A comparison of Freesurfer and multi-atlas MUSE for brain anatomy segmentation: Findings about size and age bias, and inter-scanner stability in multi-site aging studies
Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy...
Gespeichert in:
| Veröffentlicht in: | NeuroImage (Orlando, Fla.) Jg. 223; S. 117248 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.12.2020
Elsevier Limited Elsevier |
| Schlagworte: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analyses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas segmentation framework has consistently obtained results with superior accuracy in various evaluations. We compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a consensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly in the deep structures. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Denotes equally contributing senior authors. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. Denotes equally contributing first authors. |
| ISSN: | 1053-8119 1095-9572 1095-9572 |
| DOI: | 10.1016/j.neuroimage.2020.117248 |