01.12.2020
Elsevier Limited Elsevier |
| Predmet: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy in various evaluations. We compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a consensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly in the deep structures. |
|---|---|
| AbstractList | Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy in various evaluations. We compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a consensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly in the deep structures. Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy in various evaluations. We compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a consensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly in the deep structures.Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy in various evaluations. We compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a consensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly in the deep structures. |
| ArticleNumber | 117248 |
| Author | Davatzikos, Christos Habes, Mohamad Shou, Haochang Wolk, David A. Srinivasan, Dhivya Doshi, Jimit Erus, Guray |
| AuthorAffiliation | c Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, United States b Department of Neurology, University of Pennsylvania, United States a Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States |
| AuthorAffiliation_xml | – name: c Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, United States – name: b Department of Neurology, University of Pennsylvania, United States – name: a Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States |
| Author_xml | – sequence: 1 givenname: Dhivya surname: Srinivasan fullname: Srinivasan, Dhivya email: Dhivya.Srinivasan@pennmedicine.upenn.edu organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States – sequence: 2 givenname: Guray surname: Erus fullname: Erus, Guray organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States – sequence: 3 givenname: Jimit orcidid: 0000-0002-2875-5814 surname: Doshi fullname: Doshi, Jimit organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States – sequence: 4 givenname: David A. surname: Wolk fullname: Wolk, David A. organization: Department of Neurology, University of Pennsylvania, United States – sequence: 5 givenname: Haochang orcidid: 0000-0002-3043-047X surname: Shou fullname: Shou, Haochang organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States – sequence: 6 givenname: Mohamad surname: Habes fullname: Habes, Mohamad organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States – sequence: 7 givenname: Christos surname: Davatzikos fullname: Davatzikos, Christos organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32860881$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1DAUhiNURC_wCsgSGxakOJdxbBaIUnWgUhEL6No6cU6GMyR2sZ1KwxvxlngmpaVddRXnnN_fufg_zPass5hlrODHBS_E2_Wxxck7GmGFxyUvU7hoylo-yQ4Krha5WjTl3va8qHJZFGo_OwxhzTlXRS2fZftVKQWXsjjI_pww48Yr8BScZa5nS48YJt-jZ2A7Nk5DpBziAIF9ufx2xnrnWeuBbEpDdOOGBVyNaCNEcvYdW5LtyK4Cg9ZNkQX6jTtQ6pS1BOHN7o9sRJ8HA9amQiFCSwPFTYrfVAwU071VIqXs1BGG59nTHoaAL26-R9nl8uz76ef84uun89OTi9yIise8NYsGUYhS9gbrSkkhagmlabjixQKMMKaXplK8QyWwaoXgRc-hBAFNC8JUR9n5zO0crPWVT0v2G-2A9C7g_EqDj2QG1Fin3YpOpTJQ10aBwNbUfa0kYNOJLrHez6yrqR2xM2lNHoZ70PsZSz_0yl1rWcmSqzIBXt8AvPs1YYh6pGBwGMCim4Iu60qKRpaiStJXD6RrN3mbVpVUizQwV3ILfPl_R7et_HNEEshZYLwLwWN_Kym43ppPr_Wd-fTWfHo23920t1cNzbZIs9HwGMDHGYDpfa8JvQ6G0BrsyKOJ6QHoMZAPDyBmIEsGhp-4eRziLyPIFes |
| CitedBy_id | crossref_primary_10_3389_fnins_2023_1157738 crossref_primary_10_1002_hbm_25473 crossref_primary_10_1038_s41380_023_02069_0 crossref_primary_10_1016_j_physbeh_2023_114228 crossref_primary_10_1162_imag_a_00306 crossref_primary_10_1016_j_neurobiolaging_2020_10_034 crossref_primary_10_3389_fnagi_2022_936528 crossref_primary_10_1002_brb3_3611 crossref_primary_10_1016_j_bpsc_2024_07_019 crossref_primary_10_1111_ejn_15755 crossref_primary_10_1038_s41467_025_57867_7 crossref_primary_10_1371_journal_pone_0284440 crossref_primary_10_1038_s41591_023_02543_w crossref_primary_10_1136_bmjopen_2021_053103 crossref_primary_10_1002_hbm_70055 crossref_primary_10_1002_alz_12690 crossref_primary_10_3389_fnins_2024_1401329 crossref_primary_10_1007_s10143_025_03488_z crossref_primary_10_1111_jon_12980 crossref_primary_10_3389_fnagi_2025_1542857 crossref_primary_10_1057_s41599_023_01999_y crossref_primary_10_1016_j_jksuci_2022_11_001 crossref_primary_10_1152_japplphysiol_00596_2024 crossref_primary_10_1016_j_jad_2024_05_140 crossref_primary_10_3389_fninf_2022_883223 crossref_primary_10_1038_s41598_024_54663_z crossref_primary_10_1109_ACCESS_2022_3157613 |
| Cites_doi | 10.1016/j.jalz.2018.06.2505 10.3174/ajnr.A4805 10.1016/j.media.2015.06.012 10.1016/j.neuroimage.2014.01.058 10.1371/journal.pone.0005265 10.1002/jmri.23671 10.1038/tp.2014.102 10.3389/fnins.2015.00379 10.1016/j.neuroimage.2006.10.006 10.1093/brain/awr198 10.1007/s12021-012-9147-0 10.1016/j.nicl.2019.101786 10.1016/S0896-6273(02)00569-X 10.1016/j.neuroimage.2010.03.020 10.1007/s11682-013-9269-5 10.1002/hbm.22473 10.1016/j.neuroimage.2015.11.073 10.1016/j.jalz.2014.05.1756 10.1016/j.neuroimage.2017.04.018 10.1002/hipo.22721 10.3389/fninf.2014.00044 10.1016/j.schres.2007.11.023 10.1001/archpsyc.56.6.537 10.3390/cancers9050052 10.1016/j.neuroimage.2013.02.059 10.1001/jamapsychiatry.2015.3463 10.3174/ajnr.A1402 10.1016/j.schres.2010.07.027 10.1016/j.parkreldis.2010.12.010 10.1016/j.gaitpost.2018.02.002 10.1016/j.neuroimage.2006.01.021 10.1001/archneur.63.5.693 10.1016/j.media.2010.07.002 10.1001/archneurol.2011.167 10.1109/TMI.2010.2046908 10.1093/cercor/bhg087 10.1016/j.neuroimage.2014.03.072 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright © 2020. Published by Elsevier Inc. Copyright Elsevier Limited Dec 2020 |
| Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Dec 2020 |
| CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM DOA |
| DOI | 10.1016/j.neuroimage.2020.117248 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 117248 |
| ExternalDocumentID | oai_doaj_org_article_e41196d9439a44c9a6ebc4f498ae7d6d PMC8382092 32860881 10_1016_j_neuroimage_2020_117248 S1053811920307345 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: RF1 AG059869 – fundername: NIA NIH HHS grantid: RF1 AG054409 – fundername: NIMH NIH HHS grantid: R01 MH112070 – fundername: NIDA NIH HHS grantid: 75N95019C00022 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 9DU AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c630t-bc57ee6628fce43986648a2c709015ac6ccf8c390de96e3b6601f0a2a6a7ba6c3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582799600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Oct 14 19:06:07 EDT 2025 Tue Nov 04 01:51:32 EST 2025 Sun Nov 09 14:31:11 EST 2025 Sat Nov 29 14:49:25 EST 2025 Thu Apr 03 06:55:33 EDT 2025 Tue Nov 18 22:18:32 EST 2025 Sat Nov 29 07:08:29 EST 2025 Fri Feb 23 02:46:25 EST 2024 Tue Oct 14 19:39:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Brain Freesurfer Segmentation MRI ROI MUSE |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020. Published by Elsevier Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c630t-bc57ee6628fce43986648a2c709015ac6ccf8c390de96e3b6601f0a2a6a7ba6c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Denotes equally contributing senior authors. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. Denotes equally contributing first authors. |
| ORCID | 0000-0002-3043-047X 0000-0002-2875-5814 |
| OpenAccessLink | https://doaj.org/article/e41196d9439a44c9a6ebc4f498ae7d6d |
| PMID | 32860881 |
| PQID | 2453900982 |
| PQPubID | 2031077 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e41196d9439a44c9a6ebc4f498ae7d6d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8382092 proquest_miscellaneous_2438678263 proquest_journals_2453900982 pubmed_primary_32860881 crossref_primary_10_1016_j_neuroimage_2020_117248 crossref_citationtrail_10_1016_j_neuroimage_2020_117248 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117248 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_117248 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Rohrer, Lashley, Schott, Warren, Mead, Isaacs, Beck, Hardy, de Silva, Warrington, Troakes, Al-Sarraj, King, Borroni, Clarkson, Ourselin, Holton, Fox, Revesz, Rossor, Warren (bib0030) 2011; 134 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib0035) 2010; 29 Apostolova, Dutton, Dinov, Hayashi, Toga, Cummings, Thompson (bib0001) 2006; 63 Avants, Tustison, Stauffer, Song, Wu, Gee (bib0003) 2014; 8 Bakkour, Morris, Wolk, Dickerson (bib0004) 2013; 76 Wierenga, Langen, Ambrosino, van Dijk, Oranje, Durston (bib0038) 2014; 96 Iglesias, Sabuncu (bib0020a) 2015; 24 Sabuncu, Desikan, Sepulcre, Yeo, Liu, Schmansky, Reuter, Weiner, Buckner, Sperling, Fischl (bib0031) 2011; 68 Dicks, Vermunt, van der Flier, Visser, Barkhof, Scheltens, Tijms (bib0011) 2019; 22 Fischl, van der Kouwe, Destrieux, Halgren, Ségonne, Salat, Busa, Seidman, Goldstein, Kennedy, Caviness, Makris, Rosen, Dale (bib0015) 2004; 14 Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib0010) 2006; 31 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bib0014) 2002; 33 Keller, Gerdes, Mohammadi, Kellinghaus, Kugel, Deppe, Ringelstein, Evers, Schwindt, Deppe (bib0022) 2012; 10 Cherbuin, Anstey, Réglade-Meslin, Sachdev (bib0008) 2009; 4 Davatzikos (bib0009) 2018; 14 Satterthwaite, Wolf, Calkins, Vandekar, Erus, Ruparel, Roalf, Linn, Elliott, Moore, Hakonarson, Shinohara, Davatzikos, Gur, Gur (bib0032) 2016; 73 Doshi, Erus, Ou, Resnick, Gur, Gur, Satterthwaite, Furth, Davatzikos (bib0012) 2016; 127 Asman, Alireza Akhondi-Asl, Wang, Tustison, Avants, Warfield, Landman (bib0002) 2013 Bonilha, Molnar, Horner, Anderson, Forster, George, Nahas (bib0005) 2008; 101 Charil, Dagher, Lerch, Zijdenbos, Worsley, Evans (bib0007) 2007; 34 Frisoni, Jack, Bocchetta, Bauer, Frederiksen, Liu, Preboske, Swihart, Blair, Cavedo, Grothe, Lanfredi, Martinez, Nishikawa, Portegies, Stoub, Ward, Apostolova, Ganzola, Wolf, Barkhof, Bartzokis, DeCarli, Csernansky, deToledo-Morrell, Geerlings, Kaye, Killiany, Lehéricy, Matsuda, O'Brien, Silbert, Scheltens, Soininen, Teipel, Waldemar, Fellgiebel, Barnes, Firbank, Gerritsen, Henneman, Malykhin, Pruessner, Wang, Watson, Wolf, deLeon, Pantel, Ferrari, Bosco, Pasqualetti, Duchesne, Duvernoy, Boccardi (bib0016) 2015; 11 Kikinis, Fallon, Niznikiewicz, Nestor, Davidson, Bobrow, Pelavin, Fischl, Yendiki, McCarley, Kikinis, Kubicki, Shenton (bib0023) 2010; 123 Tian, Bair, Resnick, Bilgel, Wong, Studenski (bib0034) 2018; 61 Thompson, Stein, Medland, Hibar, Vasquez, Renteria, Toro, Jahanshad, Schumann, Franke, Wright, Martin, Agartz, Alda, Alhusaini, Almasy, Almeida, Alpert, Andreasen, Andreassen, Apostolova, Appel, Armstrong, Aribisala, Bastin, Bauer, Bearden, Bergmann, Binder, Blangero, Bockholt, Bøen, Bois, Boomsma, Booth, Bowman, Bralten, Brouwer, Brunner, Brohawn, Buckner, Buitelaar, Bulayeva, Bustillo, Calhoun, Cannon, Cantor, Carless, Caseras, Cavalleri, Chakravarty, Chang, Ching, Christoforou, Cichon, Clark, Conrod, Coppola, Crespo-Facorro, Curran, Czisch, Deary, de Geus, den Braber, Delvecchio, Depondt, de Haan, de Zubicaray, Dima, Dimitrova, Djurovic, Dong, Donohoe, Duggirala, Dyer, Ehrlich, Ekman, Elvsåshagen, Emsell, Erk, Espeseth, Fagerness, Fears, Fedko, Fernández, Fisher, Foroud, Fox, Francks, Frangou, Frey, Frodl, Frouin, Garavan, Giddaluru, Glahn, Godlewska, Goldstein, Gollub, Grabe, Grimm, Gruber, Guadalupe, Gur, Gur, Göring, Hagenaars, Hajek, Hall, Hall, Hardy, Hartman, Hass, Hatton, Haukvik, Hegenscheid, Heinz, Hickie, Ho, Hoehn, Hoekstra, Hollinshead, Holmes, Homuth, Hoogman, Hong, Hosten, Hottenga, Hulshoff Pol, Hwang, Jack, Jenkinson, Johnston, Jönsson, Kahn, Kasperaviciute, Kelly, Kim, Kochunov, Koenders, Krämer, Kwok, Lagopoulos, Laje, Landen, Landman, Lauriello, Lawrie, Lee, Le Hellard, Lemaître, Leonardo, Li, Liberg, Liewald, Liu, Lopez, Loth, Lourdusamy, Luciano, Macciardi, Machielsen, MacQueen, Malt, Mandl, Manoach, Martinot, Matarin, Mather, Mattheisen, Mattingsdal, Meyer-Lindenberg, McDonald, McIntosh, McMahon, McMahon, Meisenzahl, Melle, Milaneschi, Mohnke, Montgomery, Morris, Moses, Mueller, Muñoz Maniega, Mühleisen, Müller-Myhsok, Mwangi, Nauck, Nho, Nichols, Nilsson, Nugent, Nyberg, Olvera, Oosterlaan, Ophoff, Pandolfo, Papalampropoulou-Tsiridou, Papmeyer, Paus, Pausova, Pearlson, Penninx, Peterson, Pfennig, Phillips, Pike, Poline, Potkin, Pütz, Ramasamy, Rasmussen, Rietschel, Rijpkema, Risacher, Roffman, Roiz-Santiañez, Romanczuk-Seiferth, Rose, Royle, Rujescu, Ryten, Sachdev, Salami, Satterthwaite, Savitz, Saykin, Scanlon, Schmaal, Schnack, Schork, Schulz, Schür, Seidman, Shen, Shoemaker, Simmons, Sisodiya, Smith, Smoller, Soares, Sponheim, Sprooten, Starr, Steen, Strakowski, Strike, Sussmann, Sämann, Teumer, Toga, Tordesillas-Gutierrez, Trabzuni, Trost, Turner, Van den Heuvel, van der Wee, van Eijk, van Erp, van Haren, van ‘t Ent, van Tol, Valdés Hernández, Veltman, Versace, Völzke, Walker, Walter, Wang, Wardlaw, Weale, Weiner, Wen, Westlye, Whalley, Whelan, White, Winkler, Wittfeld, Woldehawariat, Wolf, Zilles, Zwiers, Thalamuthu, Schofield, Freimer, Lawrence, Drevets (bib0033) 2014 Raz, Ghisletta, Rodrigue, Kennedy, Lindenberger (bib0029) 2010; 51 Habes, Toledo, Resnick, Doshi, Van der Auwera, Erus, Janowitz, Hegenscheid, Homuth, Völzke, Hoffmann, Grabe, Davatzikos (bib0020) 2016; 37 McCarthy, Ramprashad, Thompson, Botti, Coman, Kates (bib0025) 2015; 9 Giorgio, De Stefano (bib0018) 2013; 37 Ou, Sotiras, Paragios, Davatzikos (bib0028) 2011; 15 Janowitz, Schwahn, Borchardt, Wittfeld, Schulz, Barnow, Biffar, Hoffmann, Habes, Homuth, Nauck, Hegenscheid, Lotze, Völzke, Freyberger, Debette, Grabe (bib0021) 2014; 4 Zandifar, Fonov, Coupé, Pruessner, Collins (bib0039) 2017; 155 Ferreira, Hansson, Barroso, Molina, Machado, Hernández-Cabrera, Muehlboeck, Stomrud, Nägga, Lindberg, Ames, Kalpouzos, Fratiglioni, Bäckman, Graff, Mecocci, Vellas, Tsolaki, Kłoszewska, Soininen, Lovestone, Ahlström, Lind, Larsson, Wahlund, Simmons, Westman (bib0013) 2017; 27 Wenger, Mårtensson, Noack, Bodammer, Kühn, Schaefer, Heinze, Düzel, Bäckman, Lindenberger, Lövdén (bib0037) 2014; 35 Brewer, Magda, Airriess, Smith (bib0006) 2009; 30 Wee, Wang (bib0036) 2017; 9 Goldstein, Goodman, Seidman, Kennedy, Makris, Lee, Tourville, Caviness, Faraone, Tsuang (bib0019) 1999; 56 Messina, Cerasa, Condino, Arabia, Novellino, Nicoletti, Salsone, Morelli, Lanza, Quattrone (bib0026) 2011; 17 Mulder, de Jong, Knol, van Schijndel, Cover, Visser, Barkhof, Vrenken (bib0027) 2014; 92 Thompson (10.1016/j.neuroimage.2020.117248_bib0033) 2014 Davatzikos (10.1016/j.neuroimage.2020.117248_bib0009) 2018; 14 Fischl (10.1016/j.neuroimage.2020.117248_bib0015) 2004; 14 McCarthy (10.1016/j.neuroimage.2020.117248_bib0025) 2015; 9 Asman (10.1016/j.neuroimage.2020.117248_bib0002) 2013 Tian (10.1016/j.neuroimage.2020.117248_bib0034) 2018; 61 Kikinis (10.1016/j.neuroimage.2020.117248_bib0023) 2010; 123 Dicks (10.1016/j.neuroimage.2020.117248_bib0011) 2019; 22 Brewer (10.1016/j.neuroimage.2020.117248_bib0006) 2009; 30 Ou (10.1016/j.neuroimage.2020.117248_bib0028) 2011; 15 Wierenga (10.1016/j.neuroimage.2020.117248_bib0038) 2014; 96 Bonilha (10.1016/j.neuroimage.2020.117248_bib0005) 2008; 101 Keller (10.1016/j.neuroimage.2020.117248_bib0022) 2012; 10 Bakkour (10.1016/j.neuroimage.2020.117248_bib0004) 2013; 76 Habes (10.1016/j.neuroimage.2020.117248_bib0020) 2016; 37 Zandifar (10.1016/j.neuroimage.2020.117248_bib0039) 2017; 155 Wenger (10.1016/j.neuroimage.2020.117248_bib0037) 2014; 35 Doshi (10.1016/j.neuroimage.2020.117248_bib0012) 2016; 127 Sabuncu (10.1016/j.neuroimage.2020.117248_bib0031) 2011; 68 Satterthwaite (10.1016/j.neuroimage.2020.117248_bib0032) 2016; 73 Iglesias (10.1016/j.neuroimage.2020.117248_bib0020a) 2015; 24 Charil (10.1016/j.neuroimage.2020.117248_bib0007) 2007; 34 Messina (10.1016/j.neuroimage.2020.117248_bib0026) 2011; 17 Ferreira (10.1016/j.neuroimage.2020.117248_bib0013) 2017; 27 Apostolova (10.1016/j.neuroimage.2020.117248_bib0001) 2006; 63 Giorgio (10.1016/j.neuroimage.2020.117248_bib0018) 2013; 37 Mulder (10.1016/j.neuroimage.2020.117248_bib0027) 2014; 92 Desikan (10.1016/j.neuroimage.2020.117248_bib0010) 2006; 31 Frisoni (10.1016/j.neuroimage.2020.117248_bib0016) 2015; 11 Janowitz (10.1016/j.neuroimage.2020.117248_bib0021) 2014; 4 Tustison (10.1016/j.neuroimage.2020.117248_bib0035) 2010; 29 Goldstein (10.1016/j.neuroimage.2020.117248_bib0019) 1999; 56 Cherbuin (10.1016/j.neuroimage.2020.117248_bib0008) 2009; 4 Fischl (10.1016/j.neuroimage.2020.117248_bib0014) 2002; 33 Wee (10.1016/j.neuroimage.2020.117248_bib0036) 2017; 9 Rohrer (10.1016/j.neuroimage.2020.117248_bib0030) 2011; 134 Avants (10.1016/j.neuroimage.2020.117248_bib0003) 2014; 8 Raz (10.1016/j.neuroimage.2020.117248_bib0029) 2010; 51 |
| References_xml | – volume: 14 start-page: P1476 year: 2018 end-page: P1477 ident: bib0009 article-title: BRAIN AGING HETEROGENEITY ELUCIDATED VIA MACHINE LEARNING: THE MULTI-SITE ISTAGING DIMENSIONAL NEUROIMAGING REFERENCE SYSTEM publication-title: Alzheimer's & Dementia: The Journal of the Alzheimer's Association – year: 2013 ident: bib0002 publication-title: Miccai 2013 segmentation algorithms, theory and applications (SATA) challenge results summary. Presented at the MICCAI Challenge Workshop on Segmentation: Algorithms, Theory and Applications (SATA) – year: 2014 ident: bib0033 article-title: The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data publication-title: Brain Imaging and Behavior. – volume: 63 start-page: 693 year: 2006 end-page: 699 ident: bib0001 article-title: Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps publication-title: Arch. Neurol. – volume: 61 start-page: 346 year: 2018 end-page: 352 ident: bib0034 article-title: β-amyloid deposition is associated with gait variability in usual aging publication-title: Gait Posture – volume: 68 start-page: 1040 year: 2011 end-page: 1048 ident: bib0031 article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease publication-title: Arch. Neurol. – volume: 4 start-page: e5265 year: 2009 ident: bib0008 article-title: In vivo hippocampal measurement and memory: a comparison of manual tracing and automated segmentation in a large community-based sample publication-title: PLoS ONE – volume: 37 start-page: 1636 year: 2016 end-page: 1642 ident: bib0020 article-title: Relationship between APOE Genotype and Structural MRI Measures throughout Adulthood in the Study of Health in Pomerania Population-Based Cohort publication-title: AJNR Am J Neuroradiol – volume: 73 start-page: 515 year: 2016 end-page: 524 ident: bib0032 article-title: Structural Brain Abnormalities in Youth With Psychosis Spectrum Symptoms publication-title: JAMA Psychiatry – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bib0035 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans Med Imaging – volume: 35 start-page: 4236 year: 2014 end-page: 4248 ident: bib0037 article-title: Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains publication-title: Hum Brain Mapp – volume: 96 start-page: 67 year: 2014 end-page: 72 ident: bib0038 article-title: Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24 publication-title: Neuroimage – volume: 123 start-page: 153 year: 2010 end-page: 159 ident: bib0023 article-title: Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia publication-title: Schizophr. Res. – volume: 15 start-page: 622 year: 2011 end-page: 639 ident: bib0028 article-title: DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting publication-title: Med Image Anal – volume: 30 start-page: 578 year: 2009 end-page: 580 ident: bib0006 article-title: Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease publication-title: AJNR Am J Neuroradiol – volume: 134 start-page: 2565 year: 2011 end-page: 2581 ident: bib0030 article-title: Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration publication-title: Brain – volume: 34 start-page: 509 year: 2007 end-page: 517 ident: bib0007 article-title: Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability publication-title: Neuroimage – volume: 9 year: 2017 ident: bib0036 article-title: Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways publication-title: Cancers (Basel) – volume: 8 year: 2014 ident: bib0003 article-title: The Insight ToolKit image registration framework publication-title: Front Neuroinform – volume: 155 start-page: 383 year: 2017 end-page: 393 ident: bib0039 article-title: A comparison of accurate automatic hippocampal segmentation methods publication-title: Neuroimage – volume: 4 start-page: e465 year: 2014 ident: bib0021 article-title: Genetic, psychosocial and clinical factors associated with hippocampal volume in the general population publication-title: Transl Psychiatry – volume: 127 start-page: 186 year: 2016 end-page: 195 ident: bib0012 article-title: MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection publication-title: Neuroimage – volume: 37 start-page: 1 year: 2013 end-page: 14 ident: bib0018 article-title: Clinical use of brain volumetry publication-title: J Magn Reson Imaging – volume: 10 start-page: 341 year: 2012 end-page: 350 ident: bib0022 article-title: Volume estimation of the thalamus using freesurfer and stereology: consistency between methods publication-title: Neuroinformatics – volume: 101 start-page: 142 year: 2008 end-page: 151 ident: bib0005 article-title: Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia publication-title: Schizophr Res – volume: 14 start-page: 11 year: 2004 end-page: 22 ident: bib0015 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex – volume: 24 start-page: 205 year: 2015 end-page: 219 ident: bib0020a article-title: Multi-atlas segmentation of biomedical images: A survey publication-title: Med Image Anal – volume: 11 start-page: 111 year: 2015 end-page: 125 ident: bib0016 article-title: The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity publication-title: Alzheimers Dement – volume: 27 start-page: 653 year: 2017 end-page: 667 ident: bib0013 article-title: The interactive effect of demographic and clinical factors on hippocampal volume: A multicohort study on 1958 cognitively normal individuals publication-title: Hippocampus – volume: 76 start-page: 332 year: 2013 end-page: 344 ident: bib0004 article-title: The effects of aging and Alzheimer's disease on cerebral cortical anatomy: specificity and differential relationships with cognition publication-title: Neuroimage – volume: 22 year: 2019 ident: bib0011 article-title: Modeling grey matter atrophy as a function of time, aging or cognitive decline show different anatomical patterns in Alzheimer's disease publication-title: Neuroimage Clin – volume: 51 start-page: 501 year: 2010 end-page: 511 ident: bib0029 article-title: Trajectories of brain aging in middle-aged and older adults: regional and individual differences publication-title: Neuroimage – volume: 92 start-page: 169 year: 2014 end-page: 181 ident: bib0027 article-title: Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST publication-title: Neuroimage – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bib0014 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 9 start-page: 379 year: 2015 ident: bib0025 article-title: A comparison of FreeSurfer-generated data with and without manual intervention publication-title: Front Neurosci – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: bib0010 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – volume: 56 start-page: 537 year: 1999 end-page: 547 ident: bib0019 article-title: Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging publication-title: Arch. Gen. Psychiatry – volume: 17 start-page: 172 year: 2011 end-page: 176 ident: bib0026 article-title: Patterns of brain atrophy in Parkinson's disease, progressive supranuclear palsy and multiple system atrophy publication-title: Parkinsonism Relat. Disord. – volume: 14 start-page: P1476 year: 2018 ident: 10.1016/j.neuroimage.2020.117248_bib0009 article-title: BRAIN AGING HETEROGENEITY ELUCIDATED VIA MACHINE LEARNING: THE MULTI-SITE ISTAGING DIMENSIONAL NEUROIMAGING REFERENCE SYSTEM publication-title: Alzheimer's & Dementia: The Journal of the Alzheimer's Association doi: 10.1016/j.jalz.2018.06.2505 – volume: 37 start-page: 1636 year: 2016 ident: 10.1016/j.neuroimage.2020.117248_bib0020 article-title: Relationship between APOE Genotype and Structural MRI Measures throughout Adulthood in the Study of Health in Pomerania Population-Based Cohort publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4805 – volume: 24 start-page: 205 year: 2015 ident: 10.1016/j.neuroimage.2020.117248_bib0020a article-title: Multi-atlas segmentation of biomedical images: A survey publication-title: Med Image Anal doi: 10.1016/j.media.2015.06.012 – volume: 92 start-page: 169 year: 2014 ident: 10.1016/j.neuroimage.2020.117248_bib0027 article-title: Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.058 – volume: 4 start-page: e5265 year: 2009 ident: 10.1016/j.neuroimage.2020.117248_bib0008 article-title: In vivo hippocampal measurement and memory: a comparison of manual tracing and automated segmentation in a large community-based sample publication-title: PLoS ONE doi: 10.1371/journal.pone.0005265 – volume: 37 start-page: 1 year: 2013 ident: 10.1016/j.neuroimage.2020.117248_bib0018 article-title: Clinical use of brain volumetry publication-title: J Magn Reson Imaging doi: 10.1002/jmri.23671 – volume: 4 start-page: e465 year: 2014 ident: 10.1016/j.neuroimage.2020.117248_bib0021 article-title: Genetic, psychosocial and clinical factors associated with hippocampal volume in the general population publication-title: Transl Psychiatry doi: 10.1038/tp.2014.102 – volume: 9 start-page: 379 year: 2015 ident: 10.1016/j.neuroimage.2020.117248_bib0025 article-title: A comparison of FreeSurfer-generated data with and without manual intervention publication-title: Front Neurosci doi: 10.3389/fnins.2015.00379 – volume: 34 start-page: 509 year: 2007 ident: 10.1016/j.neuroimage.2020.117248_bib0007 article-title: Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.006 – volume: 134 start-page: 2565 year: 2011 ident: 10.1016/j.neuroimage.2020.117248_bib0030 article-title: Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration publication-title: Brain doi: 10.1093/brain/awr198 – volume: 10 start-page: 341 year: 2012 ident: 10.1016/j.neuroimage.2020.117248_bib0022 article-title: Volume estimation of the thalamus using freesurfer and stereology: consistency between methods publication-title: Neuroinformatics doi: 10.1007/s12021-012-9147-0 – volume: 22 year: 2019 ident: 10.1016/j.neuroimage.2020.117248_bib0011 article-title: Modeling grey matter atrophy as a function of time, aging or cognitive decline show different anatomical patterns in Alzheimer's disease publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2019.101786 – volume: 33 start-page: 341 year: 2002 ident: 10.1016/j.neuroimage.2020.117248_bib0014 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 51 start-page: 501 year: 2010 ident: 10.1016/j.neuroimage.2020.117248_bib0029 article-title: Trajectories of brain aging in middle-aged and older adults: regional and individual differences publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.020 – year: 2014 ident: 10.1016/j.neuroimage.2020.117248_bib0033 article-title: The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data publication-title: Brain Imaging and Behavior. doi: 10.1007/s11682-013-9269-5 – volume: 35 start-page: 4236 year: 2014 ident: 10.1016/j.neuroimage.2020.117248_bib0037 article-title: Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains publication-title: Hum Brain Mapp doi: 10.1002/hbm.22473 – volume: 127 start-page: 186 year: 2016 ident: 10.1016/j.neuroimage.2020.117248_bib0012 article-title: MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.073 – volume: 11 start-page: 111 year: 2015 ident: 10.1016/j.neuroimage.2020.117248_bib0016 article-title: The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2014.05.1756 – volume: 155 start-page: 383 year: 2017 ident: 10.1016/j.neuroimage.2020.117248_bib0039 article-title: A comparison of accurate automatic hippocampal segmentation methods publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.018 – volume: 27 start-page: 653 year: 2017 ident: 10.1016/j.neuroimage.2020.117248_bib0013 article-title: The interactive effect of demographic and clinical factors on hippocampal volume: A multicohort study on 1958 cognitively normal individuals publication-title: Hippocampus doi: 10.1002/hipo.22721 – volume: 8 year: 2014 ident: 10.1016/j.neuroimage.2020.117248_bib0003 article-title: The Insight ToolKit image registration framework publication-title: Front Neuroinform doi: 10.3389/fninf.2014.00044 – volume: 101 start-page: 142 year: 2008 ident: 10.1016/j.neuroimage.2020.117248_bib0005 article-title: Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia publication-title: Schizophr Res doi: 10.1016/j.schres.2007.11.023 – volume: 56 start-page: 537 year: 1999 ident: 10.1016/j.neuroimage.2020.117248_bib0019 article-title: Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.56.6.537 – volume: 9 year: 2017 ident: 10.1016/j.neuroimage.2020.117248_bib0036 article-title: Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways publication-title: Cancers (Basel) doi: 10.3390/cancers9050052 – volume: 76 start-page: 332 year: 2013 ident: 10.1016/j.neuroimage.2020.117248_bib0004 article-title: The effects of aging and Alzheimer's disease on cerebral cortical anatomy: specificity and differential relationships with cognition publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.059 – volume: 73 start-page: 515 year: 2016 ident: 10.1016/j.neuroimage.2020.117248_bib0032 article-title: Structural Brain Abnormalities in Youth With Psychosis Spectrum Symptoms publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2015.3463 – volume: 30 start-page: 578 year: 2009 ident: 10.1016/j.neuroimage.2020.117248_bib0006 article-title: Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A1402 – volume: 123 start-page: 153 year: 2010 ident: 10.1016/j.neuroimage.2020.117248_bib0023 article-title: Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2010.07.027 – volume: 17 start-page: 172 year: 2011 ident: 10.1016/j.neuroimage.2020.117248_bib0026 article-title: Patterns of brain atrophy in Parkinson's disease, progressive supranuclear palsy and multiple system atrophy publication-title: Parkinsonism Relat. Disord. doi: 10.1016/j.parkreldis.2010.12.010 – volume: 61 start-page: 346 year: 2018 ident: 10.1016/j.neuroimage.2020.117248_bib0034 article-title: β-amyloid deposition is associated with gait variability in usual aging publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.02.002 – volume: 31 start-page: 968 year: 2006 ident: 10.1016/j.neuroimage.2020.117248_bib0010 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 63 start-page: 693 year: 2006 ident: 10.1016/j.neuroimage.2020.117248_bib0001 article-title: Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps publication-title: Arch. Neurol. doi: 10.1001/archneur.63.5.693 – volume: 15 start-page: 622 year: 2011 ident: 10.1016/j.neuroimage.2020.117248_bib0028 article-title: DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting publication-title: Med Image Anal doi: 10.1016/j.media.2010.07.002 – volume: 68 start-page: 1040 year: 2011 ident: 10.1016/j.neuroimage.2020.117248_bib0031 article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease publication-title: Arch. Neurol. doi: 10.1001/archneurol.2011.167 – volume: 29 start-page: 1310 year: 2010 ident: 10.1016/j.neuroimage.2020.117248_bib0035 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2010.2046908 – year: 2013 ident: 10.1016/j.neuroimage.2020.117248_bib0002 – volume: 14 start-page: 11 year: 2004 ident: 10.1016/j.neuroimage.2020.117248_bib0015 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – volume: 96 start-page: 67 year: 2014 ident: 10.1016/j.neuroimage.2020.117248_bib0038 article-title: Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.072 |
| SSID | ssj0009148 |
| Score | 2.5170522 |
| Snippet | Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 117248 |
| SubjectTerms | Adult Aged Aging Algorithms Alzheimer's disease Anatomy Automation Bias Brain Brain - anatomy & histology Brain - diagnostic imaging Datasets Female Freesurfer Hippocampus Hippocampus - anatomy & histology Hippocampus - diagnostic imaging Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging Male Medical imaging MRI MUSE Neuroimaging Organ Size Protocol Quality control Registration Reproducibility of Results ROI Segmentation Software Software packages Young Adult |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhRAXVN6BgozEkYiN7XVsOBXUFQdaIUGl3iy_AkFsFiW7lco_4l8yfiTswoE9cEwcO4lnPPONPP4Goeeau7phGtY3-IaSUd2AHZSi5NRRY4MHt5Fd_319diYuLuSHrVJfIScs0QOniXvpWQVK4iQ4Ts2YlZp7Y1nDpNC-dtwF6wuoZwymRrpdQPk5bydlc0V2yHYJaxRiQhL3Kkmo-bPljCJn_45P-htz_pk6ueWLFofoVgaR-Dh9_G10zXd30I3TvE1-F_08xnaqL4hXDV703g-bvvE91p3DMYuw1GtAzvj0_OMJBuSKTSgWAc0QhS-v8OA_L_OxpO4VXrTx8MuAYx4zHtofPg4EP4pNq4cX8SpQT_TlAMLq4EUAO2Pi7RXcz28MO9U4lkXCQ8pfvIfOFyef3r4rc02G0nI6W5fGzmvvOSeisR5kIjhnQhNbzwKw0JZb2whL5cx5yT01HAK-ZqaJ5ro2mlt6Hx10q84_RNiSuamk1BZgAqPGyQrGNE5UFbUGwtYC1aNwlM2E5aFuxjc1ZqZ9Vb_FqoJYVRJrgaqp5_dE2rFHnzdB_tPzgXY73gBlVFkZ1b-UsUBy1B41nmwFWwwDtXt8wOupb0Y_CdXs2ftoVFaVrdCgCJuDJGDpkQI9m5rBfoRNId351SY8QwUAFsJpgR4k3Z7mgBLBwQtVIIkdrd-ZpN2Wrv0SOcoFBWgpyaP_MauP0c3wpymJ6AgdrPuNf4Ku28t1O_RP48L_BVwJY6U priority: 102 providerName: Directory of Open Access Journals |
| Title | A comparison of Freesurfer and multi-atlas MUSE for brain anatomy segmentation: Findings about size and age bias, and inter-scanner stability in multi-site aging studies |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811920307345 https://dx.doi.org/10.1016/j.neuroimage.2020.117248 https://www.ncbi.nlm.nih.gov/pubmed/32860881 https://www.proquest.com/docview/2453900982 https://www.proquest.com/docview/2438678263 https://pubmed.ncbi.nlm.nih.gov/PMC8382092 https://doaj.org/article/e41196d9439a44c9a6ebc4f498ae7d6d |
| Volume | 223 |
| WOSCitedRecordID | wos000582799600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYXYS48H4UlspIHIlobNex4YB2USsOtKqAlXqLbMdZgmiyJC3S8o_4l4wdJ92ChCpxiZQ4dmJ7PPPZ_jyD0AvFsyRnCsY32IaIUZWDHpQi4jSj2jgLbrx3_Q_JfC6WS7kIC25NoFV2OtEr6qwybo38FWFjmJ5DMeTtxffIRY1yu6shhMYBOnJeEqin7i22Tndj1h6FG9NIxLEMTJ6W3-X9RRYrGLUwSyR-95K4KEBXzJP34r9jpf5GoX-SKa9Yp-nt_63XHXQr4FJ80grSXXTNlvfQjVnYeb-Pfp1g04csxFWOp7W1zabObY1VmWFPTIzUGsA4np19mmAAw1i7-BOQDBP71SVu7PkqnHQqX-Np4c_TNNhTo3FT_LS-IGgprAvVvPR3zptFHTXQ_yV8CJCs5_JewvPwRVcN7CMt4aalRD5AZ9PJ53fvoxDmITKcjtaRNuPEWs6JyI0FfCQ4Z0IRk4wcVlGGG5MLA42UWckt1RzmkPlIEcVVohU39CE6LKvSPkbYkLGOpVQGkAejOpMxlKkz6HtqNMyEByjpejc1wQe6C8XxLe3Ibl_TrVykTi7SVi4GKO5zXrR-QPbIc-oEqH_fefL2D6r6PA2KIbUMBJNnEiquGDNScasNy5kUyiYZzwZIduKXdodlQb1DQcUeP_CmzxsAVQuU9sx93ElsGhRbk27FdYCe98mgktw-kypttXHvUAEYiHA6QI_awdG3ASWCg2GLoSd2hs1OI-2mlMUX7_ZcUECrkjz59289RTddHVrG0TE6XNcb-wxdNz_WRVMP0UGyTPxVDNHR6WS--Dj0yzBwnZHZ0OuP361XeD8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQMAL90thgJHgjYjGdh0bhNCAVZvWVkhs0t6C7TgjiCYjaUHlH_HCb-TYuXQFCfVlDzwmju3EPtf4O-cg9ETxJEqZAv4G3RAwqlKQg1IEnCZUG6fBjc-uP4omE3F0JN9voF9tLIyDVbYy0QvqpDDuH_lzwgbgnsMw5PXJ18BVjXKnq20JjZos9u3iO7hs1au9d7C_TwkZ7hy83Q2aqgKB4bQ_C7QZRNZyTkRqLKhjwTkTipio71SjMtyYVBiYK7GSW6o5uCxpXxHFVaQVNxTGPYfOM_CEXKmIMRkvk_yGrA69G9BAhKFskEM1nsznp8ymICXAKyX-tJS4qkOn1KGvGrCiFf-2ev8Eb57ShsOr_9s6XkNXGrsbb9eMch1t2PwGujhukAU30c9tbLqSjLhI8bC0tpqXqS2xyhPsgZeBmoGzgceHH3YwGPtYu_oa0KxmxXSBK3s8bSK58hd4mPl4oQp76Deush_WDwQ7g3Wmqmf-ymXrKIMK6DuHicBS91jlBdxvZnTLhn0lKVzVkM9b6PBMFuo22syL3N5F2JCBDqVUBiwrRnUiQxhTJ0Br1Gjw9HsoaqkpNk2Od1dq5Evcgvk-x0s6jB0dxjUd9lDY9Typ85ys0eeNI9jueZep3N8oyuO4EXyxZcAIPJHw4YoxIxW32rCUSaFslPCkh2RL7nEbDAzqCwbK1niBl13fxmCsDcE1e2-1HBI3gruKl-zRQ4-7ZhC57hxN5baYu2eoABuPcNpDd2pm7NaAEsFBcYewEytsurJIqy159smndRcUrHFJ7v37tR6hS7sH41E82pvs30eX3ffU6KottDkr5_YBumC-zbKqfOhlE0Yfz5qJfwNkBNCp |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQBMv3C-FAUaCN6I1tuvEIIQGW8W0raoEk_aW2Y4zgmgykhZU_hF_gV_HseOkK0ioL3vgMXFsJ_a5xt85B6FnkqdRxiTwN-iGgFGZgRwUccBpSpW2Gly77PoH0WgUHx-L8Rr61cbCWFhlKxOdoE5Lbf-RbxE2APcchiFbmYdFjHeGb86-BraClD1pbctpNCSyb-bfwX2rX-_twF4_J2S4-_Hd-8BXGAg0p_1poPQgMoZzEmfagGqOOWexJDrqWzUpNdc6izXMmxrBDVUc3JesL4nkMlKSawrjXkKXI5u03MEGx4uEvyFrwvAGNIjDUHgUUYMtc7kq8wlIDPBQiTs5JbYC0TnV6CoILGnIvy3gP4Gc5zTj8Pr_vKY30DVvj-PthoFuojVT3EIbhx5xcBv93Ma6K9WIywwPK2PqWZWZCssixQ6QGcgpOCH48OjDLgYnACtbdwOa5bSczHFtTic-wqt4iYe5iyOqsYOE4zr_YdxAsEtY5bJ-4a5sFo8qqIHuC5gILHiHYZ7DfT-jXTbsKkzhuoGC3kFHF7JQd9F6URbmPsKaDFQohNRgcTGqUhHCmCoFuqNaDZjooailrET73O-2BMmXpAX5fU4WNJlYmkwamuyhsOt51uQ_WaHPW0u83fM2g7m7UVaniReIiWHAFDwV8OGSMS0kN0qzjIlYmijlaQ-JlvSTNkgY1BoMlK_wAq-6vt6QbAzEFXtvttySeIFeJwtW6aGnXTOIYnu-JgtTzuwzNAbbj3DaQ_caxuzWgJKYg0IPYSeWWHZpkZZbivyTS_ceU7DSBXnw79d6gjaAd5ODvdH-Q3TVfk4DutpE69NqZh6hK_rbNK-rx05MYXRy0Tz8G9YH2Xo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+Freesurfer+and+multi-atlas+MUSE+for+brain+anatomy+segmentation%3A+Findings+about+size+and+age+bias%2C+and+inter-scanner+stability+in+multi-site+aging+studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Srinivasan%2C+Dhivya&rft.au=Erus%2C+Guray&rft.au=Doshi%2C+Jimit&rft.au=Wolk%2C+David+A.&rft.date=2020-12-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=223&rft.spage=117248&rft.epage=117248&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117248&rft_id=info%3Apmid%2F32860881&rft.externalDocID=PMC8382092 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |