A Multiscale Approach to Optimal Transport

In this paper, we propose an improvement of an algorithm of Aurenhammer, Hoffmann and Aronov to find a least square matching between a probability density and finite set of sites with mass constraints, in the Euclidean plane. Our algorithm exploits the multiscale nature of this optimal transport pro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 30; číslo 5; s. 1583 - 1592
Hlavný autor: Merigot, Quentin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 01.08.2011
Wiley
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we propose an improvement of an algorithm of Aurenhammer, Hoffmann and Aronov to find a least square matching between a probability density and finite set of sites with mass constraints, in the Euclidean plane. Our algorithm exploits the multiscale nature of this optimal transport problem. We iteratively simplify the target using Lloyd's algorithm, and use the solution of the simplified problem as a rough initial solution to the more complex one. This approach allows for fast estimation of distances between measures related to optimal transport (known as Earth‐mover or Wasserstein distances). We also discuss the implementation of these algorithms, and compare the original one to its multiscale counterpart.
Bibliografia:istex:ABA8CCD6A85D97390A94FDCE35E56624C358F707
ark:/67375/WNG-H13Q3HG2-M
ArticleID:CGF2032
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/j.1467-8659.2011.02032.x