Organic–Inorganic Hybrid Cuprous‐Based Metal Halides for Warm White Light‐Emitting Diodes

Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Low­dimensional lead (Pb) halide perovskites can achieve warm whit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced science Ročník 9; číslo 31; s. e2203596 - n/a
Hlavní autori: Meng, Xuan, Ji, Sujun, Wang, Qiujie, Wang, Xiaochen, Bai, Tianxin, Zhang, Ruiling, Yang, Bin, Li, Yimeng, Shao, Zhipeng, Jiang, Junke, Han, Ke‐li, Liu, Feng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany John Wiley & Sons, Inc 01.11.2022
Wiley Open Access
John Wiley and Sons Inc
Wiley
Predmet:
ISSN:2198-3844, 2198-3844
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Low­dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb‐free air‐stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal‐bearing compounds along with the typically required vacuum‐based thin‐film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu+)‐based metal halide MA2CuCl3 (MA = CH3NH3+) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant‐free is presented. Both single crystals and thin films of MA2CuCl3 can be facilely prepared by a low‐cost solution method, which demonstrate bright warm white‐light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down‐conversion LEDs are fabricated with MA2CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2CuCl3 has a great potential for the single‐component indoor lighting and display applications. The newly developed hybrid MA2CuCl3 meets the requirements of i) broadband warm white‐light emission, ii) nontoxicity, iii) high photoluminescence quantum yield, iv) dopant‐free, v) low‐cost, and vi) excellent film‐forming ability. Besides, the first successful electroluminescence application of MA2CuCl3 opens a new avenue toward single‐component warm white light‐emitting diodes.
AbstractList Abstract Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Low­dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb‐free air‐stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal‐bearing compounds along with the typically required vacuum‐based thin‐film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu+)‐based metal halide MA2CuCl3 (MA = CH3NH3+) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant‐free is presented. Both single crystals and thin films of MA2CuCl3 can be facilely prepared by a low‐cost solution method, which demonstrate bright warm white‐light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down‐conversion LEDs are fabricated with MA2CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2CuCl3 has a great potential for the single‐component indoor lighting and display applications.
Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2 AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu+ )-based metal halide MA2 CuCl3 (MA = CH3 NH3 + ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA2 CuCl3 can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA2 CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2 CuCl3 has a great potential for the single-component indoor lighting and display applications.Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2 AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu+ )-based metal halide MA2 CuCl3 (MA = CH3 NH3 + ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA2 CuCl3 can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA2 CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2 CuCl3 has a great potential for the single-component indoor lighting and display applications.
Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Low­dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb‐free air‐stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal‐bearing compounds along with the typically required vacuum‐based thin‐film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu+)‐based metal halide MA2CuCl3 (MA = CH3NH3 +) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant‐free is presented. Both single crystals and thin films of MA2CuCl3 can be facilely prepared by a low‐cost solution method, which demonstrate bright warm white‐light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down‐conversion LEDs are fabricated with MA2CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2CuCl3 has a great potential for the single‐component indoor lighting and display applications. The newly developed hybrid MA2CuCl3 meets the requirements of i) broadband warm white‐light emission, ii) nontoxicity, iii) high photoluminescence quantum yield, iv) dopant‐free, v) low‐cost, and vi) excellent film‐forming ability. Besides, the first successful electroluminescence application of MA2CuCl3 opens a new avenue toward single‐component warm white light‐emitting diodes.
Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low­dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu+)-based metal halide MA2CuCl3 (MA = CH3NH3+) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA2CuCl3 can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA2CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2CuCl3 has a great potential for the single-component indoor lighting and display applications.
Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Low­dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb‐free air‐stable perovskites such as Cs 2 AgInCl 6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal‐bearing compounds along with the typically required vacuum‐based thin‐film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu + )‐based metal halide MA 2 CuCl 3 (MA = CH 3 NH 3 + ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant‐free is presented. Both single crystals and thin films of MA 2 CuCl 3 can be facilely prepared by a low‐cost solution method, which demonstrate bright warm white‐light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down‐conversion LEDs are fabricated with MA 2 CuCl 3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA 2 CuCl 3 has a great potential for the single‐component indoor lighting and display applications.
Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Low­dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb‐free air‐stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal‐bearing compounds along with the typically required vacuum‐based thin‐film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu+)‐based metal halide MA2CuCl3 (MA = CH3NH3+) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant‐free is presented. Both single crystals and thin films of MA2CuCl3 can be facilely prepared by a low‐cost solution method, which demonstrate bright warm white‐light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down‐conversion LEDs are fabricated with MA2CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2CuCl3 has a great potential for the single‐component indoor lighting and display applications. The newly developed hybrid MA2CuCl3 meets the requirements of i) broadband warm white‐light emission, ii) nontoxicity, iii) high photoluminescence quantum yield, iv) dopant‐free, v) low‐cost, and vi) excellent film‐forming ability. Besides, the first successful electroluminescence application of MA2CuCl3 opens a new avenue toward single‐component warm white light‐emitting diodes.
Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu+)-based metal halide MA(2)CuCl(3) (MA = CH3NH3+) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA(2)CuCl(3) can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA(2)CuCl(3) thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA(2)CuCl(3) has a great potential for the single-component indoor lighting and display applications.
Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs AgInCl emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu )-based metal halide MA CuCl (MA = CH NH ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA CuCl can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA CuCl thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA CuCl has a great potential for the single-component indoor lighting and display applications.
Author Wang, Qiujie
Zhang, Ruiling
Shao, Zhipeng
Han, Ke‐li
Bai, Tianxin
Meng, Xuan
Wang, Xiaochen
Li, Yimeng
Ji, Sujun
Yang, Bin
Liu, Feng
Jiang, Junke
AuthorAffiliation 2 State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 P. R. China
4 ISCR (Institut des Sciences Chimiques de Rennes)‐UMR CNRS 6226 ENSCR, Université de Rennes Rennes 35700 France
1 Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
3 Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
AuthorAffiliation_xml – name: 1 Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
– name: 3 Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
– name: 4 ISCR (Institut des Sciences Chimiques de Rennes)‐UMR CNRS 6226 ENSCR, Université de Rennes Rennes 35700 France
– name: 2 State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 P. R. China
Author_xml – sequence: 1
  givenname: Xuan
  surname: Meng
  fullname: Meng, Xuan
  organization: Shandong University
– sequence: 2
  givenname: Sujun
  surname: Ji
  fullname: Ji, Sujun
  organization: Shandong University
– sequence: 3
  givenname: Qiujie
  surname: Wang
  fullname: Wang, Qiujie
  organization: Shandong University
– sequence: 4
  givenname: Xiaochen
  surname: Wang
  fullname: Wang, Xiaochen
  organization: Shandong University
– sequence: 5
  givenname: Tianxin
  surname: Bai
  fullname: Bai, Tianxin
  organization: Shandong University
– sequence: 6
  givenname: Ruiling
  surname: Zhang
  fullname: Zhang, Ruiling
  organization: Shandong University
– sequence: 7
  givenname: Bin
  surname: Yang
  fullname: Yang, Bin
  organization: Chinese Academy of Science
– sequence: 8
  givenname: Yimeng
  surname: Li
  fullname: Li, Yimeng
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Zhipeng
  surname: Shao
  fullname: Shao, Zhipeng
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Junke
  surname: Jiang
  fullname: Jiang, Junke
  organization: ISCR (Institut des Sciences Chimiques de Rennes)‐UMR CNRS 6226
– sequence: 11
  givenname: Ke‐li
  surname: Han
  fullname: Han, Ke‐li
  organization: Chinese Academy of Science
– sequence: 12
  givenname: Feng
  orcidid: 0000-0002-6903-6840
  surname: Liu
  fullname: Liu, Feng
  email: fenglau189@sdu.edu.cn
  organization: Shandong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36068152$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03797339$$DView record in HAL
BookMark eNqFkk1vEzEQhleoiJbSK0e0Ehc4JIw_1mtfkEJaSKSgHvjo0fLa3sTRZh3sTVBu_QmV-g_7S3BIWrWRECePxs_7jmc8L7Oj1rc2y14j6CMA_EGZdexjwBhIIdiz7AQjwXuEU3r0KD7OzmKcAwAqSEkRf5EdEwaMowKfZPIyTFXr9N317bj1uzgfbargTD5cLYNfxbvrm08qWpN_tZ1q8pFqnLExr33Ir1RY5Fcz19l84qazLqEXC9d1rp3m584n7FX2vFZNtGf78zT78fni-3DUm1x-GQ8Hk55mWNAeK4lArECgLYJCUcKwLoQR1BhCGRECjKZGECWqmoOpFNLYMGxrrqFAGJPTbLzzNV7N5TK4hQob6ZWTfxOpM6lC53RjZQ2oNARQZRWhqASuKDe2sjUVtcLCJq-PO6_lqlpYo23bBdU8MX1607qZnPq1FIwg4DwZvN8ZzA5ko8FEbnNASlESItYose_2xYL_tbKxkwsXtW0a1do0fIlLhAhwDDShbw_QuV-FNo01UQQRzCjfTuLN49c_1L__8wTQHaCDjzHYWmrXqc75bTOukQjkdrvkdrvkw3YlWf9Adu_8T8G-zm_X2M1_aDk4__mNFqnLPyeK4kw
CitedBy_id crossref_primary_10_1002_lpor_202400799
crossref_primary_10_1002_adom_202400437
crossref_primary_10_1002_anie_202502029
crossref_primary_10_1002_adma_202408777
crossref_primary_10_1002_ange_202309230
crossref_primary_10_1016_j_cej_2024_150257
crossref_primary_10_1002_adom_202301914
crossref_primary_10_1039_D3SC01762A
crossref_primary_10_1021_acs_inorgchem_4c03561
crossref_primary_10_1002_ange_202515844
crossref_primary_10_1039_D2QM00997H
crossref_primary_10_1016_j_cej_2024_154106
crossref_primary_10_1002_smll_202307216
crossref_primary_10_1016_j_jallcom_2024_174375
crossref_primary_10_1002_lpor_202400440
crossref_primary_10_1002_adom_202301282
crossref_primary_10_1039_D4SC04119D
crossref_primary_10_1016_j_mtchem_2025_102831
crossref_primary_10_1364_OL_555288
crossref_primary_10_1021_acsami_5c12482
crossref_primary_10_1002_ange_202502029
crossref_primary_10_1002_adma_202300731
crossref_primary_10_1002_smll_202403788
crossref_primary_10_1002_adfm_202424704
crossref_primary_10_1016_j_jssc_2025_125501
crossref_primary_10_1039_D5DT01801C
crossref_primary_10_1039_D3QI00283G
crossref_primary_10_3390_nano13152174
crossref_primary_10_1021_acs_jpcc_5c04635
crossref_primary_10_1002_anie_202515844
crossref_primary_10_3390_molecules28237841
crossref_primary_10_3390_molecules30102157
crossref_primary_10_1002_ange_202411047
crossref_primary_10_1016_j_cej_2023_144160
crossref_primary_10_1016_j_biortech_2025_132623
crossref_primary_10_1016_j_jallcom_2023_173054
crossref_primary_10_1039_D5DT01382H
crossref_primary_10_1016_j_cej_2023_144353
crossref_primary_10_1007_s11426_024_1985_9
crossref_primary_10_1002_adfm_202511803
crossref_primary_10_1002_smll_202407565
crossref_primary_10_1002_adfm_202411671
crossref_primary_10_1016_j_cej_2024_153077
crossref_primary_10_1002_adom_202301864
crossref_primary_10_1039_D3QI01739G
crossref_primary_10_1039_D3QI02169F
crossref_primary_10_1002_adma_202507820
crossref_primary_10_1038_s41377_025_01910_1
crossref_primary_10_1039_D2SC06982B
crossref_primary_10_1002_adfm_202304899
crossref_primary_10_1021_acs_inorgchem_5c03271
crossref_primary_10_1016_j_cej_2025_161139
crossref_primary_10_1016_j_molstruc_2025_141675
crossref_primary_10_1002_anie_202309230
crossref_primary_10_1039_D2QM00866A
crossref_primary_10_1002_smll_202500660
crossref_primary_10_1021_jacs_3c03322
crossref_primary_10_1002_smll_202305083
crossref_primary_10_1002_anie_202411047
crossref_primary_10_1039_D3NR04347A
crossref_primary_10_1021_acs_inorgchem_5c02529
crossref_primary_10_1002_adma_202417678
crossref_primary_10_1016_j_jre_2023_09_012
crossref_primary_10_1002_sstr_202400096
crossref_primary_10_1002_adma_202313570
crossref_primary_10_1002_adom_202400092
crossref_primary_10_1002_adfm_202303399
crossref_primary_10_1007_s11664_023_10777_0
crossref_primary_10_7498_aps_74_20251034
crossref_primary_10_1002_adfm_202310561
crossref_primary_10_1016_j_mtchem_2025_102657
Cites_doi 10.1002/adpr.202100143
10.1002/adom.202101661
10.1016/j.cej.2021.129223
10.1002/lpor.202000027
10.1039/C7SC01590A
10.1021/acsenergylett.8b02239
10.1038/35022529
10.1002/adma.201003640
10.1002/anie.201814564
10.1063/1.4801900
10.1002/adom.202001832
10.1002/anie.202009101
10.1016/j.matt.2021.05.018
10.1021/acs.nanolett.0c00513
10.1002/anie.201806452
10.1021/acs.chemmater.0c01708
10.1016/j.nanoen.2021.106664
10.1002/adma.201901716
10.1002/adma.202102190
10.1002/anie.201907503
10.1002/asia.202100293
10.1021/acs.jpclett.1c01828
10.1021/jacs.7b01312
10.1002/adom.202100307
10.1002/advs.202102895
10.1002/adma.201904711
10.1021/acs.jpcc.9b02456
10.1021/acs.chemmater.0c01794
10.1038/s41467-021-21638-x
10.1021/acs.jpclett.1c01946
10.1021/acs.jpclett.8b02127
10.1038/s41566-020-00743-1
10.1021/acsami.9b08407
10.1002/adfm.201904101
10.1016/j.scib.2019.05.016
10.1021/acs.jpclett.0c01162
10.1002/adom.202101062
10.1021/acs.accounts.7b00433
10.1021/acs.chemmater.9b00537
10.1002/adom.202000498
10.1021/acsmaterialslett.1c00242
10.1038/s41586-018-0691-0
10.1021/acsami.2c00006
10.1021/acs.chemmater.9b03918
10.1103/PhysRevB.48.5197
10.1021/acsami.1c02503
10.1002/pssa.2210080102
10.1002/adfm.202002225
10.1038/s41586-018-0575-3
10.1021/ja507086b
10.1002/advs.202000195
10.1016/j.matt.2020.04.017
10.1038/ncomms5312
10.1021/acsnano.7b05442
10.1039/D0TC02923H
10.1038/ncomms7142
10.1016/j.jlumin.2020.117471
10.1021/acsanm.1c03586
10.1039/C9TC00892F
10.1021/acs.chemmater.9b05321
10.1039/c0cs00204f
10.1021/acsami.7b12862
10.1103/PhysRev.92.1324
10.1021/acsenergylett.1c01291
10.1021/acsmaterialslett.9b00274
10.1021/acs.jpclett.8b03604
10.1038/s41563-020-0784-7
10.1126/science.aaa2725
10.1038/ncomms14051
10.1021/acs.jpclett.0c03432
10.1021/jacs.5b05404
10.1021/acsami.1c03881
10.1021/jz500279b
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.1002/advs.202203596
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
CrossRef


PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_f017d301bea341708a48debef49fa29e
PMC9631088
oai:HAL:hal-03797339v1
36068152
10_1002_advs_202203596
ADVS4504
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2021QF006
– fundername: Outstanding Youth Science Foundation of Shandong Province (Overseas)
  funderid: 2022HWYQ‐006
– fundername: Qilu Youth Scholar Foundation of Shandong University
  funderid: 62460082163114
– fundername: National Natural Science Foundation of China
  funderid: 22179072; 22088102
– fundername: National Natural Science Foundation of China
  grantid: 22179072
– fundername: National Natural Science Foundation of China
  grantid: 22088102
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021QF006
– fundername: Outstanding Youth Science Foundation of Shandong Province (Overseas)
  grantid: 2022HWYQ-006
– fundername: Qilu Youth Scholar Foundation of Shandong University
  grantid: 62460082163114
– fundername: ;
  grantid: 22179072; 22088102
– fundername: Outstanding Youth Science Foundation of Shandong Province (Overseas)
  grantid: 2022HWYQ‐006
– fundername: ;
  grantid: ZR2021QF006
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c6294-673916510ce105a4362c59d94dd3463990dc4d93a9bf80dba1c2d62ef8c051223
IEDL.DBID DOA
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000850309300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Mon Nov 10 04:34:32 EST 2025
Tue Nov 04 02:11:21 EST 2025
Sat Nov 29 15:01:31 EST 2025
Sun Nov 09 09:57:12 EST 2025
Sun Nov 30 04:14:03 EST 2025
Mon Jul 21 06:07:56 EDT 2025
Tue Nov 18 22:15:27 EST 2025
Sat Nov 29 07:22:43 EST 2025
Wed Jan 22 16:31:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords cuprous-based phosphors
electroluminescence application
hybrid metal halides
single-component warm white-light emitters
warm white light-emitting diodes (LEDs)
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6294-673916510ce105a4362c59d94dd3463990dc4d93a9bf80dba1c2d62ef8c051223
Notes Ke‐li Han: Deceased 17 March 2022
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6903-6840
0000-0002-4006-328X
0000-0003-2962-766X
OpenAccessLink https://doaj.org/article/f017d301bea341708a48debef49fa29e
PMID 36068152
PQID 2731326482
PQPubID 4365299
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f017d301bea341708a48debef49fa29e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9631088
hal_primary_oai_HAL_hal_03797339v1
proquest_miscellaneous_2711308204
proquest_journals_2731326482
pubmed_primary_36068152
crossref_citationtrail_10_1002_advs_202203596
crossref_primary_10_1002_advs_202203596
wiley_primary_10_1002_advs_202203596_ADVS4504
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Open Access
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Open Access
– name: John Wiley and Sons Inc
– name: Wiley
References 2018; 562
2017; 8
2021; 20
2020; 20
2015; 347
2019; 11
2019; 10
2018; 563
2019; 58
2020; 59
2020; 14
2020; 11
2017; 9
2014; 136
2019; 123
2020; 8
2020; 7
1971; 8
2018; 9
2014; 5
2020; 3
2021; 33
2019; 64
2015; 137
2000; 406
2013; 113
2019; 29
2011; 23
2021; 9
1993; 48
2019; 7
2021; 6
2015; 6
2019; 4
2021; 4
2021; 3
2021; 2
2019; 31
2019; 1
2011; 40
2022; 91
2020; 226
1953; 92
2020; 32
2017; 139
2021; 13
2021; 417
2021; 16
2021; 15
2021; 12
2020; 30
2017; 11
2022; 9
2022; 14
2018; 51
2022; 10
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 619
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 23
  start-page: 2300
  year: 2011
  publication-title: Adv. Mater.
– volume: 32
  start-page: 6525
  year: 2020
  publication-title: Chem. Mater.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 91
  year: 2022
  publication-title: Nano Energy
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 10
  start-page: 1999
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 2786
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 562
  start-page: 245
  year: 2018
  publication-title: Nature
– volume: 4
  start-page: 242
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 32
  start-page: 5327
  year: 2020
  publication-title: Chem. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 2
  year: 2021
  publication-title: Adv. Photonics Res.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 15
  start-page: 238
  year: 2021
  publication-title: Nat. Photonics
– volume: 58
  start-page: 5277
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 14
  year: 2020
  publication-title: Laser Photonics Rev.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 40
  start-page: 3467
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 9
  year: 1971
  publication-title: Phys. Status Solidi A
– volume: 1
  start-page: 459
  year: 2019
  publication-title: ACS Mater. Lett.
– volume: 12
  start-page: 317
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 1025
  year: 2021
  publication-title: ACS Mater. Lett.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 563
  start-page: 541
  year: 2018
  publication-title: Nature
– volume: 406
  start-page: 865
  year: 2000
  publication-title: Nature
– volume: 8
  start-page: 4497
  year: 2017
  publication-title: Chem. Sci.
– volume: 113
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 32
  start-page: 3462
  year: 2020
  publication-title: Chem. Mater.
– volume: 417
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 6142
  year: 2015
  publication-title: Nat. Commun.
– volume: 226
  year: 2020
  publication-title: J. Lumin.
– volume: 92
  start-page: 1324
  year: 1953
  publication-title: Phys. Rev.
– volume: 16
  start-page: 1619
  year: 2021
  publication-title: Chem. ‐ Asian J.
– volume: 4
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 12
  start-page: 8256
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 4312
  year: 2014
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2490
  year: 2021
  publication-title: Matter
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 4878
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 137
  start-page: 9230
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 5197
  year: 1993
  publication-title: Phys. Rev. B
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 180
  year: 2020
  publication-title: Matter
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 1089
  year: 2020
  publication-title: Chem. Mater.
– volume: 64
  start-page: 904
  year: 2019
  publication-title: Sci. Bull.
– volume: 31
  start-page: 2983
  year: 2019
  publication-title: Chem. Mater.
– volume: 7
  start-page: 5442
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 5
  start-page: 1035
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 20
  start-page: 10
  year: 2021
  publication-title: Nat. Mater.
– volume: 12
  start-page: 1421
  year: 2021
  publication-title: Nat. Commun.
– volume: 12
  start-page: 6919
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 4703
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 20
  start-page: 3568
  year: 2020
  publication-title: Nano Lett.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 139
  start-page: 5210
  year: 2017
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_9_1
  doi: 10.1002/adpr.202100143
– ident: e_1_2_7_60_1
  doi: 10.1002/adom.202101661
– ident: e_1_2_7_69_1
  doi: 10.1016/j.cej.2021.129223
– ident: e_1_2_7_14_1
  doi: 10.1002/lpor.202000027
– ident: e_1_2_7_50_1
  doi: 10.1039/C7SC01590A
– ident: e_1_2_7_51_1
  doi: 10.1021/acsenergylett.8b02239
– ident: e_1_2_7_1_1
  doi: 10.1038/35022529
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201003640
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.201814564
– ident: e_1_2_7_35_1
  doi: 10.1063/1.4801900
– ident: e_1_2_7_37_1
  doi: 10.1002/adom.202001832
– ident: e_1_2_7_58_1
  doi: 10.1002/anie.202009101
– ident: e_1_2_7_26_1
  doi: 10.1016/j.matt.2021.05.018
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.nanolett.0c00513
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201806452
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.chemmater.0c01708
– ident: e_1_2_7_19_1
  doi: 10.1016/j.nanoen.2021.106664
– ident: e_1_2_7_64_1
  doi: 10.1002/adma.201901716
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.202102190
– ident: e_1_2_7_52_1
  doi: 10.1002/anie.201907503
– ident: e_1_2_7_11_1
  doi: 10.1002/asia.202100293
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.jpclett.1c01828
– ident: e_1_2_7_8_1
  doi: 10.1021/jacs.7b01312
– ident: e_1_2_7_68_1
  doi: 10.1002/adom.202100307
– ident: e_1_2_7_73_1
  doi: 10.1002/advs.202102895
– ident: e_1_2_7_55_1
  doi: 10.1002/adma.201904711
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.jpcc.9b02456
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.chemmater.0c01794
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467-021-21638-x
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.jpclett.1c01946
– ident: e_1_2_7_65_1
  doi: 10.1021/acs.jpclett.8b02127
– ident: e_1_2_7_5_1
  doi: 10.1038/s41566-020-00743-1
– ident: e_1_2_7_43_1
  doi: 10.1021/acsami.9b08407
– ident: e_1_2_7_72_1
  doi: 10.1002/adfm.201904101
– ident: e_1_2_7_54_1
  doi: 10.1016/j.scib.2019.05.016
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.jpclett.0c01162
– ident: e_1_2_7_27_1
  doi: 10.1002/adom.202101062
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.accounts.7b00433
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.chemmater.9b00537
– ident: e_1_2_7_62_1
  doi: 10.1002/adom.202000498
– ident: e_1_2_7_28_1
  doi: 10.1021/acsmaterialslett.1c00242
– ident: e_1_2_7_6_1
  doi: 10.1038/s41586-018-0691-0
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.2c00006
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.chemmater.9b03918
– ident: e_1_2_7_67_1
  doi: 10.1103/PhysRevB.48.5197
– ident: e_1_2_7_23_1
  doi: 10.1021/acsami.1c02503
– ident: e_1_2_7_36_1
  doi: 10.1002/pssa.2210080102
– ident: e_1_2_7_41_1
  doi: 10.1002/adfm.202002225
– ident: e_1_2_7_71_1
  doi: 10.1038/s41586-018-0575-3
– ident: e_1_2_7_57_1
  doi: 10.1021/ja507086b
– ident: e_1_2_7_15_1
  doi: 10.1002/advs.202000195
– ident: e_1_2_7_29_1
  doi: 10.1016/j.matt.2020.04.017
– ident: e_1_2_7_4_1
  doi: 10.1038/ncomms5312
– ident: e_1_2_7_38_1
  doi: 10.1021/acsnano.7b05442
– ident: e_1_2_7_56_1
  doi: 10.1039/D0TC02923H
– ident: e_1_2_7_33_1
  doi: 10.1038/ncomms7142
– ident: e_1_2_7_63_1
  doi: 10.1016/j.jlumin.2020.117471
– ident: e_1_2_7_20_1
  doi: 10.1021/acsanm.1c03586
– ident: e_1_2_7_30_1
  doi: 10.1039/C9TC00892F
– ident: e_1_2_7_53_1
  doi: 10.1021/acs.chemmater.9b05321
– ident: e_1_2_7_70_1
  doi: 10.1039/c0cs00204f
– ident: e_1_2_7_12_1
  doi: 10.1021/acsami.7b12862
– ident: e_1_2_7_32_1
  doi: 10.1103/PhysRev.92.1324
– ident: e_1_2_7_59_1
  doi: 10.1021/acsenergylett.1c01291
– ident: e_1_2_7_24_1
  doi: 10.1021/acsmaterialslett.9b00274
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.jpclett.8b03604
– ident: e_1_2_7_7_1
  doi: 10.1038/s41563-020-0784-7
– ident: e_1_2_7_31_1
  doi: 10.1126/science.aaa2725
– ident: e_1_2_7_48_1
  doi: 10.1038/ncomms14051
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.jpclett.0c03432
– ident: e_1_2_7_66_1
  doi: 10.1021/jacs.5b05404
– ident: e_1_2_7_61_1
  doi: 10.1021/acsami.1c03881
– ident: e_1_2_7_34_1
  doi: 10.1021/jz500279b
SSID ssj0001537418
Score 2.538849
Snippet Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes...
Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes...
Abstract Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2203596
SubjectTerms Chemical Sciences
Crystallization
cuprous‐based phosphors
Efficiency
electroluminescence application
hybrid metal halides
Light emitting diodes
Morphology
Single crystals
single‐component warm white‐light emitters
Thin films
warm white light‐emitting diodes (LEDs)
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cAFKM-UggxCAg5RE9tJ7BNqS6tF2laVeFXiEDl-qCvRbLvbXYkb_4F_yC9h7HgDUQUcuCaTl-f12Rl_A_C8cU4YTnnqClemPFc6lco2aVEohgC9MSa0A_o4rg4PxfGxPIoLbvNYVrmKiSFQm6n2a-RbmGZx4lRyQV-fnae-a5T_uxpbaFyFa4hscl_SdUCPfq2xFMyTs6y4GjO6pczSc3RT6pnrykEuCpT9mGFOfEHkZbR5uWjydzAbstH-rf_9jttwM-JQst0Zzjpcse0dWI-ePicvIx31q7vwuduuqX98-_627ZpAaTL66nd6kd0FPn0xT3cwFxpyYBHJkxEie4O3QDRMPqnZKQk9-Mg4MJbsnU5CoTV5M5mi0D34sL_3fneUxpYMqS6p5H6jAOJJ9GNtEZgpjulPF9JIbgzjHuxkRnMjmZKNE5lpVK6pKal1QqP3IxS5D2vttLUPgVBncBLMRSmY5VqoxgrNMlcVTmpJXZNAulJOrSNfuW-b8aXumJZp7ZVZ98pM4EUvf9YxdfxRcsfrupfyDNvhAI5hHR22dhiqDEa_xipM9FUmFBcGLd5x6RSVNoFnaCmDe4y2x7U_lrFKVozJZZ7A5soI6hgb8D16C0jgaX8avdr_qlGtRbWhTJ57IqGMJ_Cgs7v-UQznnAJhVwLVwCIH7zI8005OAnM4Rtsc0woObbDdf4xTjcjoHS8yvvH3z3gEN_w13Q7NTVi7mC3sY7iulxeT-exJcMmfDmM-gg
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOACLc9AWxmEBByiJraT2Mc-tUhLVYlXb5bjh7oSTdFudyVu_QlI_MP-EmacbNqoQghxdUbeZDyPz17PN4S8rkOQTjCRhiKUqciNTZXxdVoUhgNAr52L7YC-jKvDQ3l8rI6uVfG3_BD9gRt6RozX6OCmnm1dkYYat0C6bcaQhK68Te7kOa_Qrpk4ujplKTjSs2CHOdhdp1wKsWRuzNjWcIpBZooE_pBvTvB65E3sefMK5XVoG3PTwYP__6pVcr_DpXS7NaQ1css3D8la5_kz-rajp373iOi2fNNeXvx637RNoSwd_cDKL7o7h2-Yzy4vfu5AdnT0gwdsT0eA9R1MAviYfjXTUxq78tExnguA6P7pJF6-pnuTMxB7TD4f7H_aHaVdm4bUlkwJLB4AjAm-bT2ANSMgJdpCOSWc4wIBUOascIobVQeZudrklrmS-SAtRASAJ0_ISnPW-GeEsuBgYyxkKbkXVpraS8uzUBVBWcVCnZB0uUTadhzm2Erjm27Zl5lG_elefwl508t_b9k7_ii5gyveSyHrdhwAPerOiXWA8OUgItbeQPKvMmmEdOAFQahgmPIJeQX2MphjtD3WOJaBbVacq0WekPWlOekuXsB7VEihWQrJEvKyfwyejn_fmMbD0oEMWDgiNpGQp6319T_FYR8qAYolpBrY5eBdhk-ayUlkE4cInEOqAdVGu_yLnjSgpY-iyMTzf5R_Qe7hYFvGuU5Wzqdzv0Hu2sX5ZDbdjF77G1o8RQY
  priority: 102
  providerName: Wiley-Blackwell
Title Organic–Inorganic Hybrid Cuprous‐Based Metal Halides for Warm White Light‐Emitting Diodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202203596
https://www.ncbi.nlm.nih.gov/pubmed/36068152
https://www.proquest.com/docview/2731326482
https://www.proquest.com/docview/2711308204
https://hal.science/hal-03797339
https://pubmed.ncbi.nlm.nih.gov/PMC9631088
https://doaj.org/article/f017d301bea341708a48debef49fa29e
Volume 9
WOSCitedRecordID wos000850309300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7apIdeStNX3KaLWgptDya2LNvSMZtu2IXdrekr25OR9SALjVN2swu95ScU-g_zSzqyvWZNKLn0IrA1yGI0o_mER98AvCms5ZpR5tvYJj4LpfKFNIUfxzJCgF5oXZUD-jZOp1M-m4lsq9SXywmr6YFrxR1aNBmNVlgYiRtuGnDJuMYvWyaspMK43TdIxdZhqr4fHDlalg1LY0APpV47dm5KHWdd0olCFVk_xpYzlwp5E2feTJfchrFVHDp5CA8aAEmO6onvwR1TPoK9xkWX5F3DI_3-MeT1PUt1ffVnVNbVmxQZ_nJXtMjxCiewWl5f_e5jGNNkYhCEkyGCco2DIJAlp3JxTqryeWTsDvAoOjifV1nS5MP8AsWewNeTwZfjod_UU_BVQgVzWf4IBtEJlUFUJRnGLhULLZjWEXNIJdCKaRFJUVge6EKGiuqEGssVui7iiKewU16UZh8ItRpPsIwnPDJMcVkYrqLAprEVSlBbeOBv9Jurhmzc1bz4kdc0yTR365G36-HB21b-Z02z8U_JvluuVsrRY1cvUI95YzT5bUbjwWtc7M4Yw6Nx7t4FUSrSKBLr0IODjS3kjWPjPFLHdZkwTj141XajS7r_LLI0uHQoE4aOBShgHjyrTaf9VIQHRo6YyYO0Y1SduXR7yvlZRfuNW2WIMQFVW5nfLXrKEdZ8ZnHAnv8Phb2A-27k-hLmAexcLlbmJdxT68v5ctGDu5Rl2KYz3oPd_mCafepV_ojthH6sWuzfzUaT7Ds-nY6mfwFcVDzW
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VKRJcgPJrKLAgEHCwaq_X9u4BoaZNlahpVEEplTiY9f6okahTkqaoN96B9-CheBJm_QdRBZx64GpPHO_6229m7NlvAJ7m1nLNKPNtbBOfhVL5Qprcj2MZYYCea122A9ofpqMRPzgQu0vwvdkL48oqG04siVpPlHtHvoZuFhOnhHH6-viz77pGua-rTQuNChbb5uwLpmyzV4NNfL7PKN3q7W30_bqrgK8SKpirdceQCKGoDMYWkiGDq1howbSOmPPXgVZMi0iK3PJA5zJUVCfUWK4QwNQJHSDlLzM0jjuw3O2Ndt_8eqsTR04OplGHDOia1KdOFZxSp5WXLHi_skkA-rRDV4J5Pr49X6b5e_hc-r-ta__bzF2Hq3WkTdarpbECS6a4ASs1l83Ii1pw--VN-FBtSFU_vn4bFFWbK0X6Z24vG9mY42jnM7-L3l6THYO5Culj7qLxEhjvk_dyekTKLoNkWGqy9I7GZSk52RxP0OgWvLuQQd6GTjEpzF0g1GpM8xlPeGSY4jI3XEWBTWMrlKA298BvwJCpWpHdNQb5lFVa0jRz4Mla8HjwvLU_rrRI_mjZddhqrZyGeHkA5zCrKSmzSMYa-T03EkOZNOCScY1r2jJhJRXGgyeIzIVr9NeHmTsWRKlIo0ichh6sNqDLavbD-2gR58Hj9jTylvsYJQuDjw1twtBJJQXMgzsVztu_ijCr5hhYepAurICFe1k8U4wPS2109CchOk6c2nKt_GOeMoz93rI4YPf-PoxHcLm_tzPMhoPR9n244n5f7Uddhc7JdG4ewCV1ejKeTR_WhEDg40WvpJ--xpn_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBSEuQHkaCiwIBBys2Ou1vXtAqG0aJWqIIvFoJQ5mvQ81EnVK0gT1xn_g3_Bz-CXM-AVRBZx64GpvHO_6m29m7NlvCHmSOycMZ9x3sUt8HirtS2VzP45VBAF6bkzZDuj9MB2NxMGBHK-R781eGCyrbDixJGoz1fiOvANuFhKnhAvWcXVZxLjbe3X82ccOUviltWmnUUFkz55-gfRt_nLQhWf9lLHe7tudvl93GPB1wiTHuncIjwCW2kKcoTiwuY6lkdyYiKPvDozmRkZK5k4EJlehZiZh1gkNYGYoegD0fyFFVSwsG2TjX-934giFYRqdyIB1lFmiPjhjqJqXrPjBsl0AeLdDLMY8G-meLdj8PZAuPWHv6v-8htfIlTr-pluVwWyQNVtcJxs1w83p81qG-8UN8qHapqp_fP02KKrmV5r2T3GHG91ZwMwXc38bYgBDX1vIYGgfMhoDl4AsgO6r2REtew_SYanUsns0KQvMaXcyhUE3ybtzmeQtsl5MC3uHUOYMJP9cJCKyXAuVW6GjwKWxk1oyl3vEb4CR6VqnHduFfMoqhWmWIZCyFkgeedaOP64USv44chtx1o5CZfHyAKxhVhNV5oCiDbB-bhUEOGkgFBcGLN1x6RST1iOPAaUr1-hvDTM8FkSpTKNILkOPbDYAzGpOhPto0eeRR-1pYDP8RKUKC48NxoQhCigF3CO3K8y3fxVBri0g3PRIumINK_eyeqaYHJaK6eBlQnCnsLSl3fxjnTKICN_wOOB3_z6Nh-QSmE82HIz27pHL-PNqk-omWT-ZLex9clEvTybz2YOSGSj5eN5m9BOX96Fu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic%E2%80%93Inorganic+Hybrid+Cuprous%E2%80%90Based+Metal+Halides+for+Warm+White+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+science&rft.au=Meng%2C+Xuan&rft.au=Ji%2C+Sujun&rft.au=Wang%2C+Qiujie&rft.au=Wang%2C+Xiaochen&rft.date=2022-11-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=31&rft_id=info:doi/10.1002%2Fadvs.202203596&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202203596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon