l-Carnitine enhances exercise endurance capacity by promoting muscle oxidative metabolism in mice

l-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biochemical and biophysical research communications Ročník 464; číslo 2; s. 568 - 573
Hlavní autoři: Kim, Jun Ho, Pan, Jeong Hoon, Lee, Eui Seop, Kim, Young Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 21.08.2015
Témata:
ISSN:0006-291X, 1090-2104, 1090-2104
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract l-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This study was designed to investigate the effects of LC administration on endurance capacity and energy metabolism in mice during treadmill exercise. Male C57BL/6 mice were divided into two groups (sedentary and exercise) and received daily oral administration of LC (150 mg/kg) or vehicle with a high-fat diet for 3 weeks. During the experimental period, all animals were trained three times a week on a motorized treadmill, and the total running time until exhaustion was used as the index of endurance capacity. LC administration induced a significant increase in maximum running time with a reduction of body fat compared with the control group when mice were subjected to programmed exercise. The serum levels of triglyceride, non-esterified fatty acid, and urea nitrogen were significantly lower in the LC group than the corresponding levels in the control group, while serum ketone body levels were higher in the LC group. Muscle glycogen content of LC administered-mice was higher than that of control mice, concomitant with reduced triglyceride content. Importantly, muscle mRNA and protein expressions revealed enhanced fatty acid uptake and oxidative metabolism and increased mitochondrial biogenesis by LC administration. These results suggest that LC administration promotes fat oxidation and mitochondrial biogenesis while sparing stored glycogen in skeletal muscle during prolonged exercise, resulting in enhanced endurance capacity. •l-Carnitine enhances running endurance capacity in exercise-trained mice.•l-Carnitine promotes muscle oxidative metabolism while sparing glycogen consumption.•l-Carnitine increases markers of mitochondrial biogenesis in skeletal muscle.
AbstractList L-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This study was designed to investigate the effects of LC administration on endurance capacity and energy metabolism in mice during treadmill exercise. Male C57BL/6 mice were divided into two groups (sedentary and exercise) and received daily oral administration of LC (150 mg/kg) or vehicle with a high-fat diet for 3 weeks. During the experimental period, all animals were trained three times a week on a motorized treadmill, and the total running time until exhaustion was used as the index of endurance capacity. LC administration induced a significant increase in maximum running time with a reduction of body fat compared with the control group when mice were subjected to programmed exercise. The serum levels of triglyceride, non-esterified fatty acid, and urea nitrogen were significantly lower in the LC group than the corresponding levels in the control group, while serum ketone body levels were higher in the LC group. Muscle glycogen content of LC administered-mice was higher than that of control mice, concomitant with reduced triglyceride content. Importantly, muscle mRNA and protein expressions revealed enhanced fatty acid uptake and oxidative metabolism and increased mitochondrial biogenesis by LC administration. These results suggest that LC administration promotes fat oxidation and mitochondrial biogenesis while sparing stored glycogen in skeletal muscle during prolonged exercise, resulting in enhanced endurance capacity.L-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This study was designed to investigate the effects of LC administration on endurance capacity and energy metabolism in mice during treadmill exercise. Male C57BL/6 mice were divided into two groups (sedentary and exercise) and received daily oral administration of LC (150 mg/kg) or vehicle with a high-fat diet for 3 weeks. During the experimental period, all animals were trained three times a week on a motorized treadmill, and the total running time until exhaustion was used as the index of endurance capacity. LC administration induced a significant increase in maximum running time with a reduction of body fat compared with the control group when mice were subjected to programmed exercise. The serum levels of triglyceride, non-esterified fatty acid, and urea nitrogen were significantly lower in the LC group than the corresponding levels in the control group, while serum ketone body levels were higher in the LC group. Muscle glycogen content of LC administered-mice was higher than that of control mice, concomitant with reduced triglyceride content. Importantly, muscle mRNA and protein expressions revealed enhanced fatty acid uptake and oxidative metabolism and increased mitochondrial biogenesis by LC administration. These results suggest that LC administration promotes fat oxidation and mitochondrial biogenesis while sparing stored glycogen in skeletal muscle during prolonged exercise, resulting in enhanced endurance capacity.
l-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This study was designed to investigate the effects of LC administration on endurance capacity and energy metabolism in mice during treadmill exercise. Male C57BL/6 mice were divided into two groups (sedentary and exercise) and received daily oral administration of LC (150 mg/kg) or vehicle with a high-fat diet for 3 weeks. During the experimental period, all animals were trained three times a week on a motorized treadmill, and the total running time until exhaustion was used as the index of endurance capacity. LC administration induced a significant increase in maximum running time with a reduction of body fat compared with the control group when mice were subjected to programmed exercise. The serum levels of triglyceride, non-esterified fatty acid, and urea nitrogen were significantly lower in the LC group than the corresponding levels in the control group, while serum ketone body levels were higher in the LC group. Muscle glycogen content of LC administered-mice was higher than that of control mice, concomitant with reduced triglyceride content. Importantly, muscle mRNA and protein expressions revealed enhanced fatty acid uptake and oxidative metabolism and increased mitochondrial biogenesis by LC administration. These results suggest that LC administration promotes fat oxidation and mitochondrial biogenesis while sparing stored glycogen in skeletal muscle during prolonged exercise, resulting in enhanced endurance capacity.
l-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty acid oxidation and energy expenditure. However, whether LC contributes to improved endurance exercise performance remains controversial. This study was designed to investigate the effects of LC administration on endurance capacity and energy metabolism in mice during treadmill exercise. Male C57BL/6 mice were divided into two groups (sedentary and exercise) and received daily oral administration of LC (150 mg/kg) or vehicle with a high-fat diet for 3 weeks. During the experimental period, all animals were trained three times a week on a motorized treadmill, and the total running time until exhaustion was used as the index of endurance capacity. LC administration induced a significant increase in maximum running time with a reduction of body fat compared with the control group when mice were subjected to programmed exercise. The serum levels of triglyceride, non-esterified fatty acid, and urea nitrogen were significantly lower in the LC group than the corresponding levels in the control group, while serum ketone body levels were higher in the LC group. Muscle glycogen content of LC administered-mice was higher than that of control mice, concomitant with reduced triglyceride content. Importantly, muscle mRNA and protein expressions revealed enhanced fatty acid uptake and oxidative metabolism and increased mitochondrial biogenesis by LC administration. These results suggest that LC administration promotes fat oxidation and mitochondrial biogenesis while sparing stored glycogen in skeletal muscle during prolonged exercise, resulting in enhanced endurance capacity. •l-Carnitine enhances running endurance capacity in exercise-trained mice.•l-Carnitine promotes muscle oxidative metabolism while sparing glycogen consumption.•l-Carnitine increases markers of mitochondrial biogenesis in skeletal muscle.
Author Pan, Jeong Hoon
Kim, Young Jun
Kim, Jun Ho
Lee, Eui Seop
Author_xml – sequence: 1
  givenname: Jun Ho
  surname: Kim
  fullname: Kim, Jun Ho
– sequence: 2
  givenname: Jeong Hoon
  surname: Pan
  fullname: Pan, Jeong Hoon
– sequence: 3
  givenname: Eui Seop
  surname: Lee
  fullname: Lee, Eui Seop
– sequence: 4
  givenname: Young Jun
  surname: Kim
  fullname: Kim, Young Jun
  email: yk46@korea.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26164228$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2L1TAUhoOMOHdG_4ALydJN60maJg24kcv4AQNuFNyFfJxqLm16Tdph7r-35Y4uXIyuDhye53B43ytykaaEhLxkUDNg8s2hdi77mgNra1A1gH5Cdgw0VJyBuCA7AJAV1-zbJbkq5QDAmJD6GbnkkknBebcjdqj2Nqc4x4QU0w-bPBaK95h9LNsmLHnbUW-P1sf5RN2JHvM0TqvxnY5L8QPS6T4GO8c7pCPO1k1DLCONiY7R43PytLdDwRcP85p8fX_zZf-xuv384dP-3W3lJe_myvfOddy3Ssu2RYesD1IyaIN1WgrdhkYxZnXD274D3fUi6AaFF6i5UNqJ5pq8Pt9dv_u5YJnNGIvHYbAJp6UY1vFWNEJK-W9UgWaqU6r7H5Q122vb1VcP6OJGDOaY42jzyfwOewX4GfB5KiVj_wdhYLZGzcFsjZqtUQPKrI2uUveXtLawZj2lOds4PK6-Pau4xn4XMZviI65lhpjRzyZM8TH9F34hu2Y
CitedBy_id crossref_primary_10_1590_1519_6984_267633
crossref_primary_10_1161_CIRCULATIONAHA_116_022535
crossref_primary_10_1016_j_clnesp_2021_08_005
crossref_primary_10_3390_biology12111450
crossref_primary_10_3390_molecules25092127
crossref_primary_10_1016_j_phrs_2019_104554
crossref_primary_10_1007_s10522_023_10024_3
crossref_primary_10_3390_cells11081297
crossref_primary_10_1039_C9FO02489A
crossref_primary_10_1089_jmf_2020_4743
crossref_primary_10_14814_phy2_14282
crossref_primary_10_1016_j_jcis_2021_01_106
crossref_primary_10_1111_obr_12436
crossref_primary_10_1186_s41927_022_00286_8
crossref_primary_10_1016_j_clnesp_2020_03_008
crossref_primary_10_3390_nu15173678
crossref_primary_10_1007_s00204_021_03104_1
crossref_primary_10_1038_s41598_020_70961_8
crossref_primary_10_52361_fsbh_2024_4_e4
crossref_primary_10_1096_fj_202200637R
crossref_primary_10_1371_journal_pone_0317939
crossref_primary_10_1136_bjsports_2016_096357
crossref_primary_10_1016_j_rvsc_2020_01_008
crossref_primary_10_1186_s12970_017_0199_2
crossref_primary_10_1016_j_tjnut_2024_07_027
crossref_primary_10_1089_jmf_2021_K_0096
crossref_primary_10_3390_nu12051519
crossref_primary_10_3390_nu11081715
crossref_primary_10_3389_fmicb_2022_1049469
crossref_primary_10_1186_s13098_024_01415_8
crossref_primary_10_3389_fnut_2021_748075
crossref_primary_10_1002_jcsm_12202
Cites_doi 10.1152/ajpregu.00693.2004
10.3945/an.113.004572
10.1371/journal.pone.0040073
10.1093/ajcn/72.2.558S
10.1073/pnas.98.4.1416
10.3177/jnsv.47.378
10.1007/s11745-012-3698-6
10.1016/j.cmet.2015.04.016
10.1152/jappl.1993.75.4.1595
10.1113/jphysiol.2010.201343
10.1055/s-2007-971932
10.1016/S1388-1981(00)00044-5
10.1079/PNS19980008
10.1076/apab.104.2.129.12878
10.1007/BF00236072
10.1113/jphysiol.2013.255364
10.1152/jappl.1978.45.6.1009
10.1016/j.cell.2008.06.051
10.1016/S0735-1097(99)00413-1
10.1093/jn/125.3.531
10.1113/jphysiol.2005.085043
10.1007/BF01466268
10.1007/s13105-013-0256-5
10.1093/cvr/cvn098
10.1152/japplphysiol.01328.2006
10.1172/JCI17305
10.1007/BF00334420
10.1007/BF00191365
10.1079/BJN2003919
10.1016/j.peptides.2008.03.004
10.1074/jbc.M702329200
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U7
C1K
7S9
L.6
DOI 10.1016/j.bbrc.2015.07.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Toxicology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Toxicology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

Toxicology Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 573
ExternalDocumentID 26164228
10_1016_j_bbrc_2015_07_009
S0006291X15302394
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
DOVZS
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZA5
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
9DU
9M8
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
OHT
R2-
SBG
SEW
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~HD
~KM
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7U7
C1K
7S9
L.6
ID FETCH-LOGICAL-c628t-cfbb82c579655ebe1fd66105dab96495d3711a9325f8098f4d93e4c4e92479b43
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359514000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-291X
1090-2104
IngestDate Sun Sep 28 08:34:09 EDT 2025
Tue Oct 07 09:21:25 EDT 2025
Wed Oct 01 14:12:03 EDT 2025
Mon Jul 21 06:02:27 EDT 2025
Tue Nov 18 20:57:41 EST 2025
Sat Nov 29 07:48:48 EST 2025
Fri Feb 23 02:28:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fatty acid oxidation
L-Carnitine
Endurance
Mitochondrial biogenesis
Skeletal muscle
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c628t-cfbb82c579655ebe1fd66105dab96495d3711a9325f8098f4d93e4c4e92479b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26164228
PQID 1701337116
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1825434666
proquest_miscellaneous_1709178778
proquest_miscellaneous_1701337116
pubmed_primary_26164228
crossref_primary_10_1016_j_bbrc_2015_07_009
crossref_citationtrail_10_1016_j_bbrc_2015_07_009
elsevier_sciencedirect_doi_10_1016_j_bbrc_2015_07_009
PublicationCentury 2000
PublicationDate 2015-08-21
PublicationDateYYYYMMDD 2015-08-21
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Fushiki, Matsumoto, Inoue (bib3) 1995; 125
Koch, Meredith, Fraker (bib17) 1998; 275
Horowitz, Klein (bib23) 2000; 72
Wang, Zhang, Lu (bib28) 2008; 29
Murase, Haramizu, Shimotoyodome (bib6) 2005; 288
Mojtaba, Laleh, Mohsen (bib15) 2011; 1
Norris, Chen, Fisher (bib20) 2003; 112
Jeukendrup, Saris, Wagenmakers (bib4) 1998; 19
Kim, Kim, Park (bib5) 2012; 47
Oh, Oh, Ohta (bib22) 2003; 90
Echtay, Winkler, Frischmuth (bib25) 2001; 98
Kerner, Hoppel (bib24) 2000; 1486
Narkar, Downes, Yu (bib27) 2008; 134
Ventura-Clapier, Garnier, Veksler (bib30) 2008; 79
Pandareesh, Anand (bib11) 2013; 69
Vecchiet, Lisa, Pieralisi (bib12) 1990; 61
Heinonen, Takala, Kvist (bib13) 1992; 65
Cha, Choi, Suh (bib10) 2001; 47
Mancini, Benaminovitz, Cordisco (bib1) 1999; 34
Miyagawa, Kuwajima, Hanafusa (bib8) 1995; 426
Margolis, Pasiakos (bib29) 2013; 4
Civiletto, Varanita, Cerutti (bib32) 2015; 21
Colombani, Wenk, Kunz (bib14) 1996; 73
Wall, Stephens, Constantin-Teodosiu (bib33) 2011; 589
Stephens, Wall, Marimuthu (bib7) 2013; 591
Jeong, Cho, Kim (bib31) 2012; 7
Freyssenet, Berthon, Denis (bib21) 1996; 104
Brooks, White (bib16) 1978; 45
Lightfoot, Turner, Knab (bib19) 2007; 103
Fueger, Shearer, Krueger (bib18) 2005; 566
Martin, Klein (bib2) 1998; 57
Brass, Scarrow, Ruff (bib9) 1993; 75
Kramer, Al-Khalili, Guigas (bib26) 2007; 282
Margolis (10.1016/j.bbrc.2015.07.009_bib29) 2013; 4
Brass (10.1016/j.bbrc.2015.07.009_bib9) 1993; 75
Lightfoot (10.1016/j.bbrc.2015.07.009_bib19) 2007; 103
Jeukendrup (10.1016/j.bbrc.2015.07.009_bib4) 1998; 19
Horowitz (10.1016/j.bbrc.2015.07.009_bib23) 2000; 72
Ventura-Clapier (10.1016/j.bbrc.2015.07.009_bib30) 2008; 79
Miyagawa (10.1016/j.bbrc.2015.07.009_bib8) 1995; 426
Heinonen (10.1016/j.bbrc.2015.07.009_bib13) 1992; 65
Mojtaba (10.1016/j.bbrc.2015.07.009_bib15) 2011; 1
Brooks (10.1016/j.bbrc.2015.07.009_bib16) 1978; 45
Civiletto (10.1016/j.bbrc.2015.07.009_bib32) 2015; 21
Koch (10.1016/j.bbrc.2015.07.009_bib17) 1998; 275
Stephens (10.1016/j.bbrc.2015.07.009_bib7) 2013; 591
Pandareesh (10.1016/j.bbrc.2015.07.009_bib11) 2013; 69
Oh (10.1016/j.bbrc.2015.07.009_bib22) 2003; 90
Wang (10.1016/j.bbrc.2015.07.009_bib28) 2008; 29
Vecchiet (10.1016/j.bbrc.2015.07.009_bib12) 1990; 61
Colombani (10.1016/j.bbrc.2015.07.009_bib14) 1996; 73
Kerner (10.1016/j.bbrc.2015.07.009_bib24) 2000; 1486
Norris (10.1016/j.bbrc.2015.07.009_bib20) 2003; 112
Kim (10.1016/j.bbrc.2015.07.009_bib5) 2012; 47
Martin (10.1016/j.bbrc.2015.07.009_bib2) 1998; 57
Narkar (10.1016/j.bbrc.2015.07.009_bib27) 2008; 134
Echtay (10.1016/j.bbrc.2015.07.009_bib25) 2001; 98
Kramer (10.1016/j.bbrc.2015.07.009_bib26) 2007; 282
Jeong (10.1016/j.bbrc.2015.07.009_bib31) 2012; 7
Murase (10.1016/j.bbrc.2015.07.009_bib6) 2005; 288
Mancini (10.1016/j.bbrc.2015.07.009_bib1) 1999; 34
Fueger (10.1016/j.bbrc.2015.07.009_bib18) 2005; 566
Cha (10.1016/j.bbrc.2015.07.009_bib10) 2001; 47
Freyssenet (10.1016/j.bbrc.2015.07.009_bib21) 1996; 104
Fushiki (10.1016/j.bbrc.2015.07.009_bib3) 1995; 125
Wall (10.1016/j.bbrc.2015.07.009_bib33) 2011; 589
References_xml – volume: 1
  start-page: 695
  year: 2011
  end-page: 699
  ident: bib15
  article-title: Fat metabolism and aerobic capacity does not affect by acute L-carnitine L-tartrate supplementation
  publication-title: J. Appl. Environ. Biol. Sci.
– volume: 1486
  start-page: 1
  year: 2000
  end-page: 17
  ident: bib24
  article-title: Fatty acid import into mitochondria
  publication-title: Biochim. Biophys. Acta
– volume: 125
  start-page: 531
  year: 1995
  end-page: 539
  ident: bib3
  article-title: Swimming endurance capacity of mice is increased by chronic consumption of medium-chain triglycerides
  publication-title: J. Nutr.
– volume: 47
  start-page: 378
  year: 2001
  end-page: 384
  ident: bib10
  article-title: Effects of carnitine coingested caffeine on carnitine metabolism and endurance capacity in athletes
  publication-title: J. Nutr. Sci. Vitaminol.
– volume: 73
  start-page: 434
  year: 1996
  end-page: 439
  ident: bib14
  article-title: Effects of L-carnitine supplementation on physical performance and energy metabolism of endurance-trained athletes: a double-blind crossover field study
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 282
  start-page: 19313
  year: 2007
  end-page: 19320
  ident: bib26
  article-title: Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle
  publication-title: J. Biol. Chem.
– volume: 69
  start-page: 799
  year: 2013
  end-page: 809
  ident: bib11
  article-title: Ergogenic effect of dietary
  publication-title: J. Physiol. Biochem.
– volume: 589
  start-page: 963
  year: 2011
  end-page: 973
  ident: bib33
  article-title: Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans
  publication-title: J. Physiol.
– volume: 75
  start-page: 1595
  year: 1993
  end-page: 1600
  ident: bib9
  article-title: Carnitine delays rat skeletal muscle fatigue in vitro
  publication-title: J. Appl. Physiol.
– volume: 4
  start-page: 657
  year: 2013
  end-page: 664
  ident: bib29
  article-title: Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis
  publication-title: Adv. Nutr.
– volume: 61
  start-page: 486
  year: 1990
  end-page: 490
  ident: bib12
  article-title: Influence of
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 275
  start-page: R1455
  year: 1998
  end-page: R1460
  ident: bib17
  article-title: Heritability of treadmill running endurance in rats
  publication-title: Am. J. Physiol.
– volume: 79
  start-page: 208
  year: 2008
  end-page: 217
  ident: bib30
  article-title: Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha
  publication-title: Cardiovasc. Res.
– volume: 19
  start-page: 371
  year: 1998
  end-page: 379
  ident: bib4
  article-title: Fat metabolism during exercise: a review–part III: effects of nutritional interventions
  publication-title: Int. J. Sports Med.
– volume: 591
  start-page: 4655
  year: 2013
  end-page: 4666
  ident: bib7
  article-title: Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans
  publication-title: J. Physiol.
– volume: 103
  start-page: 105
  year: 2007
  end-page: 110
  ident: bib19
  article-title: Quantitative trait loci associated with maximal exercise endurance in mice
  publication-title: J. Appl. Physiol.
– volume: 65
  start-page: 13
  year: 1992
  end-page: 17
  ident: bib13
  article-title: Effect of carnitine loading on long-chain fatty acid oxidation, maximal exercise capacity, and nitrogen balance
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 7
  start-page: e40073
  year: 2012
  ident: bib31
  article-title: Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats
  publication-title: PLoS One
– volume: 21
  start-page: 845
  year: 2015
  end-page: 854
  ident: bib32
  article-title: Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models
  publication-title: Cell Metab.
– volume: 566
  start-page: 533
  year: 2005
  end-page: 541
  ident: bib18
  article-title: Hexokinase II protein content is a determinant of exercise endurance capacity in the mouse
  publication-title: J. Physiol.
– volume: 104
  start-page: 129
  year: 1996
  end-page: 141
  ident: bib21
  article-title: Mitochondrial biogenesis in skeletal muscle in response to endurance exercises
  publication-title: Arch. Physiol. Biochem.
– volume: 29
  start-page: 1176
  year: 2008
  end-page: 1182
  ident: bib28
  article-title: The decapeptide CMS001 enhances swimming endurance in mice
  publication-title: Peptides
– volume: 34
  start-page: 1807
  year: 1999
  end-page: 1812
  ident: bib1
  article-title: Slowed glycogen utilization enhances exercise endurance in patients with heart failure
  publication-title: J. Am. Coll. Cardiol.
– volume: 57
  start-page: 49
  year: 1998
  end-page: 54
  ident: bib2
  article-title: Use of endogenous carbohydrate and fat as fuels during exercise
  publication-title: Proc. Nutr. Soc.
– volume: 98
  start-page: 1416
  year: 2001
  end-page: 1421
  ident: bib25
  article-title: Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone)
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 426
  start-page: 271
  year: 1995
  end-page: 279
  ident: bib8
  article-title: Mitochondrial abnormalities of muscle tissue in mice with juvenile visceral steatosis associated with systemic carnitine deficiency
  publication-title: Virchows Arch.
– volume: 90
  start-page: 515
  year: 2003
  end-page: 520
  ident: bib22
  article-title: Dose-dependent effect of capsaicin on endurance capacity in rats
  publication-title: Br. J. Nutr.
– volume: 288
  start-page: R708
  year: 2005
  end-page: R715
  ident: bib6
  article-title: Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 45
  start-page: 1009
  year: 1978
  end-page: 1015
  ident: bib16
  article-title: Determination of metabolic and heart rate responses of rats to treadmill exercise
  publication-title: J. Appl. Physiol. Respir. Environ. Exerc. Physiol.
– volume: 134
  start-page: 405
  year: 2008
  end-page: 415
  ident: bib27
  article-title: AMPK and PPARdelta agonists are exercise mimetics
  publication-title: Cell
– volume: 72
  start-page: 558S
  year: 2000
  end-page: 563S
  ident: bib23
  article-title: Lipid metabolism during endurance exercise
  publication-title: Am. J. Clin. Nutr.
– volume: 47
  start-page: 855
  year: 2012
  end-page: 863
  ident: bib5
  article-title: trans-10,cis-12 conjugated linoleic acid enhances endurance capacity by increasing fatty acid oxidation and reducing glycogen utilization in mice
  publication-title: Lipids
– volume: 112
  start-page: 608
  year: 2003
  end-page: 618
  ident: bib20
  article-title: Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones
  publication-title: J. Clin. Invest.
– volume: 288
  start-page: R708
  year: 2005
  ident: 10.1016/j.bbrc.2015.07.009_bib6
  article-title: Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00693.2004
– volume: 4
  start-page: 657
  year: 2013
  ident: 10.1016/j.bbrc.2015.07.009_bib29
  article-title: Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis
  publication-title: Adv. Nutr.
  doi: 10.3945/an.113.004572
– volume: 7
  start-page: e40073
  year: 2012
  ident: 10.1016/j.bbrc.2015.07.009_bib31
  article-title: Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040073
– volume: 72
  start-page: 558S
  year: 2000
  ident: 10.1016/j.bbrc.2015.07.009_bib23
  article-title: Lipid metabolism during endurance exercise
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/72.2.558S
– volume: 98
  start-page: 1416
  year: 2001
  ident: 10.1016/j.bbrc.2015.07.009_bib25
  article-title: Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone)
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.98.4.1416
– volume: 47
  start-page: 378
  year: 2001
  ident: 10.1016/j.bbrc.2015.07.009_bib10
  article-title: Effects of carnitine coingested caffeine on carnitine metabolism and endurance capacity in athletes
  publication-title: J. Nutr. Sci. Vitaminol.
  doi: 10.3177/jnsv.47.378
– volume: 47
  start-page: 855
  year: 2012
  ident: 10.1016/j.bbrc.2015.07.009_bib5
  article-title: trans-10,cis-12 conjugated linoleic acid enhances endurance capacity by increasing fatty acid oxidation and reducing glycogen utilization in mice
  publication-title: Lipids
  doi: 10.1007/s11745-012-3698-6
– volume: 21
  start-page: 845
  year: 2015
  ident: 10.1016/j.bbrc.2015.07.009_bib32
  article-title: Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.04.016
– volume: 75
  start-page: 1595
  year: 1993
  ident: 10.1016/j.bbrc.2015.07.009_bib9
  article-title: Carnitine delays rat skeletal muscle fatigue in vitro
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1993.75.4.1595
– volume: 589
  start-page: 963
  year: 2011
  ident: 10.1016/j.bbrc.2015.07.009_bib33
  article-title: Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2010.201343
– volume: 19
  start-page: 371
  year: 1998
  ident: 10.1016/j.bbrc.2015.07.009_bib4
  article-title: Fat metabolism during exercise: a review–part III: effects of nutritional interventions
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-2007-971932
– volume: 1486
  start-page: 1
  year: 2000
  ident: 10.1016/j.bbrc.2015.07.009_bib24
  article-title: Fatty acid import into mitochondria
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S1388-1981(00)00044-5
– volume: 57
  start-page: 49
  year: 1998
  ident: 10.1016/j.bbrc.2015.07.009_bib2
  article-title: Use of endogenous carbohydrate and fat as fuels during exercise
  publication-title: Proc. Nutr. Soc.
  doi: 10.1079/PNS19980008
– volume: 104
  start-page: 129
  year: 1996
  ident: 10.1016/j.bbrc.2015.07.009_bib21
  article-title: Mitochondrial biogenesis in skeletal muscle in response to endurance exercises
  publication-title: Arch. Physiol. Biochem.
  doi: 10.1076/apab.104.2.129.12878
– volume: 61
  start-page: 486
  year: 1990
  ident: 10.1016/j.bbrc.2015.07.009_bib12
  article-title: Influence of L-carnitine administration on maximal physical exercise
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
  doi: 10.1007/BF00236072
– volume: 591
  start-page: 4655
  year: 2013
  ident: 10.1016/j.bbrc.2015.07.009_bib7
  article-title: Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2013.255364
– volume: 45
  start-page: 1009
  year: 1978
  ident: 10.1016/j.bbrc.2015.07.009_bib16
  article-title: Determination of metabolic and heart rate responses of rats to treadmill exercise
  publication-title: J. Appl. Physiol. Respir. Environ. Exerc. Physiol.
  doi: 10.1152/jappl.1978.45.6.1009
– volume: 134
  start-page: 405
  year: 2008
  ident: 10.1016/j.bbrc.2015.07.009_bib27
  article-title: AMPK and PPARdelta agonists are exercise mimetics
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.051
– volume: 34
  start-page: 1807
  year: 1999
  ident: 10.1016/j.bbrc.2015.07.009_bib1
  article-title: Slowed glycogen utilization enhances exercise endurance in patients with heart failure
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(99)00413-1
– volume: 125
  start-page: 531
  year: 1995
  ident: 10.1016/j.bbrc.2015.07.009_bib3
  article-title: Swimming endurance capacity of mice is increased by chronic consumption of medium-chain triglycerides
  publication-title: J. Nutr.
  doi: 10.1093/jn/125.3.531
– volume: 275
  start-page: R1455
  year: 1998
  ident: 10.1016/j.bbrc.2015.07.009_bib17
  article-title: Heritability of treadmill running endurance in rats
  publication-title: Am. J. Physiol.
– volume: 566
  start-page: 533
  year: 2005
  ident: 10.1016/j.bbrc.2015.07.009_bib18
  article-title: Hexokinase II protein content is a determinant of exercise endurance capacity in the mouse
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2005.085043
– volume: 65
  start-page: 13
  year: 1992
  ident: 10.1016/j.bbrc.2015.07.009_bib13
  article-title: Effect of carnitine loading on long-chain fatty acid oxidation, maximal exercise capacity, and nitrogen balance
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
  doi: 10.1007/BF01466268
– volume: 69
  start-page: 799
  year: 2013
  ident: 10.1016/j.bbrc.2015.07.009_bib11
  article-title: Ergogenic effect of dietary L-carnitine and fat supplementation against exercise induced physical fatigue in Wistar rats
  publication-title: J. Physiol. Biochem.
  doi: 10.1007/s13105-013-0256-5
– volume: 79
  start-page: 208
  year: 2008
  ident: 10.1016/j.bbrc.2015.07.009_bib30
  article-title: Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvn098
– volume: 1
  start-page: 695
  year: 2011
  ident: 10.1016/j.bbrc.2015.07.009_bib15
  article-title: Fat metabolism and aerobic capacity does not affect by acute L-carnitine L-tartrate supplementation
  publication-title: J. Appl. Environ. Biol. Sci.
– volume: 103
  start-page: 105
  year: 2007
  ident: 10.1016/j.bbrc.2015.07.009_bib19
  article-title: Quantitative trait loci associated with maximal exercise endurance in mice
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01328.2006
– volume: 112
  start-page: 608
  year: 2003
  ident: 10.1016/j.bbrc.2015.07.009_bib20
  article-title: Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI17305
– volume: 73
  start-page: 434
  year: 1996
  ident: 10.1016/j.bbrc.2015.07.009_bib14
  article-title: Effects of L-carnitine supplementation on physical performance and energy metabolism of endurance-trained athletes: a double-blind crossover field study
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
  doi: 10.1007/BF00334420
– volume: 426
  start-page: 271
  year: 1995
  ident: 10.1016/j.bbrc.2015.07.009_bib8
  article-title: Mitochondrial abnormalities of muscle tissue in mice with juvenile visceral steatosis associated with systemic carnitine deficiency
  publication-title: Virchows Arch.
  doi: 10.1007/BF00191365
– volume: 90
  start-page: 515
  year: 2003
  ident: 10.1016/j.bbrc.2015.07.009_bib22
  article-title: Dose-dependent effect of capsaicin on endurance capacity in rats
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN2003919
– volume: 29
  start-page: 1176
  year: 2008
  ident: 10.1016/j.bbrc.2015.07.009_bib28
  article-title: The decapeptide CMS001 enhances swimming endurance in mice
  publication-title: Peptides
  doi: 10.1016/j.peptides.2008.03.004
– volume: 282
  start-page: 19313
  year: 2007
  ident: 10.1016/j.bbrc.2015.07.009_bib26
  article-title: Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702329200
SSID ssj0011469
Score 2.3676414
Snippet l-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty...
L-Carnitine (LC), the bioactive form of carnitine, has been shown to play a key role in muscle fuel metabolism during exercise, resulting in increased fatty...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 568
SubjectTerms Adipose Tissue - drug effects
aerobiosis
Animals
beta oxidation
biogenesis
blood serum
carnitine
Carnitine - pharmacology
Endurance
energy expenditure
exercise
fat body
Fatty acid oxidation
fatty acids
Fatty Acids - metabolism
free fatty acids
fuels
glycogen
high fat diet
L-Carnitine
Male
males
messenger RNA
Mice
Mice, Inbred C57BL
mitochondria
Mitochondria, Muscle - drug effects
Mitochondria, Muscle - metabolism
Mitochondrial biogenesis
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
muscles
oral administration
Oxidation-Reduction
Physical Conditioning, Animal
Physical Endurance - drug effects
Skeletal muscle
triacylglycerols
urea nitrogen
Title l-Carnitine enhances exercise endurance capacity by promoting muscle oxidative metabolism in mice
URI https://dx.doi.org/10.1016/j.bbrc.2015.07.009
https://www.ncbi.nlm.nih.gov/pubmed/26164228
https://www.proquest.com/docview/1701337116
https://www.proquest.com/docview/1709178778
https://www.proquest.com/docview/1825434666
Volume 464
WOSCitedRecordID wos000359514000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011469
  issn: 0006-291X
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9owFLYo3bS9TFu7S3epPGnqC0qVe-JHhqi6CbE9UIm3KIlNlwqSDEJFf8_-6M6J7QSxFXUPe4kik5iQ78M-9rl8hHyyfFRzSLnhxNw2XBFYRhLzxHB5yH2wZ4WdSrGJYDwOp1P2vdP5pXNhbudBnoebDSv_K9TQBmBj6uw_wN10Cg1wDqDDEWCH44OAHxkD3O2o0HwU-Q9EddUoK0ELXy_rNIEUpskUbXAwQEsZlJdf9xbrVYrxhpuMy5LgC1EBT-aopZHlvYUKlWv8wBkqbrUlB5KsKDXyqo4QRrZvJaG0zqNMJWjnvcui9WTJXBGBEkiXRbEbMDRcZzC8FeVOJ_WYhV1tb2JYHu7KysxoNe6azIQGqUR8Lv7SpgZrV9Y8V6y0t4ZeT8rz_DElyN2Jm_MkWWLJSsuri7WarJ0AtdN__C26uBqNoslwOjkrfxooTYYufKXTckAO7cBjYZcc9r8Mp18bZxVMNqx2qqvnVblZMoxw92vvs3_uW9_Uds7kOXmmFii0L4n1gnREfkSO-3lcFYs7ekbrkOHaF3NEHn_WZ08GWjjwmMRbDKSagVQzkDYMpJqBNLmjDQOpZCBtGEhbBtIsp8jAl-TqYjgZXBpKycNIfTusjHSWJKGdYt6z58GwYc042IWmx-OE-bBE505gWTEsJbxZaLJw5nLmCDd1BbPdgCWu84p08yIXbwhFNVcvjsM44aabwHo9Nk1hc54ymzP44IRY-v1GqSpzj2or80jHM95EiEmEmEQmRl-wE9Jr7illkZe9V3satkiZqdL8jIBye-_7qDGOABF0zMW5KNarCDURHHwF_t5rmAWzaxDuuQa3exzX96Gf15JEze-xfcvHcn9vH_AU78jT9k_6nnSr5Vp8II_S2ypbLU_JQTANT9Wf4Df5vuJo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L-Carnitine+enhances+exercise+endurance+capacity+by+promoting+muscle+oxidative+metabolism+in+mice&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Kim%2C+Jun+Ho&rft.au=Pan%2C+Jeong+Hoon&rft.au=Lee%2C+Eui+Seop&rft.au=Kim%2C+Young+Jun&rft.date=2015-08-21&rft.issn=1090-2104&rft.eissn=1090-2104&rft.volume=464&rft.issue=2&rft.spage=568&rft_id=info:doi/10.1016%2Fj.bbrc.2015.07.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon