Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia
Alterations of IKZF1, encoding the lymphoid transcription factor IKAROS, are a hallmark of high-risk acute lymphoblastic leukemia (ALL), however the role of IKZF1 alterations in ALL pathogenesis is poorly understood. Here, we show that in mouse models of BCR-ABL1 leukemia, Ikzf1 and Arf alterations...
Saved in:
| Published in: | Cancer cell Vol. 28; no. 3; p. 343 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
14.09.2015
|
| Subjects: | |
| ISSN: | 1878-3686, 1878-3686 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Alterations of IKZF1, encoding the lymphoid transcription factor IKAROS, are a hallmark of high-risk acute lymphoblastic leukemia (ALL), however the role of IKZF1 alterations in ALL pathogenesis is poorly understood. Here, we show that in mouse models of BCR-ABL1 leukemia, Ikzf1 and Arf alterations synergistically promote the development of an aggressive lymphoid leukemia. Ikzf1 alterations result in acquisition of stem cell-like features, including self-renewal and increased bone marrow stromal adhesion. Retinoid receptor agonists reversed this phenotype, partly by inducing expression of IKZF1, resulting in abrogation of adhesion and self-renewal, cell cycle arrest, and attenuation of proliferation without direct cytotoxicity. Retinoids potentiated the activity of dasatinib in mouse and human BCR-ABL1 ALL, providing an additional therapeutic option in IKZF1-mutated ALL. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1878-3686 1878-3686 |
| DOI: | 10.1016/j.ccell.2015.07.016 |