NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing

•We propose a framework, NORDIC, for denoising complex valued dMRI data using Gaussian statistics.•The main feature of the proposed method is to only remove signal components which cannot be distinguished from thermal noise.•Quantitative evaluation of NORDIC is performed across different resolutions...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Vol. 226; p. 117539
Main Authors: Moeller, Steen, Pisharady, Pramod Kumar, Ramanna, Sudhir, Lenglet, Christophe, Wu, Xiaoping, Dowdle, Logan, Yacoub, Essa, Uğurbil, Kamil, Akçakaya, Mehmet
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.02.2021
Elsevier Limited
Elsevier
Subjects:
ISSN:1053-8119, 1095-9572, 1095-9572
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We propose a framework, NORDIC, for denoising complex valued dMRI data using Gaussian statistics.•The main feature of the proposed method is to only remove signal components which cannot be distinguished from thermal noise.•Quantitative evaluation of NORDIC is performed across different resolutions and SNR using human Connectome type acquisitions.•The proposed method outperforms a state-of-art methods for denoising dMRI in terms of fiber orientation dispersion.•Up to 6 fold improvement in apparent SNR for 0.9mm whole brain dMRI at 3T. Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted images of the same anatomy, it is well-suited for denoising methods that utilize correlations across the image series to improve the apparent SNR and the subsequent data analysis. In this work, we introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix distributions to remove signal components which cannot be distinguished from thermal noise. The utility of the proposed framework for denoising dMRI is demonstrated on both simulations and experimental data obtained at 3 Tesla with different resolutions using human connectome project style acquisitions. The proposed framework leads to substantially enhanced quantitative performance for estimating diffusion tractography related measures and for resolving crossing fibers as compared to a conventional/state-of-the-art dMRI denoising method.
AbstractList Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted images of the same anatomy, it is well-suited for denoising methods that utilize correlations across the image series to improve the apparent SNR and the subsequent data analysis. In this work, we introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix distributions to remove signal components which cannot be distinguished from thermal noise. The utility of the proposed framework for denoising dMRI is demonstrated on both simulations and experimental data obtained at 3 Tesla with different resolutions using human connectome project style acquisitions. The proposed framework leads to substantially enhanced quantitative performance for estimating diffusion tractography related measures and for resolving crossing fibers as compared to a conventional/state-of-the-art dMRI denoising method.
•We propose a framework, NORDIC, for denoising complex valued dMRI data using Gaussian statistics.•The main feature of the proposed method is to only remove signal components which cannot be distinguished from thermal noise.•Quantitative evaluation of NORDIC is performed across different resolutions and SNR using human Connectome type acquisitions.•The proposed method outperforms a state-of-art methods for denoising dMRI in terms of fiber orientation dispersion.•Up to 6 fold improvement in apparent SNR for 0.9mm whole brain dMRI at 3T. Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted images of the same anatomy, it is well-suited for denoising methods that utilize correlations across the image series to improve the apparent SNR and the subsequent data analysis. In this work, we introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix distributions to remove signal components which cannot be distinguished from thermal noise. The utility of the proposed framework for denoising dMRI is demonstrated on both simulations and experimental data obtained at 3 Tesla with different resolutions using human connectome project style acquisitions. The proposed framework leads to substantially enhanced quantitative performance for estimating diffusion tractography related measures and for resolving crossing fibers as compared to a conventional/state-of-the-art dMRI denoising method.
Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted images of the same anatomy, it is well-suited for denoising methods that utilize correlations across the image series to improve the apparent SNR and the subsequent data analysis. In this work, we introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix distributions to remove signal components which cannot be distinguished from thermal noise. The utility of the proposed framework for denoising dMRI is demonstrated on both simulations and experimental data obtained at 3 Tesla with different resolutions using human connectome project style acquisitions. The proposed framework leads to substantially enhanced quantitative performance for estimating diffusion tractography related measures and for resolving crossing fibers as compared to a conventional/state-of-the-art dMRI denoising method.Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted images of the same anatomy, it is well-suited for denoising methods that utilize correlations across the image series to improve the apparent SNR and the subsequent data analysis. In this work, we introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix distributions to remove signal components which cannot be distinguished from thermal noise. The utility of the proposed framework for denoising dMRI is demonstrated on both simulations and experimental data obtained at 3 Tesla with different resolutions using human connectome project style acquisitions. The proposed framework leads to substantially enhanced quantitative performance for estimating diffusion tractography related measures and for resolving crossing fibers as compared to a conventional/state-of-the-art dMRI denoising method.
Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted images of the same anatomy, it is well-suited for denoising methods that utilize correlations across the image series to improve the apparent SNR and the subsequent data analysis. In this work, we introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix distributions to remove signal components which cannot be distinguished from thermal noise. The utility of the proposed framework for denoising dMRI is demonstrated on both simulations and experimental data obtained at 3 Tesla with different resolutions using human connectome project style acquisitions. The proposed framework leads to substantially enhanced quantitative performance for estimating diffusion tractography related measures and for resolving crossing fibers as compared to a conventional/state-of-the-art dMRI denoising method.
ArticleNumber 117539
Author Uğurbil, Kamil
Yacoub, Essa
Akçakaya, Mehmet
Moeller, Steen
Pisharady, Pramod Kumar
Dowdle, Logan
Lenglet, Christophe
Ramanna, Sudhir
Wu, Xiaoping
AuthorAffiliation a Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
b Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
AuthorAffiliation_xml – name: a Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
– name: b Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
Author_xml – sequence: 1
  givenname: Steen
  orcidid: 0000-0003-1698-7260
  surname: Moeller
  fullname: Moeller, Steen
  email: moeller@cmrr.umn.edu
  organization: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Pramod Kumar
  surname: Pisharady
  fullname: Pisharady, Pramod Kumar
  organization: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: Sudhir
  surname: Ramanna
  fullname: Ramanna, Sudhir
  organization: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
– sequence: 4
  givenname: Christophe
  surname: Lenglet
  fullname: Lenglet, Christophe
  organization: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
– sequence: 5
  givenname: Xiaoping
  surname: Wu
  fullname: Wu, Xiaoping
  organization: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
– sequence: 6
  givenname: Logan
  orcidid: 0000-0002-1879-705X
  surname: Dowdle
  fullname: Dowdle, Logan
  organization: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
– sequence: 7
  givenname: Essa
  surname: Yacoub
  fullname: Yacoub, Essa
  organization: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
– sequence: 8
  givenname: Kamil
  orcidid: 0000-0002-8475-9334
  surname: Uğurbil
  fullname: Uğurbil, Kamil
  organization: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
– sequence: 9
  givenname: Mehmet
  surname: Akçakaya
  fullname: Akçakaya, Mehmet
  organization: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33186723$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEUhUeoiD7gL6CR2JTFBHs848cGUVIekUqDKlhbHs-d1KljB3smJSv-Ok7TUppVVte6Pvfzlc85zg6cd5BlOUYjjDB9Nx85GII3CzWDUYnK1MasJuJZdoSRqAtRs_Jgc65JwTEWh9lxjHOEkMAVf5EdEoI5ZSU5yv5cTk2EPEA76N54l9-a_jo_n8Q-mGa464x9CKB7aPPTy-nV-WT8Nv8-PsuNy9tvV5PtgPaLpYXfxUrZIQmXKqgF9BCKLgDk1mtl7TrV2yIod5Mvg9cQo3Gzl9nzTtkIr-7rSfbz86cf46_FxfTLZHx2UWhKUF-wimtWth2rEEdtSToMnGmoW0GqjnDaVg3r6q5FjaYcM8abRlR1DQwJUI1S5CSbbLmtV3O5DOnrwlp6ZeRdw4eZVKE32oKktKpZrWmDWl1xJUTVAG6YgA4RJShLrPdb1nJoFtBqcH1Q9gn06Y0z13LmV5JxjgUhCXB6Dwj-1wCxlwsTNVirHPghyrKiiFFC6Ub6Zkc690Nw6auSirESY16KpHr9_0b_Vnnw-XFlHXyMATqpTa829qYFjZUYyU2w5Fw-BktugiW3wUoAvgN4eGOP0Y_bUUj-rgwEGbUBp6E1m1wlA8w-kA87EG2NMylXN7DeD_EXh8YFLQ
CitedBy_id crossref_primary_10_1002_nbm_5263
crossref_primary_10_3390_jimaging10100240
crossref_primary_10_1016_j_cmpb_2023_107508
crossref_primary_10_1109_TBME_2022_3168592
crossref_primary_10_1155_2021_9751009
crossref_primary_10_1002_mrm_30424
crossref_primary_10_3389_fnins_2025_1568222
crossref_primary_10_1002_mrm_30502
crossref_primary_10_1016_j_neuroimage_2022_118958
crossref_primary_10_3389_fnins_2025_1543206
crossref_primary_10_1162_imag_a_00085
crossref_primary_10_1002_mrm_29359
crossref_primary_10_1002_nbm_5228
crossref_primary_10_1016_j_neuroimage_2021_118830
crossref_primary_10_1109_JBHI_2024_3471769
crossref_primary_10_1162_imag_a_00325
crossref_primary_10_1162_imag_a_00049
crossref_primary_10_1002_hbm_70353
crossref_primary_10_1155_2021_3080640
crossref_primary_10_1016_j_biopsych_2022_12_020
crossref_primary_10_1162_imag_a_00362
crossref_primary_10_52294_001c_140461
crossref_primary_10_1002_mrm_30050
crossref_primary_10_1038_s41598_025_87377_x
crossref_primary_10_1371_journal_pone_0306006
crossref_primary_10_1016_j_neuroimage_2023_120168
crossref_primary_10_3389_fnins_2024_1499762
crossref_primary_10_1038_s41597_025_05640_2
crossref_primary_10_1002_jor_25733
crossref_primary_10_1016_j_neuroimage_2022_119634
crossref_primary_10_1038_s41597_025_05189_0
crossref_primary_10_7498_aps_74_20250235
crossref_primary_10_1088_1361_6560_ad8294
crossref_primary_10_1162_IMAG_a_81
crossref_primary_10_1002_mrm_70035
crossref_primary_10_1016_j_cobme_2021_100288
crossref_primary_10_1007_s10548_022_00932_x
crossref_primary_10_1016_j_neuroimage_2023_120118
crossref_primary_10_1016_j_tins_2024_09_011
crossref_primary_10_1002_hbm_70142
crossref_primary_10_1038_s41467_021_25431_8
crossref_primary_10_1016_j_neuroimage_2021_118285
crossref_primary_10_1002_nbm_4807
crossref_primary_10_1007_s10334_024_01147_w
crossref_primary_10_1016_j_bbe_2022_12_006
crossref_primary_10_1162_imag_a_00426
crossref_primary_10_1002_mrm_30324
crossref_primary_10_1016_j_neuroimage_2023_119949
crossref_primary_10_1038_s41598_025_10947_6
crossref_primary_10_1002_mrm_29018
crossref_primary_10_1016_j_neuroimage_2024_120927
crossref_primary_10_1162_imag_a_00060
crossref_primary_10_52294_001c_124631
crossref_primary_10_1002_nbm_4877
crossref_primary_10_1162_imag_a_00104
crossref_primary_10_1097_RLI_0000000000000979
crossref_primary_10_1007_s11517_024_03122_y
crossref_primary_10_1007_s11517_023_02972_2
crossref_primary_10_1002_mrm_30197
crossref_primary_10_1002_mrm_30476
crossref_primary_10_1002_mrm_30554
crossref_primary_10_1002_mrm_70009
crossref_primary_10_1002_mrm_30512
crossref_primary_10_1002_hbm_26570
crossref_primary_10_1002_mrm_30436
crossref_primary_10_1002_nbm_5234
crossref_primary_10_3389_fnins_2023_1116002
crossref_primary_10_1002_nbm_5033
crossref_primary_10_1002_mrm_30429
crossref_primary_10_1016_j_neuroimage_2021_118868
crossref_primary_10_1038_s41596_024_01129_1
crossref_primary_10_1162_imag_a_00270
crossref_primary_10_1371_journal_pone_0274396
crossref_primary_10_1016_j_neuroimage_2021_118543
crossref_primary_10_1016_j_mri_2025_110443
crossref_primary_10_1038_s41586_024_07624_5
crossref_primary_10_1126_sciadv_ads4970
crossref_primary_10_1038_s41467_025_60357_5
crossref_primary_10_1038_s41598_024_60275_4
Cites_doi 10.1002/mrm.20713
10.1016/j.neuroimage.2019.06.039
10.1109/TCYB.2013.2278548
10.1002/mrm.22066
10.1016/j.neuroimage.2013.05.033
10.1002/mrm.24204
10.1016/j.neuroimage.2020.116852
10.1016/j.neuroimage.2018.09.060
10.1002/nbm.3841
10.1371/journal.pone.0073021
10.1002/mrm.22701
10.1002/mrm.24736
10.1016/j.neuroimage.2015.10.019
10.1016/j.neuroimage.2015.08.004
10.1016/j.neuroimage.2016.08.016
10.1109/TIP.2003.819861
10.1016/j.neuroimage.2013.11.046
10.1186/s13640-017-0203-4
10.1016/j.neuroimage.2006.09.018
10.1016/j.media.2016.02.010
10.1155/2018/5360375
10.1016/j.neuroimage.2015.07.067
10.1002/mrm.1910320313
10.1002/mrm.23097
10.1006/cbmr.1996.0014
10.1098/rstb.2014.0164
10.1002/mrm.24623
10.1186/s42492-019-0016-7
10.1016/j.tics.2013.09.016
10.1016/j.neuroimage.2013.05.012
10.1016/S1053-8119(03)00336-7
10.1016/j.neuroimage.2016.06.058
10.2174/1573405613666170428154156
10.1016/j.neuroimage.2013.05.057
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Inc.
Copyright Elsevier Limited Feb 1, 2021
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Feb 1, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2020.117539
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology


MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 117539
ExternalDocumentID oai_doaj_org_article_664575c6b0dc48a994be1b79ef03a967
PMC7881933
33186723
10_1016_j_neuroimage_2020_117539
S1053811920310247
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: P41 EB027061
– fundername: NIBIB NIH HHS
  grantid: U01 EB025144
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
9DU
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AFFHD
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
SEW
WUQ
XPP
ZMT
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c630t-748c72df74080d23f1e87ce5d934f386d4b7f5fd0bc681778bb9455e709eabaa3
IEDL.DBID DOA
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608035900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Mon Nov 10 04:31:43 EST 2025
Tue Nov 04 02:02:17 EST 2025
Sun Sep 28 06:21:36 EDT 2025
Tue Oct 07 07:06:32 EDT 2025
Thu Apr 03 07:08:56 EDT 2025
Sat Nov 29 07:07:01 EST 2025
Tue Nov 18 22:40:46 EST 2025
Fri Feb 23 02:45:35 EST 2024
Tue Oct 14 19:39:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Brain imaging
Human connectome project
Multiband
Diffusion MRI
Simultaneous multi-slice
Denoising
Singular value decomposition
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-748c72df74080d23f1e87ce5d934f386d4b7f5fd0bc681778bb9455e709eabaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Credit authorship contribution statement
Steen Moeller: Conceptualization, Software, Investigation, Methodology, Formal analysis, Writing - original draft, Visualization. Pramod Kumar Pisharady: Methodology, Formal analysis, Investigation, Visualization, Writing - review & editing. Sudhir Ramanna: Investigation. Christophe Lenglet: Methodology. Xiaoping Wu: Validation. Logan Dowdle: Formal analysis. Essa Yacoub: Resources, Funding acquisition. Kamil Uğurbil: Resources, Supervision, Methodology, Writing - review & editing, Funding acquisition. Mehmet Akçakaya: Conceptualization, Methodology, Writing - review & editing, Funding acquisition.
ORCID 0000-0003-1698-7260
0000-0002-8475-9334
0000-0002-1879-705X
OpenAccessLink https://doaj.org/article/664575c6b0dc48a994be1b79ef03a967
PMID 33186723
PQID 2477211829
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_664575c6b0dc48a994be1b79ef03a967
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7881933
proquest_miscellaneous_2460763663
proquest_journals_2477211829
pubmed_primary_33186723
crossref_citationtrail_10_1016_j_neuroimage_2020_117539
crossref_primary_10_1016_j_neuroimage_2020_117539
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117539
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_117539
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Cordero-Grande, Christiaens, Hutter, Price, Hajnal (bib0016) 2019; 200
Anderson, Gore (bib0007) 1994; 32
Kaur, Singh, Kaur (bib0024) 2018; 14
Moeller, Yacoub, Ramanna, Kittelson, Ugurbil, Lenglet (bib0029) 2017
Harms, Somerville, Ances, Andersson, Barch, Bastiani, Bookheimer, Brown, Buckner, Burgess, Coalson, Chappell, Dapretto, Douaud, Fischl, Glasser, Greve, Hodge, Jamison, Jbabdi, Kandala, Li, Mair, Mangia, Marcus, Mascali, Moeller, Nichols, Robinson, Salat, Smith, Sotiropoulos, Terpstra, Thomas, Tisdall, Ugurbil, van der Kouwe, Woods, Zollei, Van Essen, Yacoub (bib0020) 2018; 183
Setsompop, Gagoski, Polimeni, Witzel, Wedeen, Wald (bib0031) 2012; 67
Veraart, Novikov, Christiaens, Ades-Aron, Sijbers, Fieremans (bib0038) 2016; 142
Buades, Coll, Morel (bib0001) 2005; 2
Fan, Zhang, Fan, Zhang (bib0018) 2019; 2
Jbabdi, Sotiropoulos, Savio, Grana, Behrens (bib0021) 2012; 68
Sotiropoulos, Moeller, Jbabdi, Xu, Andersson, Auerbach, Yacoub, Feinberg, Setsompop, Wald, Behrens, Ugurbil, Lenglet (bib0035) 2013; 70
Moeller, Pisharady, Andersson, Akcakaya, Harel, Ma, Wu, Yacoub, Lenglet, Ugurbil (bib0028) 2020
St-Jean, Coupe, Descoteaux (bib0036) 2016; 32
Ugurbil, Xu, Auerbach, Moeller, Vu, Duarte-Carvajalino, Lenglet, Wu, Schmitter, Van de Moortele, Strupp, Sapiro, De Martino, Wang, Harel, Garwood, Chen, Feinberg, Smith, Miller, Sotiropoulos, Jbabdi, Andersson, Behrens, Glasser, Van Essen, Yacoub, Consortium (bib0037) 2013; 80
Andersson, Sotiropoulos (bib0011) 2016; 125
Aja-Fernández, Vegas-Sánchez-Ferrero (bib0003) 2016
Ma, Ugurbil, Wu (bib0026) 2020; 215
Andersson, Sotiropoulos (bib0009) 2015; 122
Behrens, Berg, Jbabdi, Rushworth, Woolrich (bib0013) 2007; 34
Cox (bib0017) 1996; 29
Kellman, McVeigh (bib0025) 2005; 54
Vu, Auerbach, Lenglet, Moeller, Sotiropoulos, Jbabdi, Andersson, Yacoub, Ugurbil (bib0039) 2015; 122
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0030) 2014; 90
Alexander, Dyrby, Nilsson, Zhang (bib0004) 2019; 32
Caruyer, Lenglet, Sapiro, Deriche (bib0015) 2013; 69
Jorgenson, Newsome, Anderson, Bargmann, Brown, Deisseroth, Donoghue, Hudson, Ling, MacLeish, Marder, Normann, Sanes, Schnitzer, Sejnowski, Tank, Tsien, Ugurbil, Wingfield (bib0022) 2015; 370
Aja-Fernandez, Tristan-Vega, Hoge (bib0002) 2011; 65
Shao, Yan, Li, Liu (bib0032) 2014; 44
Manjon, Coupe, Concha, Buades, Collins, Robles (bib0027) 2013; 8
Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt, Nolan, Bryant, Hartley, Footer, Bjork, Poldrack, Smith, Johansen-Berg, Snyder, Van Essen, Consortium (bib0012) 2013; 80
Wang, Bovik, Sheikh, Simoncelli (bib0040) 2004; 13
Andersson, Skare, Ashburner (bib0008) 2003; 20
Andersson, Graham, Zsoldos, Sotiropoulos (bib0010) 2016; 141
Wiest-Daessle, Prima, Coupe, Morrissey, Barillot (bib0041) 2007; 10
Alsaedi, Thomas, Bisdas, Golay (bib0006) 2018; 2018
Breuer, Kannengiesser, Blaimer, Seiberlich, Jakob, Griswold (bib0014) 2009; 62
Foi (bib0019) 2011
Alkinani, El-Sakka (bib0005) 2017
Katkovnik, Foi, Egiazarian, Astola (bib0023) 2010
Smith, Vidaurre, Beckmann, Glasser, Jenkinson, Miller, Nichols, Robinson, Salimi-Khorshidi, Woolrich, Barch, Ugurbil, Van Essen (bib0033) 2013; 17
Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach, Glasser, Hernandez, Sapiro, Jenkinson, Feinberg, Yacoub, Lenglet, Van Essen, Ugurbil, Behrens (bib0034) 2013; 80
Salimi-Khorshidi (10.1016/j.neuroimage.2020.117539_bib0030) 2014; 90
Manjon (10.1016/j.neuroimage.2020.117539_bib0027) 2013; 8
Alexander (10.1016/j.neuroimage.2020.117539_bib0004) 2019; 32
Andersson (10.1016/j.neuroimage.2020.117539_bib0011) 2016; 125
Jorgenson (10.1016/j.neuroimage.2020.117539_bib0022) 2015; 370
Moeller (10.1016/j.neuroimage.2020.117539_bib0028) 2020
Shao (10.1016/j.neuroimage.2020.117539_bib0032) 2014; 44
Aja-Fernández (10.1016/j.neuroimage.2020.117539_bib0003) 2016
Wiest-Daessle (10.1016/j.neuroimage.2020.117539_bib0041) 2007; 10
Andersson (10.1016/j.neuroimage.2020.117539_bib0009) 2015; 122
Fan (10.1016/j.neuroimage.2020.117539_bib0018) 2019; 2
Smith (10.1016/j.neuroimage.2020.117539_bib0033) 2013; 17
Sotiropoulos (10.1016/j.neuroimage.2020.117539_bib0034) 2013; 80
Setsompop (10.1016/j.neuroimage.2020.117539_bib0031) 2012; 67
Cox (10.1016/j.neuroimage.2020.117539_bib0017) 1996; 29
Sotiropoulos (10.1016/j.neuroimage.2020.117539_bib0035) 2013; 70
St-Jean (10.1016/j.neuroimage.2020.117539_bib0036) 2016; 32
Aja-Fernandez (10.1016/j.neuroimage.2020.117539_bib0002) 2011; 65
Foi (10.1016/j.neuroimage.2020.117539_bib0019) 2011
Harms (10.1016/j.neuroimage.2020.117539_bib0020) 2018; 183
Andersson (10.1016/j.neuroimage.2020.117539_bib0008) 2003; 20
Behrens (10.1016/j.neuroimage.2020.117539_bib0013) 2007; 34
Breuer (10.1016/j.neuroimage.2020.117539_bib0014) 2009; 62
Barch (10.1016/j.neuroimage.2020.117539_bib0012) 2013; 80
Ugurbil (10.1016/j.neuroimage.2020.117539_bib0037) 2013; 80
Cordero-Grande (10.1016/j.neuroimage.2020.117539_bib0016) 2019; 200
Anderson (10.1016/j.neuroimage.2020.117539_bib0007) 1994; 32
Katkovnik (10.1016/j.neuroimage.2020.117539_bib0023) 2010
Veraart (10.1016/j.neuroimage.2020.117539_bib0038) 2016; 142
Alsaedi (10.1016/j.neuroimage.2020.117539_bib0006) 2018; 2018
Kaur (10.1016/j.neuroimage.2020.117539_bib0024) 2018; 14
Ma (10.1016/j.neuroimage.2020.117539_bib0026) 2020; 215
Andersson (10.1016/j.neuroimage.2020.117539_bib0010) 2016; 141
Vu (10.1016/j.neuroimage.2020.117539_bib0039) 2015; 122
Caruyer (10.1016/j.neuroimage.2020.117539_bib0015) 2013; 69
Jbabdi (10.1016/j.neuroimage.2020.117539_bib0021) 2012; 68
Buades (10.1016/j.neuroimage.2020.117539_bib0001) 2005; 2
Wang (10.1016/j.neuroimage.2020.117539_bib0040) 2004; 13
Moeller (10.1016/j.neuroimage.2020.117539_bib0029) 2017
Alkinani (10.1016/j.neuroimage.2020.117539_bib0005) 2017
Kellman (10.1016/j.neuroimage.2020.117539_bib0025) 2005; 54
References_xml – volume: 32
  start-page: 115
  year: 2016
  end-page: 130
  ident: bib0036
  article-title: Non local spatial and angular matching: enabling higher spatial resolution diffusion MRI datasets through adaptive denoising
  publication-title: Med. Image Anal.
– start-page: 1809
  year: 2011
  end-page: 1814
  ident: bib0019
  article-title: Noise estimation and removal in MR imaging: the variance-stabilization approach
  publication-title: IEEE Int. Symp. Biomed. Imaging Nano Macro
– volume: 370
  start-page: 1668
  year: 2015
  ident: bib0022
  article-title: The BRAIN initiative: developing technology to catalyse neuroscience discovery
  publication-title: Philos. Trans. R Soc. Lond. B Biol. Sci.
– volume: 122
  start-page: 318
  year: 2015
  end-page: 331
  ident: bib0039
  article-title: High resolution whole brain diffusion imaging at 7T for the human connectome project
  publication-title: Neuroimage
– year: 2020
  ident: bib0028
  article-title: Diffusion imaging in the post HCP era
  publication-title: J. Magn. Reson. Imaging
– volume: 68
  start-page: 1846
  year: 2012
  end-page: 1855
  ident: bib0021
  article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems
  publication-title: Magn. Reson. Med.
– volume: 200
  start-page: 391
  year: 2019
  end-page: 404
  ident: bib0016
  article-title: Complex diffusion-weighted image estimation via matrix recovery under general noise models
  publication-title: Neuroimage
– volume: 32
  start-page: 379
  year: 1994
  end-page: 387
  ident: bib0007
  article-title: Analysis and correction of motion artifacts in diffusion weighted imaging
  publication-title: Magn. Reson. Med.
– start-page: 86
  year: 2010
  ident: bib0023
  article-title: From local kernel to nonlocal multiple-model image denoising
  publication-title: Int. J. Comput. Vis.
– volume: 32
  start-page: e3841
  year: 2019
  ident: bib0004
  article-title: Imaging brain microstructure with diffusion MRI: practicality and applications
  publication-title: NMR Biomed.
– volume: 183
  start-page: 972
  year: 2018
  end-page: 984
  ident: bib0020
  article-title: Extending the human connectome project across ages: imaging protocols for the lifespan development and aging projects
  publication-title: Neuroimage
– volume: 10
  start-page: 344
  year: 2007
  end-page: 351
  ident: bib0041
  article-title: Non-local means variants for denoising of diffusion-weighted and diffusion tensor MRI
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 65
  start-page: 1195
  year: 2011
  end-page: 1206
  ident: bib0002
  article-title: Statistical noise analysis in GRAPPA using a parametrized noncentral Chi approximation model
  publication-title: Magn. Reson. Med.
– start-page: 58
  year: 2017
  ident: bib0005
  article-title: Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction
  publication-title: EURASIP J. Image Video Process.
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib0030
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– volume: 70
  start-page: 1682
  year: 2013
  end-page: 1689
  ident: bib0035
  article-title: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE
  publication-title: Magn. Reson. Med.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0040
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bib0008
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– volume: 34
  start-page: 144
  year: 2007
  end-page: 155
  ident: bib0013
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?
  publication-title: Neuroimage
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  ident: bib0034
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: Neuroimage
– volume: 80
  start-page: 80
  year: 2013
  end-page: 104
  ident: bib0037
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project
  publication-title: Neuroimage
– year: 2016
  ident: bib0003
  article-title: Statistical Analysis of Noise in MRI
– volume: 69
  start-page: 1534
  year: 2013
  end-page: 1540
  ident: bib0015
  article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI
  publication-title: Magn. Reson. Med.
– volume: 14
  start-page: 675
  year: 2018
  end-page: 685
  ident: bib0024
  article-title: A review of denoising medical images using machine learning approaches
  publication-title: Curr. Med. Imaging Rev.
– volume: 122
  start-page: 166
  year: 2015
  end-page: 176
  ident: bib0009
  article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes
  publication-title: Neuroimage
– volume: 17
  start-page: 666
  year: 2013
  end-page: 682
  ident: bib0033
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends Cogn. Sci.
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: bib0011
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: bib0012
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
– volume: 2018
  year: 2018
  ident: bib0006
  article-title: Overview and critical appraisal of arterial spin labelling technique in brain perfusion imaging
  publication-title: Contrast Media Mol. Imaging
– volume: 8
  start-page: e73021
  year: 2013
  ident: bib0027
  article-title: Diffusion weighted image denoising using overcomplete local PCA
  publication-title: PLoS ONE
– start-page: 3515
  year: 2017
  ident: bib0029
  article-title: Feasibility of very high B-value diffusion imaging using a clinical scanner
  publication-title: Int. Soc. Magn. Reson. Med.
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  ident: bib0017
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
– volume: 142
  start-page: 394
  year: 2016
  end-page: 406
  ident: bib0038
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
– volume: 215
  year: 2020
  ident: bib0026
  article-title: Denoise magnitude diffusion magnetic resonance images via variance-stabilizing transformation and optimal singular-value manipulation
  publication-title: Neuroimage
– volume: 141
  start-page: 556
  year: 2016
  end-page: 572
  ident: bib0010
  article-title: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
  publication-title: Neuroimage
– volume: 2
  start-page: 60
  year: 2005
  end-page: 65
  ident: bib0001
  article-title: A non-local algorithm for image denoising
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
– volume: 44
  start-page: 1001
  year: 2014
  end-page: 1013
  ident: bib0032
  article-title: From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms
  publication-title: IEEE Trans. Cybern.
– volume: 62
  start-page: 739
  year: 2009
  end-page: 746
  ident: bib0014
  article-title: General formulation for quantitative G-factor calculation in GRAPPA reconstructions
  publication-title: Magn. Reson. Med.
– volume: 67
  start-page: 1210
  year: 2012
  end-page: 1224
  ident: bib0031
  article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar Imaging with reduced g-factor penalty
  publication-title: Magn. Reson. Med.
– volume: 2
  start-page: 7
  year: 2019
  ident: bib0018
  article-title: Brief review of image denoising techniques
  publication-title: Vis. Comput. Ind. Biomed. Art
– volume: 54
  start-page: 1439
  year: 2005
  end-page: 1447
  ident: bib0025
  article-title: Image reconstruction in SNR units: a general method for SNR measurement
  publication-title: Magn. Reson. Med.
– volume: 54
  start-page: 1439
  year: 2005
  ident: 10.1016/j.neuroimage.2020.117539_bib0025
  article-title: Image reconstruction in SNR units: a general method for SNR measurement
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20713
– volume: 200
  start-page: 391
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117539_bib0016
  article-title: Complex diffusion-weighted image estimation via matrix recovery under general noise models
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.039
– volume: 44
  start-page: 1001
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117539_bib0032
  article-title: From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2278548
– volume: 62
  start-page: 739
  year: 2009
  ident: 10.1016/j.neuroimage.2020.117539_bib0014
  article-title: General formulation for quantitative G-factor calculation in GRAPPA reconstructions
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22066
– volume: 80
  start-page: 169
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117539_bib0012
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.033
– volume: 68
  start-page: 1846
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117539_bib0021
  article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24204
– volume: 215
  year: 2020
  ident: 10.1016/j.neuroimage.2020.117539_bib0026
  article-title: Denoise magnitude diffusion magnetic resonance images via variance-stabilizing transformation and optimal singular-value manipulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116852
– volume: 183
  start-page: 972
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117539_bib0020
  article-title: Extending the human connectome project across ages: imaging protocols for the lifespan development and aging projects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.09.060
– volume: 32
  start-page: e3841
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117539_bib0004
  article-title: Imaging brain microstructure with diffusion MRI: practicality and applications
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3841
– volume: 8
  start-page: e73021
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117539_bib0027
  article-title: Diffusion weighted image denoising using overcomplete local PCA
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0073021
– volume: 65
  start-page: 1195
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117539_bib0002
  article-title: Statistical noise analysis in GRAPPA using a parametrized noncentral Chi approximation model
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22701
– year: 2016
  ident: 10.1016/j.neuroimage.2020.117539_bib0003
– volume: 69
  start-page: 1534
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117539_bib0015
  article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24736
– volume: 125
  start-page: 1063
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117539_bib0011
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– year: 2020
  ident: 10.1016/j.neuroimage.2020.117539_bib0028
  article-title: Diffusion imaging in the post HCP era
  publication-title: J. Magn. Reson. Imaging
– volume: 122
  start-page: 318
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117539_bib0039
  article-title: High resolution whole brain diffusion imaging at 7T for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.08.004
– volume: 142
  start-page: 394
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117539_bib0038
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.016
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.neuroimage.2020.117539_bib0040
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117539_bib0030
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– start-page: 58
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117539_bib0005
  article-title: Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/s13640-017-0203-4
– volume: 10
  start-page: 344
  year: 2007
  ident: 10.1016/j.neuroimage.2020.117539_bib0041
  article-title: Non-local means variants for denoising of diffusion-weighted and diffusion tensor MRI
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 34
  start-page: 144
  year: 2007
  ident: 10.1016/j.neuroimage.2020.117539_bib0013
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 32
  start-page: 115
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117539_bib0036
  article-title: Non local spatial and angular matching: enabling higher spatial resolution diffusion MRI datasets through adaptive denoising
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.02.010
– volume: 2018
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117539_bib0006
  article-title: Overview and critical appraisal of arterial spin labelling technique in brain perfusion imaging
  publication-title: Contrast Media Mol. Imaging
  doi: 10.1155/2018/5360375
– volume: 122
  start-page: 166
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117539_bib0009
  article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.067
– volume: 2
  start-page: 60
  year: 2005
  ident: 10.1016/j.neuroimage.2020.117539_bib0001
  article-title: A non-local algorithm for image denoising
– volume: 32
  start-page: 379
  year: 1994
  ident: 10.1016/j.neuroimage.2020.117539_bib0007
  article-title: Analysis and correction of motion artifacts in diffusion weighted imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910320313
– volume: 67
  start-page: 1210
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117539_bib0031
  article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar Imaging with reduced g-factor penalty
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23097
– volume: 29
  start-page: 162
  year: 1996
  ident: 10.1016/j.neuroimage.2020.117539_bib0017
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1996.0014
– start-page: 86
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117539_bib0023
  article-title: From local kernel to nonlocal multiple-model image denoising
  publication-title: Int. J. Comput. Vis.
– volume: 370
  start-page: 1668
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117539_bib0022
  article-title: The BRAIN initiative: developing technology to catalyse neuroscience discovery
  publication-title: Philos. Trans. R Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2014.0164
– volume: 70
  start-page: 1682
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117539_bib0035
  article-title: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24623
– volume: 2
  start-page: 7
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117539_bib0018
  article-title: Brief review of image denoising techniques
  publication-title: Vis. Comput. Ind. Biomed. Art
  doi: 10.1186/s42492-019-0016-7
– volume: 17
  start-page: 666
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117539_bib0033
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2013.09.016
– volume: 80
  start-page: 80
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117539_bib0037
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.012
– start-page: 3515
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117539_bib0029
  article-title: Feasibility of very high B-value diffusion imaging using a clinical scanner
  publication-title: Int. Soc. Magn. Reson. Med.
– volume: 20
  start-page: 870
  year: 2003
  ident: 10.1016/j.neuroimage.2020.117539_bib0008
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 141
  start-page: 556
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117539_bib0010
  article-title: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.06.058
– start-page: 1809
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117539_bib0019
  article-title: Noise estimation and removal in MR imaging: the variance-stabilization approach
  publication-title: IEEE Int. Symp. Biomed. Imaging Nano Macro
– volume: 14
  start-page: 675
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117539_bib0024
  article-title: A review of denoising medical images using machine learning approaches
  publication-title: Curr. Med. Imaging Rev.
  doi: 10.2174/1573405613666170428154156
– volume: 80
  start-page: 125
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117539_bib0034
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.057
SSID ssj0009148
Score 2.6161005
Snippet •We propose a framework, NORDIC, for denoising complex valued dMRI data using Gaussian statistics.•The main feature of the proposed method is to only remove...
Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range of neuroscientific and clinical applications. However,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117539
SubjectTerms Algorithms
Brain
Brain - anatomy & histology
Brain imaging
Connectome - methods
Denoising
Diffusion
Diffusion Magnetic Resonance Imaging - methods
Diffusion MRI
Human connectome project
Humans
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Methods
Multiband
Neuroimaging
Noise
Noise reduction
Principal components analysis
Signal-To-Noise Ratio
Simultaneous multi-slice
Singular value decomposition
Values
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLegQ4gLjI9BYENG4gAHiyR2Ylsc0FY2UYmFagK0WxQ7NgRtaUk7Pk786_glTrqChCpxqlT7VWnep-3n3w-hp1ILbphKSBJRTZjlmijBFQnBl1zG00WLU_DxLc8ycXoqp37DbeHbKvuY2AbqcqZhj_xFzDgsVkQsX82_EmCNgtNVT6FxFW0BUhkboa2Dw2x6soLdjVh3GS6hRLgZvpen6_BqESOrc-e3bp0Yt-eXCZCGX0pQLY7_Wp76uw79s53yUn46uvW__2wb3fSVKd7vTOk2umLqO-j6sT97v4t-Ze-qhcENYL2CNjFs4eLXk8XAmYXHQPWhXQ2Ln2VucTkZP8fT8T6ualwen0w6gbaH3fwggDLuJgL0-Dm05BDbGIPb1Hr2031-J0Anj-fdRQaXYO-hD0eH78dviKdvIDql4RJQSjWPS8uZq0rLmNrICK5NUkrKLBVpyRS3iS1DpVMRcS6UkixJDA-lKVRR0B00qme1eYCwUMKGZcKi0EIFFBVFKmMXakxplYpZEiDe6yzXHtscKDbO8r6J7Uu-0nYO2s47bQcoGiTnHb7HBjIHYBbDfEDobr-YNZ9y7_B5mjJXCetUhaVmopCSKRMpLo0NaSFTHiDZG1XeX4J1Ydv9ULXBA7wcZH2h1BVAG0rv9naY-4C1yFdGGKAnw7ALNXB-VNRmdgFz0tClI1ejBuh-Z_LDO6AUkBFjN8LXnGHtJa2P1NXnFs4cCA0kpQ___ViP0I0Y2onahvldNFo2F2YPXdPfltWieez9_jfKqmQ9
  priority: 102
  providerName: ProQuest
Title NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811920310247
https://dx.doi.org/10.1016/j.neuroimage.2020.117539
https://www.ncbi.nlm.nih.gov/pubmed/33186723
https://www.proquest.com/docview/2477211829
https://www.proquest.com/docview/2460763663
https://pubmed.ncbi.nlm.nih.gov/PMC7881933
https://doaj.org/article/664575c6b0dc48a994be1b79ef03a967
Volume 226
WOSCitedRecordID wos000608035900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgQYgL4k1hqYzEAQ4RSezEtjjtll1RiYZqBag3K3ZsEbSbXbVdHif-OjPOgxYO9MDFkWJPZI3Hns_x-BtCnisrheMmi7KE2Yh7YSMjhYlinEvg8WwZeAo-vRNFIRcLNd9I9YUxYS09cKu4V3nOAVHY3MSV5bJUihuXGKGcj1mp8nCPHFBPv5nq6XYB5XdxO200V2CHrM9gjsKeMA1nlRkmCN9wRoGzf8sn_Y05_wyd3PBFx7fJrQ5E0oO283fIFdfcJTdm3TH5PfKzeF-vHF0iLSsqnuLfVvpmuhrSW9EJZuWwADfpiwL2gdPJSzqfHNC6odXsZNoKhHBz9z1CQnBoiCzhZxg9E_mlczR4wdMf8PwWYeZ3etHeOQBfeJ98PD76MHkbdZkWIpuzeI2EolaklRccVFmlzCdOCuuySjHumcwrboTPfBUbm8tECGmM4lnmRKxcacqSPSB7zXnjHhEqjfRxlfEk9ghWkrLMVQqrgqu8MSnPRkT0Kte2oyHHbBinuo83-6J_D5bGwdLtYI1IMkhetFQcO8gc4qgO7ZFMO7wAE9Odiel_mdiIqN4mdH9fFVZY-FC9QwdeD7Idpmmxyo7S-70J6m5tWemUC9y2yxSqnw3VsCrgUU_ZuPNLbJPH4DkATo7Iw9ZiBx0whiSGKdSILVveUtJ2TVN_DszjmHtAMfb4f2j1CbmZYnxQiIDfJ3vr5aV7Sq7br-t6tRyTq2IhQinH5NrhUTE_GYcpDuUsnWEp5r8Am29YIw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQMAL90thgJFAgoeIxHZiWwih0TGtWlsmtKG-mdhxILClpe0Ye-If8RvxcS5dQUJ72QNPkWKfKHXP5XN8zncQeiKN4JbpOIgjagKWcxNowXUQgi25iGdSz1Pwoc-HQzEayZ0V9KuphYG0ysYnekedjQ18I39BGIfNiiDy9eRbAF2j4HS1aaFRqcW2PT5yW7bZq96G-3-fErL5dre7FdRdBQKT0HAO5JmGkyznzIGljNA8soIbG2eSspyKJGOa53GehdokIuJcaC1ZHFseSpvqNKXuuefQeefHOaSQ8RFfkPxGrCq9i2kgokjWmUNVPpnnpywOnJdwu1LiT0tjaFF-Ihz6rgFLUfFv1Ptn8uaJaLh59X9bx2voSo278XplKNfRii1voIuDOrPgJvo5fFfMLJ4Cky3oKoYP1HijN2s7guEuNDIxDqHjZ0O3de51n-Od7jouSpwN3vcqAZ-hb38EwKHuJgKx-gEkHAX51FrsgcP-sbseBQ4jfMWTqkzDwYdbaO9Mfv5ttFqOS3sXYaFFHmYxi8Ic8F2UpokkzpHaLNeasLiDeKMjytTM7dBAZF81KXpf1EK7FGiXqrSrg6JWclKxl5xC5g2oYTsf-Mf9jfH0k6rdmUoS5nC-SXSYGSZSKZm2kebS5iFNZcI7SDZKrJoSXxeU3IOKU7zAy1a2hoEVvDul9Fqj96p2xzO1UPoOetwOO0cKp2NpaceHMCcJXbB1CLyD7lQm1q4BpcD7SNwIXzK-pUVaHimLz56sHdo1SErv_fu1HqFLW7uDvur3htv30WUCiVO-NGANrc6nh_YBumC-z4vZ9KH3OBh9PGvT_A3bfsBb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGhiZeuF8KA4wEEjxES2InjoUQ2tpVVNtCNQHaW4gdGwJbWtqOsSf-F7-Oc3LrChLqyx54ihTbUeqey3fic75DyFOpI2G4CpzAY9rhVmhHRUI5LuoSeDydljwFH_ZEHEeHh3K4Qn41tTCYVtnYxNJQZyON38g3fS4wWIl8uWnrtIhhr_96_M3BDlJ40tq006hEZNecnUL4Nn016MF__cz3-zvvum-cusOAo0PmzpBIUws_s4IDcMp8Zj0TCW2CTDJuWRRmXAkb2MxVOow8ISKlJA8CI1xpUpWmDJ57iawJABmgXWvbO_HwYE756_GqEC9gTuR5ss4jqrLLSrbK_BhsBsSofnl2GmDD8nPOsewhsOAj_8bAf6ZynvON_Wv_865eJ1drRE63KhW6QVZMcZOs79c5B7fIz_htPjV0ghy3KMUUP13T3mDa9gqjXWxxogG70-cxBNWD7gs67G7RvKDZ_sGgWlDm7psfDrKrw0SkXD_GVCTHToyhJaQ4OoPrqQPo4SsdVwUcACxuk_cX8vPvkNViVJh7hEYqsm4WcM-1iPy8NA2lDybWZFYpnwcdIhp5SXTN6Y6tRY6SJnnvSzKXtAQlLakkrUO8duW44jVZYs02imQ7H5nJyxujyaekNnRJGHKIAHSo3EzzKJWSK-MpIY11WSpD0SGyEeikKf4FdwUPypd4gZft2hogVsBvydUbjQ4ktaGeJnMF6JAn7TCYWDw3SwszOsE5oQtuGLB5h9yt1K3dA8aQEdKHEbGgiAubtDhS5J9LGnds5CAZu__v13pM1kEjk71BvPuAXPExo6qsGdggq7PJiXlILuvvs3w6eVSbH0o-XrRu_gZN2Mp8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NOise+reduction+with+DIstribution+Corrected+%28NORDIC%29+PCA+in+dMRI+with+complex-valued+parameter-free+locally+low-rank+processing&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Moeller%2C+Steen&rft.au=Pisharady%2C+Pramod+Kumar&rft.au=Ramanna%2C+Sudhir&rft.au=Lenglet%2C+Christophe&rft.date=2021-02-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=226&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117539&rft.externalDocID=S1053811920310247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon