Moderated t-tests for group-level fMRI analysis

•We introduce a moderated t-statistic for performing group-level fMRI analysis.•The approach helps alleviate problems related to small sample sizes.•The approach outperforms several standard approaches.•An R-package is introduced for application of the method to fMRI data. In recent years, there has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Jg. 237; S. 118141
Hauptverfasser: Wang, Guoqing, Muschelli, John, Lindquist, Martin A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 15.08.2021
Elsevier Limited
Elsevier
Schlagworte:
ISSN:1053-8119, 1095-9572, 1095-9572
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We introduce a moderated t-statistic for performing group-level fMRI analysis.•The approach helps alleviate problems related to small sample sizes.•The approach outperforms several standard approaches.•An R-package is introduced for application of the method to fMRI data. In recent years, there has been significant criticism of functional magnetic resonance imaging (fMRI) studies with small sample sizes. The argument is that such studies have low statistical power, as well as reduced likelihood for statistically significant results to be true effects. The prevalence of these studies has led to a situation where a large number of published results are not replicable and likely false. Despite this growing body of evidence, small sample fMRI studies continue to be regularly performed; likely due to the high cost of scanning. In this report we investigate the use of a moderated t-statistic for performing group-level fMRI analysis to help alleviate problems related to small sample sizes. The proposed approach, implemented in the popular R-package LIMMA (linear models for microarray data), has found wide usage in the genomics literature for dealing with similar issues. Utilizing task-based fMRI data from the Human Connectome Project (HCP), we compare the performance of the moderated t-statistic with the standard t-statistic, as well as the pseudo t-statistic commonly used in non-parametric fMRI analysis. We find that the moderated t-test significantly outperforms both alternative approaches for studies with sample sizes less than 40 subjects. Further, we find that the results were consistent both when using voxel-based and cluster-based thresholding. We also introduce an R-package, LIMMI (linear models for medical images), that provides a quick and convenient way to apply the method to fMRI data.
AbstractList •We introduce a moderated t-statistic for performing group-level fMRI analysis.•The approach helps alleviate problems related to small sample sizes.•The approach outperforms several standard approaches.•An R-package is introduced for application of the method to fMRI data. In recent years, there has been significant criticism of functional magnetic resonance imaging (fMRI) studies with small sample sizes. The argument is that such studies have low statistical power, as well as reduced likelihood for statistically significant results to be true effects. The prevalence of these studies has led to a situation where a large number of published results are not replicable and likely false. Despite this growing body of evidence, small sample fMRI studies continue to be regularly performed; likely due to the high cost of scanning. In this report we investigate the use of a moderated t-statistic for performing group-level fMRI analysis to help alleviate problems related to small sample sizes. The proposed approach, implemented in the popular R-package LIMMA (linear models for microarray data), has found wide usage in the genomics literature for dealing with similar issues. Utilizing task-based fMRI data from the Human Connectome Project (HCP), we compare the performance of the moderated t-statistic with the standard t-statistic, as well as the pseudo t-statistic commonly used in non-parametric fMRI analysis. We find that the moderated t-test significantly outperforms both alternative approaches for studies with sample sizes less than 40 subjects. Further, we find that the results were consistent both when using voxel-based and cluster-based thresholding. We also introduce an R-package, LIMMI (linear models for medical images), that provides a quick and convenient way to apply the method to fMRI data.
In recent years, there has been significant criticism of functional magnetic resonance imaging (fMRI) studies with small sample sizes. The argument is that such studies have low statistical power, as well as reduced likelihood for statistically significant results to be true effects. The prevalence of these studies has led to a situation where a large number of published results are not replicable and likely false. Despite this growing body of evidence, small sample fMRI studies continue to be regularly performed; likely due to the high cost of scanning. In this report we investigate the use of a moderated t-statistic for performing group-level fMRI analysis to help alleviate problems related to small sample sizes. The proposed approach, implemented in the popular R-package LIMMA (linear models for microarray data), has found wide usage in the genomics literature for dealing with similar issues. Utilizing task-based fMRI data from the Human Connectome Project (HCP), we compare the performance of the moderated t-statistic with the standard t-statistic, as well as the pseudo t-statistic commonly used in non-parametric fMRI analysis. We find that the moderated t-test significantly outperforms both alternative approaches for studies with sample sizes less than 40 subjects. Further, we find that the results were consistent both when using voxel-based and cluster-based thresholding. We also introduce an R-package, LIMMI (linear models for medical images), that provides a quick and convenient way to apply the method to fMRI data.
In recent years, there has been significant criticism of functional magnetic resonance imaging (fMRI) studies with small sample sizes. The argument is that such studies have low statistical power, as well as reduced likelihood for statistically significant results to be true effects. The prevalence of these studies has led to a situation where a large number of published results are not replicable and likely false. Despite this growing body of evidence, small sample fMRI studies continue to be regularly performed; likely due to the high cost of scanning. In this report we investigate the use of a moderated t-statistic for performing group-level fMRI analysis to help alleviate problems related to small sample sizes. The proposed approach, implemented in the popular R-package LIMMA (linear models for microarray data), has found wide usage in the genomics literature for dealing with similar issues. Utilizing task-based fMRI data from the Human Connectome Project (HCP), we compare the performance of the moderated t-statistic with the standard t-statistic, as well as the pseudo t-statistic commonly used in non-parametric fMRI analysis. We find that the moderated t-test significantly outperforms both alternative approaches for studies with sample sizes less than 40 subjects. Further, we find that the results were consistent both when using voxel-based and cluster-based thresholding. We also introduce an R-package, LIMMI (linear models for medical images), that provides a quick and convenient way to apply the method to fMRI data.In recent years, there has been significant criticism of functional magnetic resonance imaging (fMRI) studies with small sample sizes. The argument is that such studies have low statistical power, as well as reduced likelihood for statistically significant results to be true effects. The prevalence of these studies has led to a situation where a large number of published results are not replicable and likely false. Despite this growing body of evidence, small sample fMRI studies continue to be regularly performed; likely due to the high cost of scanning. In this report we investigate the use of a moderated t-statistic for performing group-level fMRI analysis to help alleviate problems related to small sample sizes. The proposed approach, implemented in the popular R-package LIMMA (linear models for microarray data), has found wide usage in the genomics literature for dealing with similar issues. Utilizing task-based fMRI data from the Human Connectome Project (HCP), we compare the performance of the moderated t-statistic with the standard t-statistic, as well as the pseudo t-statistic commonly used in non-parametric fMRI analysis. We find that the moderated t-test significantly outperforms both alternative approaches for studies with sample sizes less than 40 subjects. Further, we find that the results were consistent both when using voxel-based and cluster-based thresholding. We also introduce an R-package, LIMMI (linear models for medical images), that provides a quick and convenient way to apply the method to fMRI data.
ArticleNumber 118141
Author Lindquist, Martin A.
Wang, Guoqing
Muschelli, John
Author_xml – sequence: 1
  givenname: Guoqing
  surname: Wang
  fullname: Wang, Guoqing
– sequence: 2
  givenname: John
  surname: Muschelli
  fullname: Muschelli, John
– sequence: 3
  givenname: Martin A.
  orcidid: 0000-0003-2289-0828
  surname: Lindquist
  fullname: Lindquist, Martin A.
  email: mlindqui@jhsph.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33962000$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wF1AkNmwy9SN24g2CVtCO1AoJwdpy7JvBwRMPtjPS_HscpqV0VrPy6_jz8b3nvDgZ_QhFUWK0wAjzy2ExwhS8XasVLAgieIFxi2v8ojjDSLBKsIaczHNGqxZjcVqcxzgghASu21fFKaWCk7w8Ky7vvYGgEpgyVQliimXvQ7kKftpUDrbgyv7-27JUo3K7aOPr4mWvXIQ3D-NF8ePL5-_Xt9Xd15vl9ae7SnOKUlUjiknLFOYcqFKMQd-0XDeYINpz0nYNFy3VUAvEG-gEEg1TRkGHWwSiNvSiWO65xqtBbkL-athJr6z8u-HDSqqQrHYgDTdaI9px05EadX2He44zG9MuM02XWR_2rM3UrcFoGFNQ7hn0-clof8qV38qWCCaIyID3D4Dgf0-5SHJtowbn1Ah-ipIwUlNOasKy9N2BdPBTyMWbVTUXnAneZNXb_x39s_LYlyfLOvgYA_RS26SS9bNB6yRGcg6CHORTEOQcBLkPQga0B4DHN464erW_Crm_WwtBRm1h1GBsAJ1yA-wxkI8HEO3saLVyv2B3HOIPwLToPQ
CitedBy_id crossref_primary_10_7554_eLife_100123
crossref_primary_10_1093_biomtc_ujae116
crossref_primary_10_1002_hbm_26692
crossref_primary_10_1080_15622975_2025_2556848
crossref_primary_10_1038_s41598_024_67662_x
crossref_primary_10_3389_fgene_2021_712306
crossref_primary_10_7554_eLife_100123_3
crossref_primary_10_1016_j_neuroimage_2022_119192
crossref_primary_10_3390_ijms25010474
crossref_primary_10_3390_cancers15123237
Cites_doi 10.1186/gb-2004-5-10-r80
10.1016/S1053-8119(18)31587-8
10.1093/nar/gkv007
10.1006/nimg.1996.0074
10.1016/j.neuroimage.2003.12.023
10.1101/295048
10.1038/nrn.2016.167
10.1016/j.neuroimage.2014.05.043
10.1002/hbm.1058
10.1016/j.neuroimage.2008.03.061
10.1001/jamapsychiatry.2016.3356
10.1093/biostatistics/kxn028
10.1038/nbt.3004
10.1016/j.neuroimage.2009.05.034
10.1038/nrn3475
10.1016/j.neuroimage.2012.03.093
10.1016/j.neuroimage.2013.05.033
10.3389/fnins.2015.00316
10.1016/j.neuroimage.2015.02.042
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuroimage.2011.07.077
10.1016/j.neuroimage.2013.05.041
10.1080/01621459.1975.10479864
10.1016/j.neuroimage.2019.116468
10.1073/pnas.1602413113
10.1002/hbm.460010306
10.1016/j.neuroimage.2012.02.018
10.1007/0-387-29362-0_23
10.1016/j.neuroimage.2013.01.047
10.2202/1544-6115.1027
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
2021. The Author(s)
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2021. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2021.118141
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology


MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 118141
ExternalDocumentID oai_doaj_org_article_d6dcc03b6db240bfb1f613ce13b5addb
PMC8295929
33962000
10_1016_j_neuroimage_2021_118141
S1053811921004183
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB016061
– fundername: NIBIB NIH HHS
  grantid: R01 EB026549
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
9DU
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AFFHD
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
SEW
WUQ
XPP
ZMT
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c630t-4031285a166e3aa55ef786c71203f628b76983ce49067eb90975adaeb180e94d3
IEDL.DBID 7X7
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671785900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Tue Oct 14 19:07:30 EDT 2025
Tue Nov 04 01:40:51 EST 2025
Sun Nov 09 10:46:21 EST 2025
Tue Oct 07 07:11:48 EDT 2025
Thu Apr 03 07:00:58 EDT 2025
Sat Nov 29 07:10:20 EST 2025
Tue Nov 18 20:36:48 EST 2025
Fri Feb 23 02:43:07 EST 2024
Tue Oct 14 19:31:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords fMRI
Group analysis
Moderated t-test
LIMMA
LIMMI
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-4031285a166e3aa55ef786c71203f628b76983ce49067eb90975adaeb180e94d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Credit authorship contribution statement
Guoqing Wang: Conceptualization, Methodology, Software, Formal analysis, Writing - original draft. John Muschelli: Formal analysis, Software, Writing - review & editing. Martin A. Lindquist: Conceptualization, Methodology, Writing - review & editing, Supervision, Funding acquisition.
ORCID 0000-0003-2289-0828
OpenAccessLink https://doaj.org/article/d6dcc03b6db240bfb1f613ce13b5addb
PMID 33962000
PQID 2546965967
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d6dcc03b6db240bfb1f613ce13b5addb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8295929
proquest_miscellaneous_2524362425
proquest_journals_2546965967
pubmed_primary_33962000
crossref_citationtrail_10_1016_j_neuroimage_2021_118141
crossref_primary_10_1016_j_neuroimage_2021_118141
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118141
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118141
PublicationCentury 2000
PublicationDate 2021-08-15
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Chen, Kang, Wang (bib0005) 2015; 9
Geuter, S., Qi, G., Welsh, R. C., Wager, T. D., Lindquist, M., 2018. Effect size and power in fMRI group analysis. bioRxiv, 1–23295048. 10.1101/295048
Mejia, Nebel, Shou, Crainiceanu, Pekar, Mostofsky, Caffo, Lindquist (bib0019) 2015; 112
Eklund, Nichols, Knutsson (bib0009) 2016; 113
Smyth (bib0031) 2004; 3
Shou, Eloyan, Nebel, Mejia, Pekar, Mostofsky, Caffo, Lindquist, Crainiceanu (bib0028) 2014; 102
Chen, G., Taylor, P. A., Cox, R. W., 2016. Is the statistic value all we should care about in neuroimaging?bioRxiv.
Johnson, Kotz (bib0017) 1970; 2
R Core Team (bib0025) 2019
Holmes, Friston (bib0015) 1998; 7
Friston, Holmes, Poline, Price, Frith (bib0010) 1996; 4
Lindquist, Spicer, Asllani, Wager (bib0018) 2012; 59
Cohen (bib0006) 1988
Woolrich, Behrens, Beckmann, Jenkinson, Smith (bib0035) 2004; 21
James, Stein (bib0016) 1961; 1
Poldrack, Baker, Durnez, Gorgolewski, Matthews, Munafò, Nichols, Poline, Vul, Yarkoni (bib0024) 2017; 18
Su, Caffo, Garrett-Mayer, Bassett (bib0032) 2008; 10
Smyth (bib0030) 2005
Chen, Saad, Britton, Pine, Cox (bib0003) 2013; 73
Mumford, Nichols (bib0020) 2009; 47
Nichols, Holmes (bib0022) 2002; 15
Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt (bib0001) 2013; 80
Eklund, Andersson, Josephson, Johannesson, Knutsson (bib0008) 2012; 61
,
Gentleman, Carey, Bates, Bolstad, Dettling, Dudoit, Ellis, Gautier, Ge, Gentry (bib0012) 2004; 5
Noble, Scheinost, Constable (bib0023) 2020; 209
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib0033) 2013; 80
Reddan, Lindquist, Wager (bib0026) 2017; 74
Munafò, Noble, Browne, Brunner, Button, Ferreira, Holmans, Langbehn, Lewis, Lindquist (bib0021) 2014; 32
Smith, Nichols (bib0029) 2009; 44
10.1101/064212
Efron, Morris (bib0007) 1975; 70
Ritchie, Phipson, Wu, Hu, Law, Shi, Smyth (bib0027) 2015; 43
Friston, Worsley, Frackowiak, Mazziotta, Evans (bib0011) 1994; 1
Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafò (bib0002) 2013; 14
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib0014) 2013; 80
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss (bib0034) 2012; 62
Lindquist (10.1016/j.neuroimage.2021.118141_bib0018) 2012; 59
Friston (10.1016/j.neuroimage.2021.118141_sbref0010) 1996; 4
Eklund (10.1016/j.neuroimage.2021.118141_sbref0008) 2012; 61
Poldrack (10.1016/j.neuroimage.2021.118141_bib0024) 2017; 18
Glasser (10.1016/j.neuroimage.2021.118141_bib0014) 2013; 80
10.1016/j.neuroimage.2021.118141_bib0013
Cohen (10.1016/j.neuroimage.2021.118141_bib0006) 1988
Munafò (10.1016/j.neuroimage.2021.118141_bib0021) 2014; 32
Smyth (10.1016/j.neuroimage.2021.118141_bib0031) 2004; 3
Mejia (10.1016/j.neuroimage.2021.118141_bib0019) 2015; 112
Van Essen (10.1016/j.neuroimage.2021.118141_bib0034) 2012; 62
Nichols (10.1016/j.neuroimage.2021.118141_bib0022) 2002; 15
Shou (10.1016/j.neuroimage.2021.118141_bib0028) 2014; 102
Smith (10.1016/j.neuroimage.2021.118141_bib0029) 2009; 44
10.1016/j.neuroimage.2021.118141_bib0004
Smyth (10.1016/j.neuroimage.2021.118141_bib0030) 2005
Woolrich (10.1016/j.neuroimage.2021.118141_bib0035) 2004; 21
Barch (10.1016/j.neuroimage.2021.118141_bib0001) 2013; 80
Holmes (10.1016/j.neuroimage.2021.118141_bib0015) 1998; 7
Eklund (10.1016/j.neuroimage.2021.118141_bib0009) 2016; 113
Johnson (10.1016/j.neuroimage.2021.118141_bib0017) 1970; 2
Su (10.1016/j.neuroimage.2021.118141_bib0032) 2008; 10
Chen (10.1016/j.neuroimage.2021.118141_bib0005) 2015; 9
Friston (10.1016/j.neuroimage.2021.118141_sbref0011) 1994; 1
R Core Team (10.1016/j.neuroimage.2021.118141_sbref0025) 2019
Gentleman (10.1016/j.neuroimage.2021.118141_bib0012) 2004; 5
James (10.1016/j.neuroimage.2021.118141_bib0016) 1961; 1
Ritchie (10.1016/j.neuroimage.2021.118141_bib0027) 2015; 43
Chen (10.1016/j.neuroimage.2021.118141_bib0003) 2013; 73
Mumford (10.1016/j.neuroimage.2021.118141_bib0020) 2009; 47
Button (10.1016/j.neuroimage.2021.118141_bib0002) 2013; 14
Efron (10.1016/j.neuroimage.2021.118141_bib0007) 1975; 70
Noble (10.1016/j.neuroimage.2021.118141_bib0023) 2020; 209
Van Essen (10.1016/j.neuroimage.2021.118141_bib0033) 2013; 80
Reddan (10.1016/j.neuroimage.2021.118141_bib0026) 2017; 74
References_xml – volume: 7
  start-page: S754
  year: 1998
  ident: bib0015
  article-title: Generalisability, random effects and population inference
  publication-title: NeuroImage
– reference: ,
– volume: 209
  start-page: 116468
  year: 2020
  ident: bib0023
  article-title: Cluster failure or power failure? Evaluating sensitivity in cluster-level inference
  publication-title: NeuroImage
– volume: 18
  start-page: 115
  year: 2017
  ident: bib0024
  article-title: Scanning the horizon: towards transparent and reproducible neuroimaging research
  publication-title: Nat. Rev. Neurosci.
– volume: 2
  year: 1970
  ident: bib0017
  article-title: Distributions in Statistics: Continuous Univariate Distributions
– reference: Chen, G., Taylor, P. A., Cox, R. W., 2016. Is the statistic value all we should care about in neuroimaging?bioRxiv.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0033
  article-title: The WU-minn human connectome project: an overview
  publication-title: NeuroImage
– volume: 74
  start-page: 207
  year: 2017
  end-page: 208
  ident: bib0026
  article-title: Effect size estimation in neuroimaging
  publication-title: JAMA Psychiatry
– year: 2019
  ident: bib0025
  article-title: R: A Language and Environment for Statistical Computing
– volume: 5
  start-page: R80
  year: 2004
  ident: bib0012
  article-title: Bioconductor: open software development for computational biology and bioinformatics
  publication-title: Genome Biol.
– volume: 14
  start-page: 365
  year: 2013
  end-page: 376
  ident: bib0002
  article-title: Power failure: why small sample size undermines the reliability of neuroscience
  publication-title: Nat. Rev. Neurosci.
– volume: 59
  start-page: 490
  year: 2012
  end-page: 501
  ident: bib0018
  article-title: Estimating and testing variance components in a multi-level GLM
  publication-title: NeuroImage
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: bib0001
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: NeuroImage
– volume: 15
  start-page: 1
  year: 2002
  end-page: 25
  ident: bib0022
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum. Brain Mapp.
– reference: Geuter, S., Qi, G., Welsh, R. C., Wager, T. D., Lindquist, M., 2018. Effect size and power in fMRI group analysis. bioRxiv, 1–23295048. 10.1101/295048
– volume: 112
  start-page: 14
  year: 2015
  end-page: 29
  ident: bib0019
  article-title: Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators
  publication-title: NeuroImage
– volume: 102
  start-page: 938
  year: 2014
  end-page: 944
  ident: bib0028
  article-title: Shrinkage prediction of seed-voxel brain connectivity using resting state fMRI
  publication-title: NeuroImage
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib0034
  article-title: The human connectome project: a data acquisition perspective
  publication-title: NeuroImage
– volume: 70
  start-page: 311
  year: 1975
  end-page: 319
  ident: bib0007
  article-title: Data analysis using stein’s estimator and its generalizations
  publication-title: J. Am. Stat. Assoc.
– year: 1988
  ident: bib0006
  article-title: Statistical Power Analysis of the Behavioral Sciences
– volume: 47
  start-page: 1469
  year: 2009
  end-page: 1475
  ident: bib0020
  article-title: Simple group fMRI modeling and inference
  publication-title: NeuroImage
– volume: 32
  start-page: 871
  year: 2014
  end-page: 873
  ident: bib0021
  article-title: Scientific rigor and the art of motorcycle maintenance
  publication-title: Nat. Biotechnol.
– reference: . 10.1101/064212
– volume: 1
  start-page: 210
  year: 1994
  end-page: 220
  ident: bib0011
  article-title: Assessing the significance of focal activations using their spatial extent
  publication-title: Hum. Brain Mapp.
– volume: 43
  start-page: e47
  year: 2015
  ident: bib0027
  article-title: LIMMA powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 219
  year: 2008
  end-page: 227
  ident: bib0032
  article-title: Modified test statistics by inter-voxel variance shrinkage with an application to fMRI
  publication-title: Biostatistics
– volume: 21
  start-page: 1732
  year: 2004
  end-page: 1747
  ident: bib0035
  article-title: Multilevel linear modelling for fMRI group analysis using Bayesian inference
  publication-title: NeuroImage
– year: 2005
  ident: bib0030
  article-title: Limma: linear models for microarray data
  publication-title: Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Statistics for Biology and Health
– volume: 3
  start-page: 1
  year: 2004
  end-page: 25
  ident: bib0031
  article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 44
  start-page: 83
  year: 2009
  end-page: 98
  ident: bib0029
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: NeuroImage
– volume: 9
  start-page: 316
  year: 2015
  ident: bib0005
  article-title: An empirical Bayes normalization method for connectivity metrics in resting state fMRI
  publication-title: Front. Neurosc.
– volume: 4
  start-page: 223
  year: 1996
  end-page: 235
  ident: bib0010
  article-title: Detecting activations in pet and fMRI: levels of inference and power
  publication-title: NeuroImage
– volume: 113
  start-page: 7900
  year: 2016
  end-page: 7905
  ident: bib0009
  article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates
  publication-title: Proc. Natl. Acad. Sci.
– volume: 61
  start-page: 565
  year: 2012
  end-page: 578
  ident: bib0008
  article-title: Does parametric fMRI analysis with SPM yield valid results? An empirical study of 1484 rest datasets
  publication-title: NeuroImage
– volume: 73
  start-page: 176
  year: 2013
  end-page: 190
  ident: bib0003
  article-title: Linear mixed-effects modeling approach to fMRI group analysis
  publication-title: NeuroImage
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0014
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
– volume: 1
  start-page: 361
  year: 1961
  end-page: 379
  ident: bib0016
  article-title: Estimation with quadratic loss
  publication-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability
– volume: 5
  start-page: R80
  issue: 10
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118141_bib0012
  article-title: Bioconductor: open software development for computational biology and bioinformatics
  publication-title: Genome Biol.
  doi: 10.1186/gb-2004-5-10-r80
– volume: 7
  start-page: S754
  year: 1998
  ident: 10.1016/j.neuroimage.2021.118141_bib0015
  article-title: Generalisability, random effects and population inference
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(18)31587-8
– volume: 43
  start-page: e47
  issue: 7
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118141_bib0027
  article-title: LIMMA powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 4
  start-page: 223
  issue: 3
  year: 1996
  ident: 10.1016/j.neuroimage.2021.118141_sbref0010
  article-title: Detecting activations in pet and fMRI: levels of inference and power
  publication-title: NeuroImage
  doi: 10.1006/nimg.1996.0074
– volume: 21
  start-page: 1732
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118141_bib0035
  article-title: Multilevel linear modelling for fMRI group analysis using Bayesian inference
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.12.023
– ident: 10.1016/j.neuroimage.2021.118141_bib0013
  doi: 10.1101/295048
– volume: 18
  start-page: 115
  issue: 2
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118141_bib0024
  article-title: Scanning the horizon: towards transparent and reproducible neuroimaging research
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2016.167
– volume: 102
  start-page: 938
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118141_bib0028
  article-title: Shrinkage prediction of seed-voxel brain connectivity using resting state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.05.043
– volume: 15
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118141_bib0022
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1058
– volume: 44
  start-page: 83
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118141_bib0029
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.061
– year: 1988
  ident: 10.1016/j.neuroimage.2021.118141_bib0006
– volume: 74
  start-page: 207
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118141_bib0026
  article-title: Effect size estimation in neuroimaging
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2016.3356
– volume: 10
  start-page: 219
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118141_bib0032
  article-title: Modified test statistics by inter-voxel variance shrinkage with an application to fMRI
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxn028
– volume: 32
  start-page: 871
  issue: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118141_bib0021
  article-title: Scientific rigor and the art of motorcycle maintenance
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3004
– volume: 47
  start-page: 1469
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118141_bib0020
  article-title: Simple group fMRI modeling and inference
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.034
– volume: 14
  start-page: 365
  issue: 5
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118141_bib0002
  article-title: Power failure: why small sample size undermines the reliability of neuroscience
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3475
– volume: 61
  start-page: 565
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118141_sbref0008
  article-title: Does parametric fMRI analysis with SPM yield valid results? An empirical study of 1484 rest datasets
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.093
– volume: 80
  start-page: 169
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118141_bib0001
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: 10.1016/j.neuroimage.2021.118141_bib0004
– volume: 9
  start-page: 316
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118141_bib0005
  article-title: An empirical Bayes normalization method for connectivity metrics in resting state fMRI
  publication-title: Front. Neurosc.
  doi: 10.3389/fnins.2015.00316
– volume: 112
  start-page: 14
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118141_bib0019
  article-title: Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.042
– volume: 1
  start-page: 361
  year: 1961
  ident: 10.1016/j.neuroimage.2021.118141_bib0016
  article-title: Estimation with quadratic loss
– volume: 2
  year: 1970
  ident: 10.1016/j.neuroimage.2021.118141_bib0017
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118141_bib0014
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 59
  start-page: 490
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118141_bib0018
  article-title: Estimating and testing variance components in a multi-level GLM
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.07.077
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118141_bib0033
  article-title: The WU-minn human connectome project: an overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 70
  start-page: 311
  issue: 350
  year: 1975
  ident: 10.1016/j.neuroimage.2021.118141_bib0007
  article-title: Data analysis using stein’s estimator and its generalizations
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1975.10479864
– volume: 209
  start-page: 116468
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118141_bib0023
  article-title: Cluster failure or power failure? Evaluating sensitivity in cluster-level inference
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116468
– volume: 113
  start-page: 7900
  issue: 28
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118141_bib0009
  article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1602413113
– volume: 1
  start-page: 210
  issue: 3
  year: 1994
  ident: 10.1016/j.neuroimage.2021.118141_sbref0011
  article-title: Assessing the significance of focal activations using their spatial extent
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460010306
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118141_bib0034
  article-title: The human connectome project: a data acquisition perspective
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.018
– year: 2005
  ident: 10.1016/j.neuroimage.2021.118141_bib0030
  article-title: Limma: linear models for microarray data
  doi: 10.1007/0-387-29362-0_23
– volume: 73
  start-page: 176
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118141_bib0003
  article-title: Linear mixed-effects modeling approach to fMRI group analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.01.047
– volume: 3
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118141_bib0031
  article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1027
– year: 2019
  ident: 10.1016/j.neuroimage.2021.118141_sbref0025
SSID ssj0009148
Score 2.433922
Snippet •We introduce a moderated t-statistic for performing group-level fMRI analysis.•The approach helps alleviate problems related to small sample sizes.•The...
In recent years, there has been significant criticism of functional magnetic resonance imaging (fMRI) studies with small sample sizes. The argument is that...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118141
SubjectTerms Adult
Connectome
Data Interpretation, Statistical
Estimates
fMRI
Functional magnetic resonance imaging
Functional Neuroimaging - methods
Genomics
Group analysis
Humans
Hypotheses
LIMMA
LIMMI
Linear Models
Magnetic Resonance Imaging - methods
Models, Statistical
Moderated t-test
Performance evaluation
Psychomotor Performance
Statistical analysis
Student's t-test
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB1VqKp6QaUUmhaqIHFNsePEjtUTRUVwAFVVK3Gz7MQRW9FQsYHvZyZ2AqGH7oFrEq-S5_HM83rmDcC-YL6g47iM1bzNCq9Y5pzIM--ks6KxTNjQbEKdn1cXF_r7o1ZflBMW5IEDcAeNbOqaCUd9jwrmWsdbjEC158KVuDYdeV-m9LiZGuV2keXHvJ2QzTWoQy7-4BrFPWHOP1O9ZcFnwWjQ7J_FpH8559PUyUex6PgNrEcSmR6Gl9-AF757C6_O4jH5JhwMHc6QRTZpnyGX7JcpctN0qODIrihNKG3PfpymNiqSvINfx99-Hp1ksTNCVkvBetz0CYwrpeVSemFtWfpWVbJWPGeilXnllNQVglRoDEbeaaYVgmXRL1fM66IRW7DWXXf-PaSK-wY5kFS476LNi5PodyiEVarwrRYJqBEiU0fZcOpecWXG_LDf5gFcQ-CaAG4CfBr5N0hnrDDmK83C9DyJXw8X0CRMNAnzP5NIQI9zaMb6UvSI-EOLFV7gyzQ2cpDALVYcvTOajIm-YGmo4wDJNkqVwN50G1cxHc3Yzl_f0jN5IahUp0xgO1jYhIEQWlJBFc7EzPZmIM3vdIvLQSm8ynWJ_PfDc6D6EV7Tl9L_6bzcgbX-5tbvwsv6rl8sbz4Ny-8eAf82_g
  priority: 102
  providerName: Directory of Open Access Journals
Title Moderated t-tests for group-level fMRI analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921004183
https://dx.doi.org/10.1016/j.neuroimage.2021.118141
https://www.ncbi.nlm.nih.gov/pubmed/33962000
https://www.proquest.com/docview/2546965967
https://www.proquest.com/docview/2524362425
https://pubmed.ncbi.nlm.nih.gov/PMC8295929
https://doaj.org/article/d6dcc03b6db240bfb1f613ce13b5addb
Volume 237
WOSCitedRecordID wos000671785900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgF6G98H4ElipIXA12nNixOCAW7QoOraoVSL1ZseNA0ZLutll-PzOOk1KQUCUuPjRxFXvGM5_tmW8IeSWYz_E6jjLHG5p7xai1IqPeSluJumKi6otNqNmsXCz0PB64bWJY5WATg6GuVw7PyN8gbzuS30n17vKKYtUovF2NJTRukkMsm416rhZqS7rL8z4VrhC05FzHSJ4-vivwRS5_wKqFXWLGX2MGZs533FNg8d_xUn-j0D-DKX_zTmd3_3dc98idiEvT970i3Sc3fPuA3J7Gm_eHhIWiaQBM67SjKeDTbpMC3k1DVgi9wNCjtJmef0qryHLyiHw5O_384SON1Raok4J1sJEU4KuKikvpRVUVhW9UKZ3iGRONzEqrpC6F87kGB-etZloVVV2BrS-Z13ktHpODdtX6pyRV3NeAq6SCvRxuiKwEW4ZusVS5b7RIiBom2bhIRY4VMS7MEHP23WzFY1A8phdPQvjY87Kn49ijzwnKcXwfCbXDD6v1VxPXp6ll7RwTFstr5cw2ljcAdJznwsIoa5sQPWiBGXJWwcrCHy33-IC3Y9-Ia3q8smfv40FxTLQvG7PVmoS8HB-DZcDrnqr1q2t8J8sFpv8UCXnS6-g4B0JoiUlaIIkd7d2ZpN0n7fJbYB8vM10Apn727896To5wDHj6zotjctCtr_0Lcsv97Jab9SQs09CWE3J4cjqbn0_CaQi002yKrZr_Ah24SmQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VgoAX7iNQIEjwGLDjxI6FEOKqumqzQqhIfXPjxIFFJVt2UxB_it_ITK4lIKF96QOviR35GH_zTTwHwCPBXETXcQHLeRlETrHAWhEGzkqbiSJjImuLTajpNDk40O824GcfC0NulT0mNkBdzHP6R_6U8rZT8jupXhx_DahqFN2u9iU0WrHYdT--o8m2fD55g_v7OAy33-6_3gm6qgJBLgWr0WASiMlxxqV0Isvi2JUqkbniIROlDBOrpE5E7iKNQO6sZlrFWZEhpiXM6agQ-N0zcDZCTUgVE9IwXSX55VEbeheLIOFcd55DrT9Zk59y9gVRAq3SkD-hiM-Ij9RhUzVgpBX_Zr1_Om_-pg23L_9v63gFLnW823_ZHpSrsOGqa3A-7TwLrgNrisIh8S78OvCRf9dLH_m830S9BEfkWuWX6fuJn3VZXG7Ah1MZ703YrOaVuw2-4q5A3igV2qpk8FmJWE1qP1GRK7XwQPWbavIu1TpV_DgyvU_dZ7MSB0PiYFpx8IAPPY_bdCNr9HlFcjO0p4ThzYP54qPp8McUsshzJiyVD4uYLS0vkcjljguLsyysB7qXOtPH5KIWwQ_N1hjAs6Fvx9taPrZm761eUE2Hn0uzklIPHg6vEfnoOiur3PyE2oSRoPCm2INb7ZkY1kAILSkIDXdidFpGizR-U80-NdnVk1DHaDPc-fewHsCFnf10z-xNprt34SLNh24aeLwFm_XixN2Dc_m3erZc3G8gwofD0z5LvwCKIp-T
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHZp44X4pDAgSPIbZcWLHQggxtopqrKomkPbmxYkDRSMdbQfir_HrOCdxUgoS6sseeE3syJdzPn8nPheAp4K5mK7jQpbzMoydYqG1IgqdlTYTRcZE1hSbUKNRenysxxvws42FIbfKFhNroC6mOf0j36G87ZT8Tqqd0rtFjPcGr86-hlRBim5a23IajYgcuB_f0Xybvxzu4V4_i6LB_vs3b0NfYSDMpWALNJ4E4nOScSmdyLIkcaVKZa54xEQpo9QqqVORu1gjqDurmVZJVmSIbylzOi4EfvcSbCqBRk8PNnf3R-OjZcpfHjeBeIkIU8619yNqvMvqbJWTL4gZaKNG_DnFf8Z85XCsawisnJF_c-A_XTl_OxsH1_7nVb0OVz0jD143KnQDNlx1E7YOvc_BLWB1uTik5EWwCANk5ot5gEw_qONhwlNyugrKw6NhkPn8Lrfhw4WM9w70qmnl7kGguCuQUUqFViyZglYiihMhSFXsSi36oNoNNrlPwk61QE5N62332SxFw5BomEY0-sC7nmdNIpI1-uySDHXtKZV4_WA6-2g8MplCFnnOhKXCYjGzpeUlUrzccWFxloXtg24l0LTRuni-4IcmawzgRdfXM7qGqa3Ze7sVWuORdW6WEtuHJ91rxES66MoqNz2nNlEsKPAp6cPdRj-6NRBCSwpPw51Y0ZyVRVp9U00-1XnX00gnaE3c__ewHsMWqpB5NxwdPIArNB26guDJNvQWs3P3EC7n3xaT-eyRx4sATi5amX4B43Cptg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moderated+t-tests+for+group-level+fMRI+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wang%2C+Guoqing&rft.au=Muschelli%2C+John&rft.au=Lindquist%2C+Martin+A.&rft.date=2021-08-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=237&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118141&rft.externalDocID=S1053811921004183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon