Organic–Inorganic Hybrid Cuprous‐Based Metal Halides for Warm White Light‐Emitting Diodes
Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Lowdimensional lead (Pb) halide perovskites can achieve warm whit...
Uložené v:
| Vydané v: | Advanced science Ročník 9; číslo 31; s. e2203596 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
John Wiley & Sons, Inc
01.11.2022
Wiley Open Access John Wiley and Sons Inc Wiley |
| Predmet: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Lowdimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb‐free air‐stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal‐bearing compounds along with the typically required vacuum‐based thin‐film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu+)‐based metal halide MA2CuCl3 (MA = CH3NH3+) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant‐free is presented. Both single crystals and thin films of MA2CuCl3 can be facilely prepared by a low‐cost solution method, which demonstrate bright warm white‐light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down‐conversion LEDs are fabricated with MA2CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2CuCl3 has a great potential for the single‐component indoor lighting and display applications.
The newly developed hybrid MA2CuCl3 meets the requirements of i) broadband warm white‐light emission, ii) nontoxicity, iii) high photoluminescence quantum yield, iv) dopant‐free, v) low‐cost, and vi) excellent film‐forming ability. Besides, the first successful electroluminescence application of MA2CuCl3 opens a new avenue toward single‐component warm white light‐emitting diodes. |
|---|---|
| AbstractList | Abstract Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Lowdimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb‐free air‐stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal‐bearing compounds along with the typically required vacuum‐based thin‐film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu+)‐based metal halide MA2CuCl3 (MA = CH3NH3+) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant‐free is presented. Both single crystals and thin films of MA2CuCl3 can be facilely prepared by a low‐cost solution method, which demonstrate bright warm white‐light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down‐conversion LEDs are fabricated with MA2CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2CuCl3 has a great potential for the single‐component indoor lighting and display applications. Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2 AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu+ )-based metal halide MA2 CuCl3 (MA = CH3 NH3 + ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA2 CuCl3 can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA2 CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2 CuCl3 has a great potential for the single-component indoor lighting and display applications.Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2 AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu+ )-based metal halide MA2 CuCl3 (MA = CH3 NH3 + ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA2 CuCl3 can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA2 CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2 CuCl3 has a great potential for the single-component indoor lighting and display applications. Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Lowdimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb‐free air‐stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal‐bearing compounds along with the typically required vacuum‐based thin‐film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu+)‐based metal halide MA2CuCl3 (MA = CH3NH3 +) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant‐free is presented. Both single crystals and thin films of MA2CuCl3 can be facilely prepared by a low‐cost solution method, which demonstrate bright warm white‐light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down‐conversion LEDs are fabricated with MA2CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2CuCl3 has a great potential for the single‐component indoor lighting and display applications. The newly developed hybrid MA2CuCl3 meets the requirements of i) broadband warm white‐light emission, ii) nontoxicity, iii) high photoluminescence quantum yield, iv) dopant‐free, v) low‐cost, and vi) excellent film‐forming ability. Besides, the first successful electroluminescence application of MA2CuCl3 opens a new avenue toward single‐component warm white light‐emitting diodes. Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Lowdimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu+)-based metal halide MA2CuCl3 (MA = CH3NH3+) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA2CuCl3 can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA2CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2CuCl3 has a great potential for the single-component indoor lighting and display applications. Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Lowdimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb‐free air‐stable perovskites such as Cs 2 AgInCl 6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal‐bearing compounds along with the typically required vacuum‐based thin‐film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu + )‐based metal halide MA 2 CuCl 3 (MA = CH 3 NH 3 + ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant‐free is presented. Both single crystals and thin films of MA 2 CuCl 3 can be facilely prepared by a low‐cost solution method, which demonstrate bright warm white‐light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down‐conversion LEDs are fabricated with MA 2 CuCl 3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA 2 CuCl 3 has a great potential for the single‐component indoor lighting and display applications. Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes (warm‐WLEDs), however, materials with such luminescence properties are extremely rare. Lowdimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb‐free air‐stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal‐bearing compounds along with the typically required vacuum‐based thin‐film processing may greatly increase their production cost. Herein, organic–inorganic hybrid cuprous (Cu+)‐based metal halide MA2CuCl3 (MA = CH3NH3+) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant‐free is presented. Both single crystals and thin films of MA2CuCl3 can be facilely prepared by a low‐cost solution method, which demonstrate bright warm white‐light emission with intrinsically high PLQYs of 90–97%. Prototype electroluminescence devices and down‐conversion LEDs are fabricated with MA2CuCl3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA2CuCl3 has a great potential for the single‐component indoor lighting and display applications. The newly developed hybrid MA2CuCl3 meets the requirements of i) broadband warm white‐light emission, ii) nontoxicity, iii) high photoluminescence quantum yield, iv) dopant‐free, v) low‐cost, and vi) excellent film‐forming ability. Besides, the first successful electroluminescence application of MA2CuCl3 opens a new avenue toward single‐component warm white light‐emitting diodes. Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs2AgInCl6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu+)-based metal halide MA(2)CuCl(3) (MA = CH3NH3+) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA(2)CuCl(3) can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA(2)CuCl(3) thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA(2)CuCl(3) has a great potential for the single-component indoor lighting and display applications. Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Low-dimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs AgInCl emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu )-based metal halide MA CuCl (MA = CH NH ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA CuCl can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA CuCl thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA CuCl has a great potential for the single-component indoor lighting and display applications. |
| Author | Wang, Qiujie Zhang, Ruiling Shao, Zhipeng Han, Ke‐li Bai, Tianxin Meng, Xuan Wang, Xiaochen Li, Yimeng Ji, Sujun Yang, Bin Liu, Feng Jiang, Junke |
| AuthorAffiliation | 2 State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 P. R. China 4 ISCR (Institut des Sciences Chimiques de Rennes)‐UMR CNRS 6226 ENSCR, Université de Rennes Rennes 35700 France 1 Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China 3 Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China |
| AuthorAffiliation_xml | – name: 1 Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China – name: 3 Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China – name: 4 ISCR (Institut des Sciences Chimiques de Rennes)‐UMR CNRS 6226 ENSCR, Université de Rennes Rennes 35700 France – name: 2 State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 P. R. China |
| Author_xml | – sequence: 1 givenname: Xuan surname: Meng fullname: Meng, Xuan organization: Shandong University – sequence: 2 givenname: Sujun surname: Ji fullname: Ji, Sujun organization: Shandong University – sequence: 3 givenname: Qiujie surname: Wang fullname: Wang, Qiujie organization: Shandong University – sequence: 4 givenname: Xiaochen surname: Wang fullname: Wang, Xiaochen organization: Shandong University – sequence: 5 givenname: Tianxin surname: Bai fullname: Bai, Tianxin organization: Shandong University – sequence: 6 givenname: Ruiling surname: Zhang fullname: Zhang, Ruiling organization: Shandong University – sequence: 7 givenname: Bin surname: Yang fullname: Yang, Bin organization: Chinese Academy of Science – sequence: 8 givenname: Yimeng surname: Li fullname: Li, Yimeng organization: Chinese Academy of Sciences – sequence: 9 givenname: Zhipeng surname: Shao fullname: Shao, Zhipeng organization: Chinese Academy of Sciences – sequence: 10 givenname: Junke surname: Jiang fullname: Jiang, Junke organization: ISCR (Institut des Sciences Chimiques de Rennes)‐UMR CNRS 6226 – sequence: 11 givenname: Ke‐li surname: Han fullname: Han, Ke‐li organization: Chinese Academy of Science – sequence: 12 givenname: Feng orcidid: 0000-0002-6903-6840 surname: Liu fullname: Liu, Feng email: fenglau189@sdu.edu.cn organization: Shandong University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36068152$$D View this record in MEDLINE/PubMed https://hal.science/hal-03797339$$DView record in HAL |
| BookMark | eNqFkk1vEzEQhleoiJbSK0e0Ehc4JIw_1mtfkEJaSKSgHvjo0fLa3sTRZh3sTVBu_QmV-g_7S3BIWrWRECePxs_7jmc8L7Oj1rc2y14j6CMA_EGZdexjwBhIIdiz7AQjwXuEU3r0KD7OzmKcAwAqSEkRf5EdEwaMowKfZPIyTFXr9N317bj1uzgfbargTD5cLYNfxbvrm08qWpN_tZ1q8pFqnLExr33Ir1RY5Fcz19l84qazLqEXC9d1rp3m584n7FX2vFZNtGf78zT78fni-3DUm1x-GQ8Hk55mWNAeK4lArECgLYJCUcKwLoQR1BhCGRECjKZGECWqmoOpFNLYMGxrrqFAGJPTbLzzNV7N5TK4hQob6ZWTfxOpM6lC53RjZQ2oNARQZRWhqASuKDe2sjUVtcLCJq-PO6_lqlpYo23bBdU8MX1607qZnPq1FIwg4DwZvN8ZzA5ko8FEbnNASlESItYose_2xYL_tbKxkwsXtW0a1do0fIlLhAhwDDShbw_QuV-FNo01UQQRzCjfTuLN49c_1L__8wTQHaCDjzHYWmrXqc75bTOukQjkdrvkdrvkw3YlWf9Adu_8T8G-zm_X2M1_aDk4__mNFqnLPyeK4kw |
| CitedBy_id | crossref_primary_10_1002_lpor_202400799 crossref_primary_10_1002_adom_202400437 crossref_primary_10_1002_anie_202502029 crossref_primary_10_1002_adma_202408777 crossref_primary_10_1002_ange_202309230 crossref_primary_10_1016_j_cej_2024_150257 crossref_primary_10_1002_adom_202301914 crossref_primary_10_1039_D3SC01762A crossref_primary_10_1021_acs_inorgchem_4c03561 crossref_primary_10_1002_ange_202515844 crossref_primary_10_1039_D2QM00997H crossref_primary_10_1016_j_cej_2024_154106 crossref_primary_10_1002_smll_202307216 crossref_primary_10_1016_j_jallcom_2024_174375 crossref_primary_10_1002_lpor_202400440 crossref_primary_10_1002_adom_202301282 crossref_primary_10_1039_D4SC04119D crossref_primary_10_1016_j_mtchem_2025_102831 crossref_primary_10_1364_OL_555288 crossref_primary_10_1021_acsami_5c12482 crossref_primary_10_1002_ange_202502029 crossref_primary_10_1002_adma_202300731 crossref_primary_10_1002_smll_202403788 crossref_primary_10_1002_adfm_202424704 crossref_primary_10_1016_j_jssc_2025_125501 crossref_primary_10_1039_D5DT01801C crossref_primary_10_1039_D3QI00283G crossref_primary_10_3390_nano13152174 crossref_primary_10_1021_acs_jpcc_5c04635 crossref_primary_10_1002_anie_202515844 crossref_primary_10_3390_molecules28237841 crossref_primary_10_3390_molecules30102157 crossref_primary_10_1002_ange_202411047 crossref_primary_10_1016_j_cej_2023_144160 crossref_primary_10_1016_j_biortech_2025_132623 crossref_primary_10_1016_j_jallcom_2023_173054 crossref_primary_10_1039_D5DT01382H crossref_primary_10_1016_j_cej_2023_144353 crossref_primary_10_1007_s11426_024_1985_9 crossref_primary_10_1002_adfm_202511803 crossref_primary_10_1002_smll_202407565 crossref_primary_10_1002_adfm_202411671 crossref_primary_10_1016_j_cej_2024_153077 crossref_primary_10_1002_adom_202301864 crossref_primary_10_1039_D3QI01739G crossref_primary_10_1039_D3QI02169F crossref_primary_10_1002_adma_202507820 crossref_primary_10_1038_s41377_025_01910_1 crossref_primary_10_1039_D2SC06982B crossref_primary_10_1002_adfm_202304899 crossref_primary_10_1021_acs_inorgchem_5c03271 crossref_primary_10_1016_j_cej_2025_161139 crossref_primary_10_1016_j_molstruc_2025_141675 crossref_primary_10_1002_anie_202309230 crossref_primary_10_1039_D2QM00866A crossref_primary_10_1002_smll_202500660 crossref_primary_10_1021_jacs_3c03322 crossref_primary_10_1002_smll_202305083 crossref_primary_10_1002_anie_202411047 crossref_primary_10_1039_D3NR04347A crossref_primary_10_1021_acs_inorgchem_5c02529 crossref_primary_10_1002_adma_202417678 crossref_primary_10_1016_j_jre_2023_09_012 crossref_primary_10_1002_sstr_202400096 crossref_primary_10_1002_adma_202313570 crossref_primary_10_1002_adom_202400092 crossref_primary_10_1002_adfm_202303399 crossref_primary_10_1007_s11664_023_10777_0 crossref_primary_10_7498_aps_74_20251034 crossref_primary_10_1002_adfm_202310561 crossref_primary_10_1016_j_mtchem_2025_102657 |
| Cites_doi | 10.1002/adpr.202100143 10.1002/adom.202101661 10.1016/j.cej.2021.129223 10.1002/lpor.202000027 10.1039/C7SC01590A 10.1021/acsenergylett.8b02239 10.1038/35022529 10.1002/adma.201003640 10.1002/anie.201814564 10.1063/1.4801900 10.1002/adom.202001832 10.1002/anie.202009101 10.1016/j.matt.2021.05.018 10.1021/acs.nanolett.0c00513 10.1002/anie.201806452 10.1021/acs.chemmater.0c01708 10.1016/j.nanoen.2021.106664 10.1002/adma.201901716 10.1002/adma.202102190 10.1002/anie.201907503 10.1002/asia.202100293 10.1021/acs.jpclett.1c01828 10.1021/jacs.7b01312 10.1002/adom.202100307 10.1002/advs.202102895 10.1002/adma.201904711 10.1021/acs.jpcc.9b02456 10.1021/acs.chemmater.0c01794 10.1038/s41467-021-21638-x 10.1021/acs.jpclett.1c01946 10.1021/acs.jpclett.8b02127 10.1038/s41566-020-00743-1 10.1021/acsami.9b08407 10.1002/adfm.201904101 10.1016/j.scib.2019.05.016 10.1021/acs.jpclett.0c01162 10.1002/adom.202101062 10.1021/acs.accounts.7b00433 10.1021/acs.chemmater.9b00537 10.1002/adom.202000498 10.1021/acsmaterialslett.1c00242 10.1038/s41586-018-0691-0 10.1021/acsami.2c00006 10.1021/acs.chemmater.9b03918 10.1103/PhysRevB.48.5197 10.1021/acsami.1c02503 10.1002/pssa.2210080102 10.1002/adfm.202002225 10.1038/s41586-018-0575-3 10.1021/ja507086b 10.1002/advs.202000195 10.1016/j.matt.2020.04.017 10.1038/ncomms5312 10.1021/acsnano.7b05442 10.1039/D0TC02923H 10.1038/ncomms7142 10.1016/j.jlumin.2020.117471 10.1021/acsanm.1c03586 10.1039/C9TC00892F 10.1021/acs.chemmater.9b05321 10.1039/c0cs00204f 10.1021/acsami.7b12862 10.1103/PhysRev.92.1324 10.1021/acsenergylett.1c01291 10.1021/acsmaterialslett.9b00274 10.1021/acs.jpclett.8b03604 10.1038/s41563-020-0784-7 10.1126/science.aaa2725 10.1038/ncomms14051 10.1021/acs.jpclett.0c03432 10.1021/jacs.5b05404 10.1021/acsami.1c03881 10.1021/jz500279b |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1002/advs.202203596 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_f017d301bea341708a48debef49fa29e PMC9631088 oai:HAL:hal-03797339v1 36068152 10_1002_advs_202203596 ADVS4504 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province funderid: ZR2021QF006 – fundername: Outstanding Youth Science Foundation of Shandong Province (Overseas) funderid: 2022HWYQ‐006 – fundername: Qilu Youth Scholar Foundation of Shandong University funderid: 62460082163114 – fundername: National Natural Science Foundation of China funderid: 22179072; 22088102 – fundername: National Natural Science Foundation of China grantid: 22179072 – fundername: National Natural Science Foundation of China grantid: 22088102 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2021QF006 – fundername: Outstanding Youth Science Foundation of Shandong Province (Overseas) grantid: 2022HWYQ-006 – fundername: Qilu Youth Scholar Foundation of Shandong University grantid: 62460082163114 – fundername: ; grantid: 22179072; 22088102 – fundername: Outstanding Youth Science Foundation of Shandong Province (Overseas) grantid: 2022HWYQ‐006 – fundername: ; grantid: ZR2021QF006 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION EJD IGS PHGZM PHGZT NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c6294-673916510ce105a4362c59d94dd3463990dc4d93a9bf80dba1c2d62ef8c051223 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 98 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000850309300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Mon Nov 10 04:34:32 EST 2025 Tue Nov 04 02:11:21 EST 2025 Sat Nov 29 15:01:31 EST 2025 Sun Nov 09 09:57:12 EST 2025 Sun Nov 30 04:14:03 EST 2025 Mon Jul 21 06:07:56 EDT 2025 Tue Nov 18 22:15:27 EST 2025 Sat Nov 29 07:22:43 EST 2025 Wed Jan 22 16:31:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 31 |
| Keywords | cuprous-based phosphors electroluminescence application hybrid metal halides single-component warm white-light emitters warm white light-emitting diodes (LEDs) |
| Language | English |
| License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6294-673916510ce105a4362c59d94dd3463990dc4d93a9bf80dba1c2d62ef8c051223 |
| Notes | Ke‐li Han: Deceased 17 March 2022 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6903-6840 0000-0002-4006-328X 0000-0003-2962-766X |
| OpenAccessLink | https://doaj.org/article/f017d301bea341708a48debef49fa29e |
| PMID | 36068152 |
| PQID | 2731326482 |
| PQPubID | 4365299 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f017d301bea341708a48debef49fa29e pubmedcentral_primary_oai_pubmedcentral_nih_gov_9631088 hal_primary_oai_HAL_hal_03797339v1 proquest_miscellaneous_2711308204 proquest_journals_2731326482 pubmed_primary_36068152 crossref_citationtrail_10_1002_advs_202203596 crossref_primary_10_1002_advs_202203596 wiley_primary_10_1002_advs_202203596_ADVS4504 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Open Access John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Open Access – name: John Wiley and Sons Inc – name: Wiley |
| References | 2018; 562 2017; 8 2021; 20 2020; 20 2015; 347 2019; 11 2019; 10 2018; 563 2019; 58 2020; 59 2020; 14 2020; 11 2017; 9 2014; 136 2019; 123 2020; 8 2020; 7 1971; 8 2018; 9 2014; 5 2020; 3 2021; 33 2019; 64 2015; 137 2000; 406 2013; 113 2019; 29 2011; 23 2021; 9 1993; 48 2019; 7 2021; 6 2015; 6 2019; 4 2021; 4 2021; 3 2021; 2 2019; 31 2019; 1 2011; 40 2022; 91 2020; 226 1953; 92 2020; 32 2017; 139 2021; 13 2021; 417 2021; 16 2021; 15 2021; 12 2020; 30 2017; 11 2022; 9 2022; 14 2018; 51 2022; 10 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 619 year: 2018 publication-title: Acc. Chem. Res. – volume: 23 start-page: 2300 year: 2011 publication-title: Adv. Mater. – volume: 32 start-page: 6525 year: 2020 publication-title: Chem. Mater. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 91 year: 2022 publication-title: Nano Energy – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 10 start-page: 1999 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 2786 year: 2021 publication-title: ACS Energy Lett. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 562 start-page: 245 year: 2018 publication-title: Nature – volume: 4 start-page: 242 year: 2019 publication-title: ACS Energy Lett. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 32 start-page: 5327 year: 2020 publication-title: Chem. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 2 year: 2021 publication-title: Adv. Photonics Res. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 15 start-page: 238 year: 2021 publication-title: Nat. Photonics – volume: 58 start-page: 5277 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 14 year: 2020 publication-title: Laser Photonics Rev. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 40 start-page: 3467 year: 2011 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 9 year: 1971 publication-title: Phys. Status Solidi A – volume: 1 start-page: 459 year: 2019 publication-title: ACS Mater. Lett. – volume: 12 start-page: 317 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 1025 year: 2021 publication-title: ACS Mater. Lett. – volume: 8 year: 2020 publication-title: J. Mater. Chem. C – volume: 563 start-page: 541 year: 2018 publication-title: Nature – volume: 406 start-page: 865 year: 2000 publication-title: Nature – volume: 8 start-page: 4497 year: 2017 publication-title: Chem. Sci. – volume: 113 year: 2013 publication-title: J. Appl. Phys. – volume: 32 start-page: 3462 year: 2020 publication-title: Chem. Mater. – volume: 417 year: 2021 publication-title: Chem. Eng. J. – volume: 6 start-page: 6142 year: 2015 publication-title: Nat. Commun. – volume: 226 year: 2020 publication-title: J. Lumin. – volume: 92 start-page: 1324 year: 1953 publication-title: Phys. Rev. – volume: 16 start-page: 1619 year: 2021 publication-title: Chem. ‐ Asian J. – volume: 4 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 12 start-page: 8256 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 4312 year: 2014 publication-title: Nat. Commun. – volume: 4 start-page: 2490 year: 2021 publication-title: Matter – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 4878 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 137 start-page: 9230 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 5197 year: 1993 publication-title: Phys. Rev. B – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 3 start-page: 180 year: 2020 publication-title: Matter – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 1089 year: 2020 publication-title: Chem. Mater. – volume: 64 start-page: 904 year: 2019 publication-title: Sci. Bull. – volume: 31 start-page: 2983 year: 2019 publication-title: Chem. Mater. – volume: 7 start-page: 5442 year: 2019 publication-title: J. Mater. Chem. C – volume: 5 start-page: 1035 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 20 start-page: 10 year: 2021 publication-title: Nat. Mater. – volume: 12 start-page: 1421 year: 2021 publication-title: Nat. Commun. – volume: 12 start-page: 6919 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 4703 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 20 start-page: 3568 year: 2020 publication-title: Nano Lett. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 139 start-page: 5210 year: 2017 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_9_1 doi: 10.1002/adpr.202100143 – ident: e_1_2_7_60_1 doi: 10.1002/adom.202101661 – ident: e_1_2_7_69_1 doi: 10.1016/j.cej.2021.129223 – ident: e_1_2_7_14_1 doi: 10.1002/lpor.202000027 – ident: e_1_2_7_50_1 doi: 10.1039/C7SC01590A – ident: e_1_2_7_51_1 doi: 10.1021/acsenergylett.8b02239 – ident: e_1_2_7_1_1 doi: 10.1038/35022529 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201003640 – ident: e_1_2_7_44_1 doi: 10.1002/anie.201814564 – ident: e_1_2_7_35_1 doi: 10.1063/1.4801900 – ident: e_1_2_7_37_1 doi: 10.1002/adom.202001832 – ident: e_1_2_7_58_1 doi: 10.1002/anie.202009101 – ident: e_1_2_7_26_1 doi: 10.1016/j.matt.2021.05.018 – ident: e_1_2_7_16_1 doi: 10.1021/acs.nanolett.0c00513 – ident: e_1_2_7_13_1 doi: 10.1002/anie.201806452 – ident: e_1_2_7_10_1 doi: 10.1021/acs.chemmater.0c01708 – ident: e_1_2_7_19_1 doi: 10.1016/j.nanoen.2021.106664 – ident: e_1_2_7_64_1 doi: 10.1002/adma.201901716 – ident: e_1_2_7_40_1 doi: 10.1002/adma.202102190 – ident: e_1_2_7_52_1 doi: 10.1002/anie.201907503 – ident: e_1_2_7_11_1 doi: 10.1002/asia.202100293 – ident: e_1_2_7_47_1 doi: 10.1021/acs.jpclett.1c01828 – ident: e_1_2_7_8_1 doi: 10.1021/jacs.7b01312 – ident: e_1_2_7_68_1 doi: 10.1002/adom.202100307 – ident: e_1_2_7_73_1 doi: 10.1002/advs.202102895 – ident: e_1_2_7_55_1 doi: 10.1002/adma.201904711 – ident: e_1_2_7_39_1 doi: 10.1021/acs.jpcc.9b02456 – ident: e_1_2_7_22_1 doi: 10.1021/acs.chemmater.0c01794 – ident: e_1_2_7_2_1 doi: 10.1038/s41467-021-21638-x – ident: e_1_2_7_17_1 doi: 10.1021/acs.jpclett.1c01946 – ident: e_1_2_7_65_1 doi: 10.1021/acs.jpclett.8b02127 – ident: e_1_2_7_5_1 doi: 10.1038/s41566-020-00743-1 – ident: e_1_2_7_43_1 doi: 10.1021/acsami.9b08407 – ident: e_1_2_7_72_1 doi: 10.1002/adfm.201904101 – ident: e_1_2_7_54_1 doi: 10.1016/j.scib.2019.05.016 – ident: e_1_2_7_18_1 doi: 10.1021/acs.jpclett.0c01162 – ident: e_1_2_7_27_1 doi: 10.1002/adom.202101062 – ident: e_1_2_7_49_1 doi: 10.1021/acs.accounts.7b00433 – ident: e_1_2_7_45_1 doi: 10.1021/acs.chemmater.9b00537 – ident: e_1_2_7_62_1 doi: 10.1002/adom.202000498 – ident: e_1_2_7_28_1 doi: 10.1021/acsmaterialslett.1c00242 – ident: e_1_2_7_6_1 doi: 10.1038/s41586-018-0691-0 – ident: e_1_2_7_25_1 doi: 10.1021/acsami.2c00006 – ident: e_1_2_7_42_1 doi: 10.1021/acs.chemmater.9b03918 – ident: e_1_2_7_67_1 doi: 10.1103/PhysRevB.48.5197 – ident: e_1_2_7_23_1 doi: 10.1021/acsami.1c02503 – ident: e_1_2_7_36_1 doi: 10.1002/pssa.2210080102 – ident: e_1_2_7_41_1 doi: 10.1002/adfm.202002225 – ident: e_1_2_7_71_1 doi: 10.1038/s41586-018-0575-3 – ident: e_1_2_7_57_1 doi: 10.1021/ja507086b – ident: e_1_2_7_15_1 doi: 10.1002/advs.202000195 – ident: e_1_2_7_29_1 doi: 10.1016/j.matt.2020.04.017 – ident: e_1_2_7_4_1 doi: 10.1038/ncomms5312 – ident: e_1_2_7_38_1 doi: 10.1021/acsnano.7b05442 – ident: e_1_2_7_56_1 doi: 10.1039/D0TC02923H – ident: e_1_2_7_33_1 doi: 10.1038/ncomms7142 – ident: e_1_2_7_63_1 doi: 10.1016/j.jlumin.2020.117471 – ident: e_1_2_7_20_1 doi: 10.1021/acsanm.1c03586 – ident: e_1_2_7_30_1 doi: 10.1039/C9TC00892F – ident: e_1_2_7_53_1 doi: 10.1021/acs.chemmater.9b05321 – ident: e_1_2_7_70_1 doi: 10.1039/c0cs00204f – ident: e_1_2_7_12_1 doi: 10.1021/acsami.7b12862 – ident: e_1_2_7_32_1 doi: 10.1103/PhysRev.92.1324 – ident: e_1_2_7_59_1 doi: 10.1021/acsenergylett.1c01291 – ident: e_1_2_7_24_1 doi: 10.1021/acsmaterialslett.9b00274 – ident: e_1_2_7_46_1 doi: 10.1021/acs.jpclett.8b03604 – ident: e_1_2_7_7_1 doi: 10.1038/s41563-020-0784-7 – ident: e_1_2_7_31_1 doi: 10.1126/science.aaa2725 – ident: e_1_2_7_48_1 doi: 10.1038/ncomms14051 – ident: e_1_2_7_21_1 doi: 10.1021/acs.jpclett.0c03432 – ident: e_1_2_7_66_1 doi: 10.1021/jacs.5b05404 – ident: e_1_2_7_61_1 doi: 10.1021/acsami.1c03881 – ident: e_1_2_7_34_1 doi: 10.1021/jz500279b |
| SSID | ssj0001537418 |
| Score | 2.538849 |
| Snippet | Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes... Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes... Abstract Single‐component emitters with stable and bright warm white‐light emission are highly desirable for high‐efficacy warm white light‐emitting diodes... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2203596 |
| SubjectTerms | Chemical Sciences Crystallization cuprous‐based phosphors Efficiency electroluminescence application hybrid metal halides Light emitting diodes Morphology Single crystals single‐component warm white‐light emitters Thin films warm white light‐emitting diodes (LEDs) |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cAFKM-UggxCAg5RE9tJ7BNqS6tF2laVeFXiEDl-qCvRbLvbXYkb_4F_yC9h7HgDUQUcuCaTl-f12Rl_A_C8cU4YTnnqClemPFc6lco2aVEohgC9MSa0A_o4rg4PxfGxPIoLbvNYVrmKiSFQm6n2a-RbmGZx4lRyQV-fnae-a5T_uxpbaFyFa4hscl_SdUCPfq2xFMyTs6y4GjO6pczSc3RT6pnrykEuCpT9mGFOfEHkZbR5uWjydzAbstH-rf_9jttwM-JQst0Zzjpcse0dWI-ePicvIx31q7vwuduuqX98-_627ZpAaTL66nd6kd0FPn0xT3cwFxpyYBHJkxEie4O3QDRMPqnZKQk9-Mg4MJbsnU5CoTV5M5mi0D34sL_3fneUxpYMqS6p5H6jAOJJ9GNtEZgpjulPF9JIbgzjHuxkRnMjmZKNE5lpVK6pKal1QqP3IxS5D2vttLUPgVBncBLMRSmY5VqoxgrNMlcVTmpJXZNAulJOrSNfuW-b8aXumJZp7ZVZ98pM4EUvf9YxdfxRcsfrupfyDNvhAI5hHR22dhiqDEa_xipM9FUmFBcGLd5x6RSVNoFnaCmDe4y2x7U_lrFKVozJZZ7A5soI6hgb8D16C0jgaX8avdr_qlGtRbWhTJ57IqGMJ_Cgs7v-UQznnAJhVwLVwCIH7zI8005OAnM4Rtsc0woObbDdf4xTjcjoHS8yvvH3z3gEN_w13Q7NTVi7mC3sY7iulxeT-exJcMmfDmM-gg priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOACLc9AWxmEBByiJraT2Mc-tUhLVYlXb5bjh7oSTdFudyVu_QlI_MP-EmacbNqoQghxdUbeZDyPz17PN4S8rkOQTjCRhiKUqciNTZXxdVoUhgNAr52L7YC-jKvDQ3l8rI6uVfG3_BD9gRt6RozX6OCmnm1dkYYat0C6bcaQhK68Te7kOa_Qrpk4ujplKTjSs2CHOdhdp1wKsWRuzNjWcIpBZooE_pBvTvB65E3sefMK5XVoG3PTwYP__6pVcr_DpXS7NaQ1css3D8la5_kz-rajp373iOi2fNNeXvx637RNoSwd_cDKL7o7h2-Yzy4vfu5AdnT0gwdsT0eA9R1MAviYfjXTUxq78tExnguA6P7pJF6-pnuTMxB7TD4f7H_aHaVdm4bUlkwJLB4AjAm-bT2ANSMgJdpCOSWc4wIBUOascIobVQeZudrklrmS-SAtRASAJ0_ISnPW-GeEsuBgYyxkKbkXVpraS8uzUBVBWcVCnZB0uUTadhzm2Erjm27Zl5lG_elefwl508t_b9k7_ii5gyveSyHrdhwAPerOiXWA8OUgItbeQPKvMmmEdOAFQahgmPIJeQX2MphjtD3WOJaBbVacq0WekPWlOekuXsB7VEihWQrJEvKyfwyejn_fmMbD0oEMWDgiNpGQp6319T_FYR8qAYolpBrY5eBdhk-ayUlkE4cInEOqAdVGu_yLnjSgpY-iyMTzf5R_Qe7hYFvGuU5Wzqdzv0Hu2sX5ZDbdjF77G1o8RQY priority: 102 providerName: Wiley-Blackwell |
| Title | Organic–Inorganic Hybrid Cuprous‐Based Metal Halides for Warm White Light‐Emitting Diodes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202203596 https://www.ncbi.nlm.nih.gov/pubmed/36068152 https://www.proquest.com/docview/2731326482 https://www.proquest.com/docview/2711308204 https://hal.science/hal-03797339 https://pubmed.ncbi.nlm.nih.gov/PMC9631088 https://doaj.org/article/f017d301bea341708a48debef49fa29e |
| Volume | 9 |
| WOSCitedRecordID | wos000850309300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7apIdeStNX3KaLWgptDya2LNvSMZtu2IXdrekr25OR9SALjVN2swu95ScU-g_zSzqyvWZNKLn0IrA1yGI0o_mER98AvCms5ZpR5tvYJj4LpfKFNIUfxzJCgF5oXZUD-jZOp1M-m4lsq9SXywmr6YFrxR1aNBmNVlgYiRtuGnDJuMYvWyaspMK43TdIxdZhqr4fHDlalg1LY0APpV47dm5KHWdd0olCFVk_xpYzlwp5E2feTJfchrFVHDp5CA8aAEmO6onvwR1TPoK9xkWX5F3DI_3-MeT1PUt1ffVnVNbVmxQZ_nJXtMjxCiewWl5f_e5jGNNkYhCEkyGCco2DIJAlp3JxTqryeWTsDvAoOjifV1nS5MP8AsWewNeTwZfjod_UU_BVQgVzWf4IBtEJlUFUJRnGLhULLZjWEXNIJdCKaRFJUVge6EKGiuqEGssVui7iiKewU16UZh8ItRpPsIwnPDJMcVkYrqLAprEVSlBbeOBv9Jurhmzc1bz4kdc0yTR365G36-HB21b-Z02z8U_JvluuVsrRY1cvUI95YzT5bUbjwWtc7M4Yw6Nx7t4FUSrSKBLr0IODjS3kjWPjPFLHdZkwTj141XajS7r_LLI0uHQoE4aOBShgHjyrTaf9VIQHRo6YyYO0Y1SduXR7yvlZRfuNW2WIMQFVW5nfLXrKEdZ8ZnHAnv8Phb2A-27k-hLmAexcLlbmJdxT68v5ctGDu5Rl2KYz3oPd_mCafepV_ojthH6sWuzfzUaT7Ds-nY6mfwFcVDzW |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VKRJcgPJrKLAgEHCwaq_X9u4BoaZNlahpVEEplTiY9f6okahTkqaoN96B9-CheBJm_QdRBZx64GpPHO_6229m7NlvAJ7m1nLNKPNtbBOfhVL5Qprcj2MZYYCea122A9ofpqMRPzgQu0vwvdkL48oqG04siVpPlHtHvoZuFhOnhHH6-viz77pGua-rTQuNChbb5uwLpmyzV4NNfL7PKN3q7W30_bqrgK8SKpirdceQCKGoDMYWkiGDq1howbSOmPPXgVZMi0iK3PJA5zJUVCfUWK4QwNQJHSDlLzM0jjuw3O2Ndt_8eqsTR04OplGHDOia1KdOFZxSp5WXLHi_skkA-rRDV4J5Pr49X6b5e_hc-r-ta__bzF2Hq3WkTdarpbECS6a4ASs1l83Ii1pw--VN-FBtSFU_vn4bFFWbK0X6Z24vG9mY42jnM7-L3l6THYO5Culj7qLxEhjvk_dyekTKLoNkWGqy9I7GZSk52RxP0OgWvLuQQd6GTjEpzF0g1GpM8xlPeGSY4jI3XEWBTWMrlKA298BvwJCpWpHdNQb5lFVa0jRz4Mla8HjwvLU_rrRI_mjZddhqrZyGeHkA5zCrKSmzSMYa-T03EkOZNOCScY1r2jJhJRXGgyeIzIVr9NeHmTsWRKlIo0ichh6sNqDLavbD-2gR58Hj9jTylvsYJQuDjw1twtBJJQXMgzsVztu_ijCr5hhYepAurICFe1k8U4wPS2109CchOk6c2nKt_GOeMoz93rI4YPf-PoxHcLm_tzPMhoPR9n244n5f7Uddhc7JdG4ewCV1ejKeTR_WhEDg40WvpJ--xpn_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBSEuQHkaCiwIBBys2Ou1vXtAqG0aJWqIIvFoJQ5mvQ81EnVK0gT1xn_g3_Bz-CXM-AVRBZx64GpvHO_6m29m7NlvCHmSOycMZ9x3sUt8HirtS2VzP45VBAF6bkzZDuj9MB2NxMGBHK-R781eGCyrbDixJGoz1fiOvANuFhKnhAvWcXVZxLjbe3X82ccOUviltWmnUUFkz55-gfRt_nLQhWf9lLHe7tudvl93GPB1wiTHuncIjwCW2kKcoTiwuY6lkdyYiKPvDozmRkZK5k4EJlehZiZh1gkNYGYoegD0fyFFVSwsG2TjX-934giFYRqdyIB1lFmiPjhjqJqXrPjBsl0AeLdDLMY8G-meLdj8PZAuPWHv6v-8htfIlTr-pluVwWyQNVtcJxs1w83p81qG-8UN8qHapqp_fP02KKrmV5r2T3GHG91ZwMwXc38bYgBDX1vIYGgfMhoDl4AsgO6r2REtew_SYanUsns0KQvMaXcyhUE3ybtzmeQtsl5MC3uHUOYMJP9cJCKyXAuVW6GjwKWxk1oyl3vEb4CR6VqnHduFfMoqhWmWIZCyFkgeedaOP64USv44chtx1o5CZfHyAKxhVhNV5oCiDbB-bhUEOGkgFBcGLN1x6RST1iOPAaUr1-hvDTM8FkSpTKNILkOPbDYAzGpOhPto0eeRR-1pYDP8RKUKC48NxoQhCigF3CO3K8y3fxVBri0g3PRIumINK_eyeqaYHJaK6eBlQnCnsLSl3fxjnTKICN_wOOB3_z6Nh-QSmE82HIz27pHL-PNqk-omWT-ZLex9clEvTybz2YOSGSj5eN5m9BOX96Fu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic%E2%80%93Inorganic+Hybrid+Cuprous%E2%80%90Based+Metal+Halides+for+Warm+White+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+science&rft.au=Meng%2C+Xuan&rft.au=Ji%2C+Sujun&rft.au=Wang%2C+Qiujie&rft.au=Wang%2C+Xiaochen&rft.date=2022-11-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=31&rft_id=info:doi/10.1002%2Fadvs.202203596&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202203596 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |