A comparison of Freesurfer and multi-atlas MUSE for brain anatomy segmentation: Findings about size and age bias, and inter-scanner stability in multi-site aging studies

Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:NeuroImage (Orlando, Fla.) Ročník 223; s. 117248
Hlavní autori: Srinivasan, Dhivya, Erus, Guray, Doshi, Jimit, Wolk, David A., Shou, Haochang, Habes, Mohamad, Davatzikos, Christos
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.12.2020
Elsevier Limited
Elsevier
Predmet:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy in various evaluations. We compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a consensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly in the deep structures.
AbstractList Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy in various evaluations. We compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a consensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly in the deep structures.
Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy in various evaluations. We compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a consensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly in the deep structures.Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy in various evaluations. We compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a consensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly in the deep structures.
ArticleNumber 117248
Author Davatzikos, Christos
Habes, Mohamad
Shou, Haochang
Wolk, David A.
Srinivasan, Dhivya
Doshi, Jimit
Erus, Guray
AuthorAffiliation c Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, United States
b Department of Neurology, University of Pennsylvania, United States
a Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States
AuthorAffiliation_xml – name: c Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, United States
– name: b Department of Neurology, University of Pennsylvania, United States
– name: a Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States
Author_xml – sequence: 1
  givenname: Dhivya
  surname: Srinivasan
  fullname: Srinivasan, Dhivya
  email: Dhivya.Srinivasan@pennmedicine.upenn.edu
  organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States
– sequence: 2
  givenname: Guray
  surname: Erus
  fullname: Erus, Guray
  organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States
– sequence: 3
  givenname: Jimit
  orcidid: 0000-0002-2875-5814
  surname: Doshi
  fullname: Doshi, Jimit
  organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States
– sequence: 4
  givenname: David A.
  surname: Wolk
  fullname: Wolk, David A.
  organization: Department of Neurology, University of Pennsylvania, United States
– sequence: 5
  givenname: Haochang
  orcidid: 0000-0002-3043-047X
  surname: Shou
  fullname: Shou, Haochang
  organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States
– sequence: 6
  givenname: Mohamad
  surname: Habes
  fullname: Habes, Mohamad
  organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States
– sequence: 7
  givenname: Christos
  surname: Davatzikos
  fullname: Davatzikos, Christos
  organization: Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Richards Building, 3700 Hamilton Walk, 7th Floor, Philadelphia, PA 19104, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32860881$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhiNURC_wCsgSGxakOJdxbBaIUnWgUhEL6No6cU6GMyR2sZ1KwxvxlngmpaVddRXnnN_fufg_zPass5hlrODHBS_E2_Wxxck7GmGFxyUvU7hoylo-yQ4Krha5WjTl3va8qHJZFGo_OwxhzTlXRS2fZftVKQWXsjjI_pww48Yr8BScZa5nS48YJt-jZ2A7Nk5DpBziAIF9ufx2xnrnWeuBbEpDdOOGBVyNaCNEcvYdW5LtyK4Cg9ZNkQX6jTtQ6pS1BOHN7o9sRJ8HA9amQiFCSwPFTYrfVAwU071VIqXs1BGG59nTHoaAL26-R9nl8uz76ef84uun89OTi9yIise8NYsGUYhS9gbrSkkhagmlabjixQKMMKaXplK8QyWwaoXgRc-hBAFNC8JUR9n5zO0crPWVT0v2G-2A9C7g_EqDj2QG1Fin3YpOpTJQ10aBwNbUfa0kYNOJLrHez6yrqR2xM2lNHoZ70PsZSz_0yl1rWcmSqzIBXt8AvPs1YYh6pGBwGMCim4Iu60qKRpaiStJXD6RrN3mbVpVUizQwV3ILfPl_R7et_HNEEshZYLwLwWN_Kym43ppPr_Wd-fTWfHo23920t1cNzbZIs9HwGMDHGYDpfa8JvQ6G0BrsyKOJ6QHoMZAPDyBmIEsGhp-4eRziLyPIFes
CitedBy_id crossref_primary_10_3389_fnins_2023_1157738
crossref_primary_10_1002_hbm_25473
crossref_primary_10_1038_s41380_023_02069_0
crossref_primary_10_1016_j_physbeh_2023_114228
crossref_primary_10_1162_imag_a_00306
crossref_primary_10_1016_j_neurobiolaging_2020_10_034
crossref_primary_10_3389_fnagi_2022_936528
crossref_primary_10_1002_brb3_3611
crossref_primary_10_1016_j_bpsc_2024_07_019
crossref_primary_10_1111_ejn_15755
crossref_primary_10_1038_s41467_025_57867_7
crossref_primary_10_1371_journal_pone_0284440
crossref_primary_10_1038_s41591_023_02543_w
crossref_primary_10_1136_bmjopen_2021_053103
crossref_primary_10_1002_hbm_70055
crossref_primary_10_1002_alz_12690
crossref_primary_10_3389_fnins_2024_1401329
crossref_primary_10_1007_s10143_025_03488_z
crossref_primary_10_1111_jon_12980
crossref_primary_10_3389_fnagi_2025_1542857
crossref_primary_10_1057_s41599_023_01999_y
crossref_primary_10_1016_j_jksuci_2022_11_001
crossref_primary_10_1152_japplphysiol_00596_2024
crossref_primary_10_1016_j_jad_2024_05_140
crossref_primary_10_3389_fninf_2022_883223
crossref_primary_10_1038_s41598_024_54663_z
crossref_primary_10_1109_ACCESS_2022_3157613
Cites_doi 10.1016/j.jalz.2018.06.2505
10.3174/ajnr.A4805
10.1016/j.media.2015.06.012
10.1016/j.neuroimage.2014.01.058
10.1371/journal.pone.0005265
10.1002/jmri.23671
10.1038/tp.2014.102
10.3389/fnins.2015.00379
10.1016/j.neuroimage.2006.10.006
10.1093/brain/awr198
10.1007/s12021-012-9147-0
10.1016/j.nicl.2019.101786
10.1016/S0896-6273(02)00569-X
10.1016/j.neuroimage.2010.03.020
10.1007/s11682-013-9269-5
10.1002/hbm.22473
10.1016/j.neuroimage.2015.11.073
10.1016/j.jalz.2014.05.1756
10.1016/j.neuroimage.2017.04.018
10.1002/hipo.22721
10.3389/fninf.2014.00044
10.1016/j.schres.2007.11.023
10.1001/archpsyc.56.6.537
10.3390/cancers9050052
10.1016/j.neuroimage.2013.02.059
10.1001/jamapsychiatry.2015.3463
10.3174/ajnr.A1402
10.1016/j.schres.2010.07.027
10.1016/j.parkreldis.2010.12.010
10.1016/j.gaitpost.2018.02.002
10.1016/j.neuroimage.2006.01.021
10.1001/archneur.63.5.693
10.1016/j.media.2010.07.002
10.1001/archneurol.2011.167
10.1109/TMI.2010.2046908
10.1093/cercor/bhg087
10.1016/j.neuroimage.2014.03.072
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Inc.
Copyright Elsevier Limited Dec 2020
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Dec 2020
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2020.117248
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology



MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 117248
ExternalDocumentID oai_doaj_org_article_e41196d9439a44c9a6ebc4f498ae7d6d
PMC8382092
32860881
10_1016_j_neuroimage_2020_117248
S1053811920307345
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: RF1 AG059869
– fundername: NIA NIH HHS
  grantid: RF1 AG054409
– fundername: NIMH NIH HHS
  grantid: R01 MH112070
– fundername: NIDA NIH HHS
  grantid: 75N95019C00022
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
9DU
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c630t-bc57ee6628fce43986648a2c709015ac6ccf8c390de96e3b6601f0a2a6a7ba6c3
IEDL.DBID M7P
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582799600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Tue Oct 14 19:06:07 EDT 2025
Tue Nov 04 01:51:32 EST 2025
Sun Nov 09 14:31:11 EST 2025
Sat Nov 29 14:49:25 EST 2025
Thu Apr 03 06:55:33 EDT 2025
Tue Nov 18 22:18:32 EST 2025
Sat Nov 29 07:08:29 EST 2025
Fri Feb 23 02:46:25 EST 2024
Tue Oct 14 19:39:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Brain
Freesurfer
Segmentation
MRI
ROI
MUSE
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-bc57ee6628fce43986648a2c709015ac6ccf8c390de96e3b6601f0a2a6a7ba6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Denotes equally contributing senior authors.
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
Denotes equally contributing first authors.
ORCID 0000-0002-3043-047X
0000-0002-2875-5814
OpenAccessLink https://doaj.org/article/e41196d9439a44c9a6ebc4f498ae7d6d
PMID 32860881
PQID 2453900982
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_e41196d9439a44c9a6ebc4f498ae7d6d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8382092
proquest_miscellaneous_2438678263
proquest_journals_2453900982
pubmed_primary_32860881
crossref_primary_10_1016_j_neuroimage_2020_117248
crossref_citationtrail_10_1016_j_neuroimage_2020_117248
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117248
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_117248
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Rohrer, Lashley, Schott, Warren, Mead, Isaacs, Beck, Hardy, de Silva, Warrington, Troakes, Al-Sarraj, King, Borroni, Clarkson, Ourselin, Holton, Fox, Revesz, Rossor, Warren (bib0030) 2011; 134
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib0035) 2010; 29
Apostolova, Dutton, Dinov, Hayashi, Toga, Cummings, Thompson (bib0001) 2006; 63
Avants, Tustison, Stauffer, Song, Wu, Gee (bib0003) 2014; 8
Bakkour, Morris, Wolk, Dickerson (bib0004) 2013; 76
Wierenga, Langen, Ambrosino, van Dijk, Oranje, Durston (bib0038) 2014; 96
Iglesias, Sabuncu (bib0020a) 2015; 24
Sabuncu, Desikan, Sepulcre, Yeo, Liu, Schmansky, Reuter, Weiner, Buckner, Sperling, Fischl (bib0031) 2011; 68
Dicks, Vermunt, van der Flier, Visser, Barkhof, Scheltens, Tijms (bib0011) 2019; 22
Fischl, van der Kouwe, Destrieux, Halgren, Ségonne, Salat, Busa, Seidman, Goldstein, Kennedy, Caviness, Makris, Rosen, Dale (bib0015) 2004; 14
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib0010) 2006; 31
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bib0014) 2002; 33
Keller, Gerdes, Mohammadi, Kellinghaus, Kugel, Deppe, Ringelstein, Evers, Schwindt, Deppe (bib0022) 2012; 10
Cherbuin, Anstey, Réglade-Meslin, Sachdev (bib0008) 2009; 4
Davatzikos (bib0009) 2018; 14
Satterthwaite, Wolf, Calkins, Vandekar, Erus, Ruparel, Roalf, Linn, Elliott, Moore, Hakonarson, Shinohara, Davatzikos, Gur, Gur (bib0032) 2016; 73
Doshi, Erus, Ou, Resnick, Gur, Gur, Satterthwaite, Furth, Davatzikos (bib0012) 2016; 127
Asman, Alireza Akhondi-Asl, Wang, Tustison, Avants, Warfield, Landman (bib0002) 2013
Bonilha, Molnar, Horner, Anderson, Forster, George, Nahas (bib0005) 2008; 101
Charil, Dagher, Lerch, Zijdenbos, Worsley, Evans (bib0007) 2007; 34
Frisoni, Jack, Bocchetta, Bauer, Frederiksen, Liu, Preboske, Swihart, Blair, Cavedo, Grothe, Lanfredi, Martinez, Nishikawa, Portegies, Stoub, Ward, Apostolova, Ganzola, Wolf, Barkhof, Bartzokis, DeCarli, Csernansky, deToledo-Morrell, Geerlings, Kaye, Killiany, Lehéricy, Matsuda, O'Brien, Silbert, Scheltens, Soininen, Teipel, Waldemar, Fellgiebel, Barnes, Firbank, Gerritsen, Henneman, Malykhin, Pruessner, Wang, Watson, Wolf, deLeon, Pantel, Ferrari, Bosco, Pasqualetti, Duchesne, Duvernoy, Boccardi (bib0016) 2015; 11
Kikinis, Fallon, Niznikiewicz, Nestor, Davidson, Bobrow, Pelavin, Fischl, Yendiki, McCarley, Kikinis, Kubicki, Shenton (bib0023) 2010; 123
Tian, Bair, Resnick, Bilgel, Wong, Studenski (bib0034) 2018; 61
Thompson, Stein, Medland, Hibar, Vasquez, Renteria, Toro, Jahanshad, Schumann, Franke, Wright, Martin, Agartz, Alda, Alhusaini, Almasy, Almeida, Alpert, Andreasen, Andreassen, Apostolova, Appel, Armstrong, Aribisala, Bastin, Bauer, Bearden, Bergmann, Binder, Blangero, Bockholt, Bøen, Bois, Boomsma, Booth, Bowman, Bralten, Brouwer, Brunner, Brohawn, Buckner, Buitelaar, Bulayeva, Bustillo, Calhoun, Cannon, Cantor, Carless, Caseras, Cavalleri, Chakravarty, Chang, Ching, Christoforou, Cichon, Clark, Conrod, Coppola, Crespo-Facorro, Curran, Czisch, Deary, de Geus, den Braber, Delvecchio, Depondt, de Haan, de Zubicaray, Dima, Dimitrova, Djurovic, Dong, Donohoe, Duggirala, Dyer, Ehrlich, Ekman, Elvsåshagen, Emsell, Erk, Espeseth, Fagerness, Fears, Fedko, Fernández, Fisher, Foroud, Fox, Francks, Frangou, Frey, Frodl, Frouin, Garavan, Giddaluru, Glahn, Godlewska, Goldstein, Gollub, Grabe, Grimm, Gruber, Guadalupe, Gur, Gur, Göring, Hagenaars, Hajek, Hall, Hall, Hardy, Hartman, Hass, Hatton, Haukvik, Hegenscheid, Heinz, Hickie, Ho, Hoehn, Hoekstra, Hollinshead, Holmes, Homuth, Hoogman, Hong, Hosten, Hottenga, Hulshoff Pol, Hwang, Jack, Jenkinson, Johnston, Jönsson, Kahn, Kasperaviciute, Kelly, Kim, Kochunov, Koenders, Krämer, Kwok, Lagopoulos, Laje, Landen, Landman, Lauriello, Lawrie, Lee, Le Hellard, Lemaître, Leonardo, Li, Liberg, Liewald, Liu, Lopez, Loth, Lourdusamy, Luciano, Macciardi, Machielsen, MacQueen, Malt, Mandl, Manoach, Martinot, Matarin, Mather, Mattheisen, Mattingsdal, Meyer-Lindenberg, McDonald, McIntosh, McMahon, McMahon, Meisenzahl, Melle, Milaneschi, Mohnke, Montgomery, Morris, Moses, Mueller, Muñoz Maniega, Mühleisen, Müller-Myhsok, Mwangi, Nauck, Nho, Nichols, Nilsson, Nugent, Nyberg, Olvera, Oosterlaan, Ophoff, Pandolfo, Papalampropoulou-Tsiridou, Papmeyer, Paus, Pausova, Pearlson, Penninx, Peterson, Pfennig, Phillips, Pike, Poline, Potkin, Pütz, Ramasamy, Rasmussen, Rietschel, Rijpkema, Risacher, Roffman, Roiz-Santiañez, Romanczuk-Seiferth, Rose, Royle, Rujescu, Ryten, Sachdev, Salami, Satterthwaite, Savitz, Saykin, Scanlon, Schmaal, Schnack, Schork, Schulz, Schür, Seidman, Shen, Shoemaker, Simmons, Sisodiya, Smith, Smoller, Soares, Sponheim, Sprooten, Starr, Steen, Strakowski, Strike, Sussmann, Sämann, Teumer, Toga, Tordesillas-Gutierrez, Trabzuni, Trost, Turner, Van den Heuvel, van der Wee, van Eijk, van Erp, van Haren, van ‘t Ent, van Tol, Valdés Hernández, Veltman, Versace, Völzke, Walker, Walter, Wang, Wardlaw, Weale, Weiner, Wen, Westlye, Whalley, Whelan, White, Winkler, Wittfeld, Woldehawariat, Wolf, Zilles, Zwiers, Thalamuthu, Schofield, Freimer, Lawrence, Drevets (bib0033) 2014
Raz, Ghisletta, Rodrigue, Kennedy, Lindenberger (bib0029) 2010; 51
Habes, Toledo, Resnick, Doshi, Van der Auwera, Erus, Janowitz, Hegenscheid, Homuth, Völzke, Hoffmann, Grabe, Davatzikos (bib0020) 2016; 37
McCarthy, Ramprashad, Thompson, Botti, Coman, Kates (bib0025) 2015; 9
Giorgio, De Stefano (bib0018) 2013; 37
Ou, Sotiras, Paragios, Davatzikos (bib0028) 2011; 15
Janowitz, Schwahn, Borchardt, Wittfeld, Schulz, Barnow, Biffar, Hoffmann, Habes, Homuth, Nauck, Hegenscheid, Lotze, Völzke, Freyberger, Debette, Grabe (bib0021) 2014; 4
Zandifar, Fonov, Coupé, Pruessner, Collins (bib0039) 2017; 155
Ferreira, Hansson, Barroso, Molina, Machado, Hernández-Cabrera, Muehlboeck, Stomrud, Nägga, Lindberg, Ames, Kalpouzos, Fratiglioni, Bäckman, Graff, Mecocci, Vellas, Tsolaki, Kłoszewska, Soininen, Lovestone, Ahlström, Lind, Larsson, Wahlund, Simmons, Westman (bib0013) 2017; 27
Wenger, Mårtensson, Noack, Bodammer, Kühn, Schaefer, Heinze, Düzel, Bäckman, Lindenberger, Lövdén (bib0037) 2014; 35
Brewer, Magda, Airriess, Smith (bib0006) 2009; 30
Wee, Wang (bib0036) 2017; 9
Goldstein, Goodman, Seidman, Kennedy, Makris, Lee, Tourville, Caviness, Faraone, Tsuang (bib0019) 1999; 56
Messina, Cerasa, Condino, Arabia, Novellino, Nicoletti, Salsone, Morelli, Lanza, Quattrone (bib0026) 2011; 17
Mulder, de Jong, Knol, van Schijndel, Cover, Visser, Barkhof, Vrenken (bib0027) 2014; 92
Thompson (10.1016/j.neuroimage.2020.117248_bib0033) 2014
Davatzikos (10.1016/j.neuroimage.2020.117248_bib0009) 2018; 14
Fischl (10.1016/j.neuroimage.2020.117248_bib0015) 2004; 14
McCarthy (10.1016/j.neuroimage.2020.117248_bib0025) 2015; 9
Asman (10.1016/j.neuroimage.2020.117248_bib0002) 2013
Tian (10.1016/j.neuroimage.2020.117248_bib0034) 2018; 61
Kikinis (10.1016/j.neuroimage.2020.117248_bib0023) 2010; 123
Dicks (10.1016/j.neuroimage.2020.117248_bib0011) 2019; 22
Brewer (10.1016/j.neuroimage.2020.117248_bib0006) 2009; 30
Ou (10.1016/j.neuroimage.2020.117248_bib0028) 2011; 15
Wierenga (10.1016/j.neuroimage.2020.117248_bib0038) 2014; 96
Bonilha (10.1016/j.neuroimage.2020.117248_bib0005) 2008; 101
Keller (10.1016/j.neuroimage.2020.117248_bib0022) 2012; 10
Bakkour (10.1016/j.neuroimage.2020.117248_bib0004) 2013; 76
Habes (10.1016/j.neuroimage.2020.117248_bib0020) 2016; 37
Zandifar (10.1016/j.neuroimage.2020.117248_bib0039) 2017; 155
Wenger (10.1016/j.neuroimage.2020.117248_bib0037) 2014; 35
Doshi (10.1016/j.neuroimage.2020.117248_bib0012) 2016; 127
Sabuncu (10.1016/j.neuroimage.2020.117248_bib0031) 2011; 68
Satterthwaite (10.1016/j.neuroimage.2020.117248_bib0032) 2016; 73
Iglesias (10.1016/j.neuroimage.2020.117248_bib0020a) 2015; 24
Charil (10.1016/j.neuroimage.2020.117248_bib0007) 2007; 34
Messina (10.1016/j.neuroimage.2020.117248_bib0026) 2011; 17
Ferreira (10.1016/j.neuroimage.2020.117248_bib0013) 2017; 27
Apostolova (10.1016/j.neuroimage.2020.117248_bib0001) 2006; 63
Giorgio (10.1016/j.neuroimage.2020.117248_bib0018) 2013; 37
Mulder (10.1016/j.neuroimage.2020.117248_bib0027) 2014; 92
Desikan (10.1016/j.neuroimage.2020.117248_bib0010) 2006; 31
Frisoni (10.1016/j.neuroimage.2020.117248_bib0016) 2015; 11
Janowitz (10.1016/j.neuroimage.2020.117248_bib0021) 2014; 4
Tustison (10.1016/j.neuroimage.2020.117248_bib0035) 2010; 29
Goldstein (10.1016/j.neuroimage.2020.117248_bib0019) 1999; 56
Cherbuin (10.1016/j.neuroimage.2020.117248_bib0008) 2009; 4
Fischl (10.1016/j.neuroimage.2020.117248_bib0014) 2002; 33
Wee (10.1016/j.neuroimage.2020.117248_bib0036) 2017; 9
Rohrer (10.1016/j.neuroimage.2020.117248_bib0030) 2011; 134
Avants (10.1016/j.neuroimage.2020.117248_bib0003) 2014; 8
Raz (10.1016/j.neuroimage.2020.117248_bib0029) 2010; 51
References_xml – volume: 14
  start-page: P1476
  year: 2018
  end-page: P1477
  ident: bib0009
  article-title: BRAIN AGING HETEROGENEITY ELUCIDATED VIA MACHINE LEARNING: THE MULTI-SITE ISTAGING DIMENSIONAL NEUROIMAGING REFERENCE SYSTEM
  publication-title: Alzheimer's & Dementia: The Journal of the Alzheimer's Association
– year: 2013
  ident: bib0002
  publication-title: Miccai 2013 segmentation algorithms, theory and applications (SATA) challenge results summary. Presented at the MICCAI Challenge Workshop on Segmentation: Algorithms, Theory and Applications (SATA)
– year: 2014
  ident: bib0033
  article-title: The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data
  publication-title: Brain Imaging and Behavior.
– volume: 63
  start-page: 693
  year: 2006
  end-page: 699
  ident: bib0001
  article-title: Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps
  publication-title: Arch. Neurol.
– volume: 61
  start-page: 346
  year: 2018
  end-page: 352
  ident: bib0034
  article-title: β-amyloid deposition is associated with gait variability in usual aging
  publication-title: Gait Posture
– volume: 68
  start-page: 1040
  year: 2011
  end-page: 1048
  ident: bib0031
  article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease
  publication-title: Arch. Neurol.
– volume: 4
  start-page: e5265
  year: 2009
  ident: bib0008
  article-title: In vivo hippocampal measurement and memory: a comparison of manual tracing and automated segmentation in a large community-based sample
  publication-title: PLoS ONE
– volume: 37
  start-page: 1636
  year: 2016
  end-page: 1642
  ident: bib0020
  article-title: Relationship between APOE Genotype and Structural MRI Measures throughout Adulthood in the Study of Health in Pomerania Population-Based Cohort
  publication-title: AJNR Am J Neuroradiol
– volume: 73
  start-page: 515
  year: 2016
  end-page: 524
  ident: bib0032
  article-title: Structural Brain Abnormalities in Youth With Psychosis Spectrum Symptoms
  publication-title: JAMA Psychiatry
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib0035
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
– volume: 35
  start-page: 4236
  year: 2014
  end-page: 4248
  ident: bib0037
  article-title: Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains
  publication-title: Hum Brain Mapp
– volume: 96
  start-page: 67
  year: 2014
  end-page: 72
  ident: bib0038
  article-title: Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24
  publication-title: Neuroimage
– volume: 123
  start-page: 153
  year: 2010
  end-page: 159
  ident: bib0023
  article-title: Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia
  publication-title: Schizophr. Res.
– volume: 15
  start-page: 622
  year: 2011
  end-page: 639
  ident: bib0028
  article-title: DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting
  publication-title: Med Image Anal
– volume: 30
  start-page: 578
  year: 2009
  end-page: 580
  ident: bib0006
  article-title: Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease
  publication-title: AJNR Am J Neuroradiol
– volume: 134
  start-page: 2565
  year: 2011
  end-page: 2581
  ident: bib0030
  article-title: Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration
  publication-title: Brain
– volume: 34
  start-page: 509
  year: 2007
  end-page: 517
  ident: bib0007
  article-title: Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability
  publication-title: Neuroimage
– volume: 9
  year: 2017
  ident: bib0036
  article-title: Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways
  publication-title: Cancers (Basel)
– volume: 8
  year: 2014
  ident: bib0003
  article-title: The Insight ToolKit image registration framework
  publication-title: Front Neuroinform
– volume: 155
  start-page: 383
  year: 2017
  end-page: 393
  ident: bib0039
  article-title: A comparison of accurate automatic hippocampal segmentation methods
  publication-title: Neuroimage
– volume: 4
  start-page: e465
  year: 2014
  ident: bib0021
  article-title: Genetic, psychosocial and clinical factors associated with hippocampal volume in the general population
  publication-title: Transl Psychiatry
– volume: 127
  start-page: 186
  year: 2016
  end-page: 195
  ident: bib0012
  article-title: MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection
  publication-title: Neuroimage
– volume: 37
  start-page: 1
  year: 2013
  end-page: 14
  ident: bib0018
  article-title: Clinical use of brain volumetry
  publication-title: J Magn Reson Imaging
– volume: 10
  start-page: 341
  year: 2012
  end-page: 350
  ident: bib0022
  article-title: Volume estimation of the thalamus using freesurfer and stereology: consistency between methods
  publication-title: Neuroinformatics
– volume: 101
  start-page: 142
  year: 2008
  end-page: 151
  ident: bib0005
  article-title: Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia
  publication-title: Schizophr Res
– volume: 14
  start-page: 11
  year: 2004
  end-page: 22
  ident: bib0015
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
– volume: 24
  start-page: 205
  year: 2015
  end-page: 219
  ident: bib0020a
  article-title: Multi-atlas segmentation of biomedical images: A survey
  publication-title: Med Image Anal
– volume: 11
  start-page: 111
  year: 2015
  end-page: 125
  ident: bib0016
  article-title: The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity
  publication-title: Alzheimers Dement
– volume: 27
  start-page: 653
  year: 2017
  end-page: 667
  ident: bib0013
  article-title: The interactive effect of demographic and clinical factors on hippocampal volume: A multicohort study on 1958 cognitively normal individuals
  publication-title: Hippocampus
– volume: 76
  start-page: 332
  year: 2013
  end-page: 344
  ident: bib0004
  article-title: The effects of aging and Alzheimer's disease on cerebral cortical anatomy: specificity and differential relationships with cognition
  publication-title: Neuroimage
– volume: 22
  year: 2019
  ident: bib0011
  article-title: Modeling grey matter atrophy as a function of time, aging or cognitive decline show different anatomical patterns in Alzheimer's disease
  publication-title: Neuroimage Clin
– volume: 51
  start-page: 501
  year: 2010
  end-page: 511
  ident: bib0029
  article-title: Trajectories of brain aging in middle-aged and older adults: regional and individual differences
  publication-title: Neuroimage
– volume: 92
  start-page: 169
  year: 2014
  end-page: 181
  ident: bib0027
  article-title: Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST
  publication-title: Neuroimage
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bib0014
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 9
  start-page: 379
  year: 2015
  ident: bib0025
  article-title: A comparison of FreeSurfer-generated data with and without manual intervention
  publication-title: Front Neurosci
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: bib0010
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 56
  start-page: 537
  year: 1999
  end-page: 547
  ident: bib0019
  article-title: Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging
  publication-title: Arch. Gen. Psychiatry
– volume: 17
  start-page: 172
  year: 2011
  end-page: 176
  ident: bib0026
  article-title: Patterns of brain atrophy in Parkinson's disease, progressive supranuclear palsy and multiple system atrophy
  publication-title: Parkinsonism Relat. Disord.
– volume: 14
  start-page: P1476
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117248_bib0009
  article-title: BRAIN AGING HETEROGENEITY ELUCIDATED VIA MACHINE LEARNING: THE MULTI-SITE ISTAGING DIMENSIONAL NEUROIMAGING REFERENCE SYSTEM
  publication-title: Alzheimer's & Dementia: The Journal of the Alzheimer's Association
  doi: 10.1016/j.jalz.2018.06.2505
– volume: 37
  start-page: 1636
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117248_bib0020
  article-title: Relationship between APOE Genotype and Structural MRI Measures throughout Adulthood in the Study of Health in Pomerania Population-Based Cohort
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4805
– volume: 24
  start-page: 205
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117248_bib0020a
  article-title: Multi-atlas segmentation of biomedical images: A survey
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.06.012
– volume: 92
  start-page: 169
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117248_bib0027
  article-title: Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.058
– volume: 4
  start-page: e5265
  year: 2009
  ident: 10.1016/j.neuroimage.2020.117248_bib0008
  article-title: In vivo hippocampal measurement and memory: a comparison of manual tracing and automated segmentation in a large community-based sample
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0005265
– volume: 37
  start-page: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117248_bib0018
  article-title: Clinical use of brain volumetry
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23671
– volume: 4
  start-page: e465
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117248_bib0021
  article-title: Genetic, psychosocial and clinical factors associated with hippocampal volume in the general population
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2014.102
– volume: 9
  start-page: 379
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117248_bib0025
  article-title: A comparison of FreeSurfer-generated data with and without manual intervention
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2015.00379
– volume: 34
  start-page: 509
  year: 2007
  ident: 10.1016/j.neuroimage.2020.117248_bib0007
  article-title: Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.10.006
– volume: 134
  start-page: 2565
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117248_bib0030
  article-title: Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration
  publication-title: Brain
  doi: 10.1093/brain/awr198
– volume: 10
  start-page: 341
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117248_bib0022
  article-title: Volume estimation of the thalamus using freesurfer and stereology: consistency between methods
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-012-9147-0
– volume: 22
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117248_bib0011
  article-title: Modeling grey matter atrophy as a function of time, aging or cognitive decline show different anatomical patterns in Alzheimer's disease
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2019.101786
– volume: 33
  start-page: 341
  year: 2002
  ident: 10.1016/j.neuroimage.2020.117248_bib0014
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 51
  start-page: 501
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117248_bib0029
  article-title: Trajectories of brain aging in middle-aged and older adults: regional and individual differences
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.020
– year: 2014
  ident: 10.1016/j.neuroimage.2020.117248_bib0033
  article-title: The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data
  publication-title: Brain Imaging and Behavior.
  doi: 10.1007/s11682-013-9269-5
– volume: 35
  start-page: 4236
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117248_bib0037
  article-title: Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22473
– volume: 127
  start-page: 186
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117248_bib0012
  article-title: MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.073
– volume: 11
  start-page: 111
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117248_bib0016
  article-title: The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2014.05.1756
– volume: 155
  start-page: 383
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117248_bib0039
  article-title: A comparison of accurate automatic hippocampal segmentation methods
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.018
– volume: 27
  start-page: 653
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117248_bib0013
  article-title: The interactive effect of demographic and clinical factors on hippocampal volume: A multicohort study on 1958 cognitively normal individuals
  publication-title: Hippocampus
  doi: 10.1002/hipo.22721
– volume: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117248_bib0003
  article-title: The Insight ToolKit image registration framework
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2014.00044
– volume: 101
  start-page: 142
  year: 2008
  ident: 10.1016/j.neuroimage.2020.117248_bib0005
  article-title: Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2007.11.023
– volume: 56
  start-page: 537
  year: 1999
  ident: 10.1016/j.neuroimage.2020.117248_bib0019
  article-title: Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.56.6.537
– volume: 9
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117248_bib0036
  article-title: Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers9050052
– volume: 76
  start-page: 332
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117248_bib0004
  article-title: The effects of aging and Alzheimer's disease on cerebral cortical anatomy: specificity and differential relationships with cognition
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.059
– volume: 73
  start-page: 515
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117248_bib0032
  article-title: Structural Brain Abnormalities in Youth With Psychosis Spectrum Symptoms
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.3463
– volume: 30
  start-page: 578
  year: 2009
  ident: 10.1016/j.neuroimage.2020.117248_bib0006
  article-title: Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A1402
– volume: 123
  start-page: 153
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117248_bib0023
  article-title: Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2010.07.027
– volume: 17
  start-page: 172
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117248_bib0026
  article-title: Patterns of brain atrophy in Parkinson's disease, progressive supranuclear palsy and multiple system atrophy
  publication-title: Parkinsonism Relat. Disord.
  doi: 10.1016/j.parkreldis.2010.12.010
– volume: 61
  start-page: 346
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117248_bib0034
  article-title: β-amyloid deposition is associated with gait variability in usual aging
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.02.002
– volume: 31
  start-page: 968
  year: 2006
  ident: 10.1016/j.neuroimage.2020.117248_bib0010
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 63
  start-page: 693
  year: 2006
  ident: 10.1016/j.neuroimage.2020.117248_bib0001
  article-title: Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.63.5.693
– volume: 15
  start-page: 622
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117248_bib0028
  article-title: DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2010.07.002
– volume: 68
  start-page: 1040
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117248_bib0031
  article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2011.167
– volume: 29
  start-page: 1310
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117248_bib0035
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2046908
– year: 2013
  ident: 10.1016/j.neuroimage.2020.117248_bib0002
– volume: 14
  start-page: 11
  year: 2004
  ident: 10.1016/j.neuroimage.2020.117248_bib0015
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg087
– volume: 96
  start-page: 67
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117248_bib0038
  article-title: Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.072
SSID ssj0009148
Score 2.5170522
Snippet Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117248
SubjectTerms Adult
Aged
Aging
Algorithms
Alzheimer's disease
Anatomy
Automation
Bias
Brain
Brain - anatomy & histology
Brain - diagnostic imaging
Datasets
Female
Freesurfer
Hippocampus
Hippocampus - anatomy & histology
Hippocampus - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging
Male
Medical imaging
MRI
MUSE
Neuroimaging
Organ Size
Protocol
Quality control
Registration
Reproducibility of Results
ROI
Segmentation
Software
Software packages
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhRAXVN6BgozEkYiN7XVsOBXUFQdaIUGl3iy_AkFsFiW7lco_4l8yfiTswoE9cEwcO4lnPPONPP4Goeeau7phGtY3-IaSUd2AHZSi5NRRY4MHt5Fd_319diYuLuSHrVJfIScs0QOniXvpWQVK4iQ4Ts2YlZp7Y1nDpNC-dtwF6wuoZwymRrpdQPk5bydlc0V2yHYJaxRiQhL3Kkmo-bPljCJn_45P-htz_pk6ueWLFofoVgaR-Dh9_G10zXd30I3TvE1-F_08xnaqL4hXDV703g-bvvE91p3DMYuw1GtAzvj0_OMJBuSKTSgWAc0QhS-v8OA_L_OxpO4VXrTx8MuAYx4zHtofPg4EP4pNq4cX8SpQT_TlAMLq4EUAO2Pi7RXcz28MO9U4lkXCQ8pfvIfOFyef3r4rc02G0nI6W5fGzmvvOSeisR5kIjhnQhNbzwKw0JZb2whL5cx5yT01HAK-ZqaJ5ro2mlt6Hx10q84_RNiSuamk1BZgAqPGyQrGNE5UFbUGwtYC1aNwlM2E5aFuxjc1ZqZ9Vb_FqoJYVRJrgaqp5_dE2rFHnzdB_tPzgXY73gBlVFkZ1b-UsUBy1B41nmwFWwwDtXt8wOupb0Y_CdXs2ftoVFaVrdCgCJuDJGDpkQI9m5rBfoRNId351SY8QwUAFsJpgR4k3Z7mgBLBwQtVIIkdrd-ZpN2Wrv0SOcoFBWgpyaP_MauP0c3wpymJ6AgdrPuNf4Ku28t1O_RP48L_BVwJY6U
  priority: 102
  providerName: Directory of Open Access Journals
Title A comparison of Freesurfer and multi-atlas MUSE for brain anatomy segmentation: Findings about size and age bias, and inter-scanner stability in multi-site aging studies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811920307345
https://dx.doi.org/10.1016/j.neuroimage.2020.117248
https://www.ncbi.nlm.nih.gov/pubmed/32860881
https://www.proquest.com/docview/2453900982
https://www.proquest.com/docview/2438678263
https://pubmed.ncbi.nlm.nih.gov/PMC8382092
https://doaj.org/article/e41196d9439a44c9a6ebc4f498ae7d6d
Volume 223
WOSCitedRecordID wos000582799600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYXYS48H4UlspIHIlobNex4YB2USsOtKqAlXqLbMdZgmiyJC3S8o_4l4wdJ92ChCpxiZQ4dmJ7PPPZ_jyD0AvFsyRnCsY32IaIUZWDHpQi4jSj2jgLbrx3_Q_JfC6WS7kIC25NoFV2OtEr6qwybo38FWFjmJ5DMeTtxffIRY1yu6shhMYBOnJeEqin7i22Tndj1h6FG9NIxLEMTJ6W3-X9RRYrGLUwSyR-95K4KEBXzJP34r9jpf5GoX-SKa9Yp-nt_63XHXQr4FJ80grSXXTNlvfQjVnYeb-Pfp1g04csxFWOp7W1zabObY1VmWFPTIzUGsA4np19mmAAw1i7-BOQDBP71SVu7PkqnHQqX-Np4c_TNNhTo3FT_LS-IGgprAvVvPR3zptFHTXQ_yV8CJCs5_JewvPwRVcN7CMt4aalRD5AZ9PJ53fvoxDmITKcjtaRNuPEWs6JyI0FfCQ4Z0IRk4wcVlGGG5MLA42UWckt1RzmkPlIEcVVohU39CE6LKvSPkbYkLGOpVQGkAejOpMxlKkz6HtqNMyEByjpejc1wQe6C8XxLe3Ibl_TrVykTi7SVi4GKO5zXrR-QPbIc-oEqH_fefL2D6r6PA2KIbUMBJNnEiquGDNScasNy5kUyiYZzwZIduKXdodlQb1DQcUeP_CmzxsAVQuU9sx93ElsGhRbk27FdYCe98mgktw-kypttXHvUAEYiHA6QI_awdG3ASWCg2GLoSd2hs1OI-2mlMUX7_ZcUECrkjz59289RTddHVrG0TE6XNcb-wxdNz_WRVMP0UGyTPxVDNHR6WS--Dj0yzBwnZHZ0OuP361XeD8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQMAL90thgJHgjYjGdh0bhNCAVZvWVkhs0t6C7TgjiCYjaUHlH_HCb-TYuXQFCfVlDzwmju3EPtf4O-cg9ETxJEqZAv4G3RAwqlKQg1IEnCZUG6fBjc-uP4omE3F0JN9voF9tLIyDVbYy0QvqpDDuH_lzwgbgnsMw5PXJ18BVjXKnq20JjZos9u3iO7hs1au9d7C_TwkZ7hy83Q2aqgKB4bQ_C7QZRNZyTkRqLKhjwTkTipio71SjMtyYVBiYK7GSW6o5uCxpXxHFVaQVNxTGPYfOM_CEXKmIMRkvk_yGrA69G9BAhKFskEM1nsznp8ymICXAKyX-tJS4qkOn1KGvGrCiFf-2ev8Eb57ShsOr_9s6XkNXGrsbb9eMch1t2PwGujhukAU30c9tbLqSjLhI8bC0tpqXqS2xyhPsgZeBmoGzgceHH3YwGPtYu_oa0KxmxXSBK3s8bSK58hd4mPl4oQp76Deush_WDwQ7g3Wmqmf-ymXrKIMK6DuHicBS91jlBdxvZnTLhn0lKVzVkM9b6PBMFuo22syL3N5F2JCBDqVUBiwrRnUiQxhTJ0Br1Gjw9HsoaqkpNk2Od1dq5Evcgvk-x0s6jB0dxjUd9lDY9Typ85ys0eeNI9jueZep3N8oyuO4EXyxZcAIPJHw4YoxIxW32rCUSaFslPCkh2RL7nEbDAzqCwbK1niBl13fxmCsDcE1e2-1HBI3gruKl-zRQ4-7ZhC57hxN5baYu2eoABuPcNpDd2pm7NaAEsFBcYewEytsurJIqy159smndRcUrHFJ7v37tR6hS7sH41E82pvs30eX3ffU6KottDkr5_YBumC-zbKqfOhlE0Yfz5qJfwNkBNCp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQBMv3C-FAUaCN6I1tuvEIIQGW8W0raoEk_aW2Y4zgmgykhZU_hF_gV_HseOkK0ioL3vgMXFsJ_a5xt85B6FnkqdRxiTwN-iGgFGZgRwUccBpSpW2Gly77PoH0WgUHx-L8Rr61cbCWFhlKxOdoE5Lbf-RbxE2APcchiFbmYdFjHeGb86-BraClD1pbctpNCSyb-bfwX2rX-_twF4_J2S4-_Hd-8BXGAg0p_1poPQgMoZzEmfagGqOOWexJDrqWzUpNdc6izXMmxrBDVUc3JesL4nkMlKSawrjXkKXI5u03MEGx4uEvyFrwvAGNIjDUHgUUYMtc7kq8wlIDPBQiTs5JbYC0TnV6CoILGnIvy3gP4Gc5zTj8Pr_vKY30DVvj-PthoFuojVT3EIbhx5xcBv93Ma6K9WIywwPK2PqWZWZCssixQ6QGcgpOCH48OjDLgYnACtbdwOa5bSczHFtTic-wqt4iYe5iyOqsYOE4zr_YdxAsEtY5bJ-4a5sFo8qqIHuC5gILHiHYZ7DfT-jXTbsKkzhuoGC3kFHF7JQd9F6URbmPsKaDFQohNRgcTGqUhHCmCoFuqNaDZjooailrET73O-2BMmXpAX5fU4WNJlYmkwamuyhsOt51uQ_WaHPW0u83fM2g7m7UVaniReIiWHAFDwV8OGSMS0kN0qzjIlYmijlaQ-JlvSTNkgY1BoMlK_wAq-6vt6QbAzEFXtvttySeIFeJwtW6aGnXTOIYnu-JgtTzuwzNAbbj3DaQ_caxuzWgJKYg0IPYSeWWHZpkZZbivyTS_ceU7DSBXnw79d6gjaAd5ODvdH-Q3TVfk4DutpE69NqZh6hK_rbNK-rx05MYXRy0Tz8G9YH2Xo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+Freesurfer+and+multi-atlas+MUSE+for+brain+anatomy+segmentation%3A+Findings+about+size+and+age+bias%2C+and+inter-scanner+stability+in+multi-site+aging+studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Srinivasan%2C+Dhivya&rft.au=Erus%2C+Guray&rft.au=Doshi%2C+Jimit&rft.au=Wolk%2C+David+A.&rft.date=2020-12-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=223&rft.spage=117248&rft.epage=117248&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117248&rft_id=info%3Apmid%2F32860881&rft.externalDocID=PMC8382092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon