Methods for making induced pluripotent stem cells: reprogramming à la carte

Key Points Direct reprogramming enables the generation of pluripotent stem-cell lines from almost any somatic tissue and mammalian species, thereby avoiding the ethical issues associated with human embryonic stem cells. Although direct reprogramming is conceptually and technically simple, it is an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Genetics Jg. 12; H. 4; S. 231 - 242
Hauptverfasser: González, Federico, Boué, Stéphanie, Belmonte, Juan Carlos Izpisúa
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 01.04.2011
Nature Publishing Group
Schlagworte:
ISSN:1471-0056, 1471-0064, 1471-0064
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Key Points Direct reprogramming enables the generation of pluripotent stem-cell lines from almost any somatic tissue and mammalian species, thereby avoiding the ethical issues associated with human embryonic stem cells. Although direct reprogramming is conceptually and technically simple, it is an extremely slow and inefficient process. It is influenced by several variables that affect its efficiency and reproducibility, and the quality of the resulting induced pluripotent stem cells (iPSCs). Depending on the donor cell type, reprogramming is achieved with different efficiencies and kinetics. These differences are attributed to variations in the endogenous levels of certain reprogramming factors, differentiation status and/or intrinsic epigenetic states that are more amenable to reprogramming. Different factors are able to promote reprogramming, including genes that are normally expressed in early development, factors that directly or indirectly affect cell proliferation, chromatin remodellers or microRNAs. At present in the iPSC field, it is still difficult to unambiguously designate a reprogramming strategy that is fitting for all purposes. In each case, one will have to evaluate the most appropriate starting cell types, factors, culture conditions and delivery method. Reprogramming methods can be divided into two classes, those involving the integration of exogenous genetic material and those involving no genetic modification of the donor cells. Among these methodologies, retroviral delivery of OCT4 , SOX2 , KLF4 and MYC (the OSKM set) into fibroblasts is still the most widely used. Integrative reprogramming approaches generate heterogeneous iPSC lines, which could obscure comparative analysis between lines. The use of Cre-deletable vectors has partially solved this problem. Among non-integrative reprogramming systems, the recently published RNA-based approach seems promising on the basis of the high efficiency it achieves. Although appealing, the high gene dosages of the reprogramming factors resulting from direct messenger RNA delivery may represent an oncogeneic risk owing to higher expression levels of MYC . A crucial challenge in the iPSC field is to evaluate how these various methodologies affect the quality of iPSCs in terms of transcriptional signatures, epigenetic status, genomic integrity, stability, differentiation and tumorigenic potential. Whole-genome sequencing platforms will probably have an important role in the future in assessing the integrity of the genome of iPSCs and will certainly improve our understanding of the mechanism by which reprogramming occurs in a specific cell type. There are now myriad variations on techniques to reprogramme somatic cells into pluripotent stem cells, but which options should researchers choose? This Review sets out the choices, focusing on how the desired downstream application should guide the reprogramming strategy. Pluripotent stem-cell lines can be obtained through the reprogramming of somatic cells from different tissues and species by ectopic expression of defined factors. In theory, these cells — known as induced pluripotent stem cells (iPSCs) — are suitable for various purposes, including disease modelling, autologous cell therapy, drug or toxicity screening and basic research. Recent methodological improvements are increasing the ease and efficiency of reprogramming, and reducing the genomic modifications required to complete the process. However, depending on the downstream applications, certain technologies have advantages over others. Here, we provide a comprehensive overview of the existing reprogramming approaches with the aim of providing readers with a better understanding of the reprogramming process and a basis for selecting the most suitable method for basic or clinical applications.
AbstractList Key PointsDirect reprogramming enables the generation of pluripotent stem-cell lines from almost any somatic tissue and mammalian species, thereby avoiding the ethical issues associated with human embryonic stem cells.Although direct reprogramming is conceptually and technically simple, it is an extremely slow and inefficient process. It is influenced by several variables that affect its efficiency and reproducibility, and the quality of the resulting induced pluripotent stem cells (iPSCs).Depending on the donor cell type, reprogramming is achieved with different efficiencies and kinetics. These differences are attributed to variations in the endogenous levels of certain reprogramming factors, differentiation status and/or intrinsic epigenetic states that are more amenable to reprogramming.Different factors are able to promote reprogramming, including genes that are normally expressed in early development, factors that directly or indirectly affect cell proliferation, chromatin remodellers or microRNAs.At present in the iPSC field, it is still difficult to unambiguously designate a reprogramming strategy that is fitting for all purposes. In each case, one will have to evaluate the most appropriate starting cell types, factors, culture conditions and delivery method.Reprogramming methods can be divided into two classes, those involving the integration of exogenous genetic material and those involving no genetic modification of the donor cells. Among these methodologies, retroviral delivery of OCT4, SOX2, KLF4 and MYC (the OSKM set) into fibroblasts is still the most widely used.Integrative reprogramming approaches generate heterogeneous iPSC lines, which could obscure comparative analysis between lines. The use of Cre-deletable vectors has partially solved this problem.Among non-integrative reprogramming systems, the recently published RNA-based approach seems promising on the basis of the high efficiency it achieves. Although appealing, the high gene dosages of the reprogramming factors resulting from direct messenger RNA delivery may represent an oncogeneic risk owing to higher expression levels of MYC.A crucial challenge in the iPSC field is to evaluate how these various methodologies affect the quality of iPSCs in terms of transcriptional signatures, epigenetic status, genomic integrity, stability, differentiation and tumorigenic potential. Whole-genome sequencing platforms will probably have an important role in the future in assessing the integrity of the genome of iPSCs and will certainly improve our understanding of the mechanism by which reprogramming occurs in a specific cell type.There are now myriad variations on techniques to reprogramme somatic cells into pluripotent stem cells, but which options should researchers choose? This Review sets out the choices, focusing on how the desired downstream application should guide the reprogramming strategy.
Key Points Direct reprogramming enables the generation of pluripotent stem-cell lines from almost any somatic tissue and mammalian species, thereby avoiding the ethical issues associated with human embryonic stem cells. Although direct reprogramming is conceptually and technically simple, it is an extremely slow and inefficient process. It is influenced by several variables that affect its efficiency and reproducibility, and the quality of the resulting induced pluripotent stem cells (iPSCs). Depending on the donor cell type, reprogramming is achieved with different efficiencies and kinetics. These differences are attributed to variations in the endogenous levels of certain reprogramming factors, differentiation status and/or intrinsic epigenetic states that are more amenable to reprogramming. Different factors are able to promote reprogramming, including genes that are normally expressed in early development, factors that directly or indirectly affect cell proliferation, chromatin remodellers or microRNAs. At present in the iPSC field, it is still difficult to unambiguously designate a reprogramming strategy that is fitting for all purposes. In each case, one will have to evaluate the most appropriate starting cell types, factors, culture conditions and delivery method. Reprogramming methods can be divided into two classes, those involving the integration of exogenous genetic material and those involving no genetic modification of the donor cells. Among these methodologies, retroviral delivery of OCT4 , SOX2 , KLF4 and MYC (the OSKM set) into fibroblasts is still the most widely used. Integrative reprogramming approaches generate heterogeneous iPSC lines, which could obscure comparative analysis between lines. The use of Cre-deletable vectors has partially solved this problem. Among non-integrative reprogramming systems, the recently published RNA-based approach seems promising on the basis of the high efficiency it achieves. Although appealing, the high gene dosages of the reprogramming factors resulting from direct messenger RNA delivery may represent an oncogeneic risk owing to higher expression levels of MYC . A crucial challenge in the iPSC field is to evaluate how these various methodologies affect the quality of iPSCs in terms of transcriptional signatures, epigenetic status, genomic integrity, stability, differentiation and tumorigenic potential. Whole-genome sequencing platforms will probably have an important role in the future in assessing the integrity of the genome of iPSCs and will certainly improve our understanding of the mechanism by which reprogramming occurs in a specific cell type. There are now myriad variations on techniques to reprogramme somatic cells into pluripotent stem cells, but which options should researchers choose? This Review sets out the choices, focusing on how the desired downstream application should guide the reprogramming strategy. Pluripotent stem-cell lines can be obtained through the reprogramming of somatic cells from different tissues and species by ectopic expression of defined factors. In theory, these cells — known as induced pluripotent stem cells (iPSCs) — are suitable for various purposes, including disease modelling, autologous cell therapy, drug or toxicity screening and basic research. Recent methodological improvements are increasing the ease and efficiency of reprogramming, and reducing the genomic modifications required to complete the process. However, depending on the downstream applications, certain technologies have advantages over others. Here, we provide a comprehensive overview of the existing reprogramming approaches with the aim of providing readers with a better understanding of the reprogramming process and a basis for selecting the most suitable method for basic or clinical applications.
Pluripotent stem-cell lines can be obtained through the reprogramming of somatic cells from different tissues and species by ectopic expression of defined factors. In theory, these cells--known as induced pluripotent stem cells (iPSCs)--are suitable for various purposes, including disease modelling, autologous cell therapy, drug or toxicity screening and basic research. Recent methodological improvements are increasing the ease and efficiency of reprogramming, and reducing the genomic modifications required to complete the process. However, depending on the downstream applications, certain technologies have advantages over others. Here, we provide a comprehensive overview of the existing reprogramming approaches with the aim of providing readers with a better understanding of the reprogramming process and a basis for selecting the most suitable method for basic or clinical applications.
Pluripotent stem-cell lines can be obtained through the reprogramming of somatic cells from different tissues and species by ectopic expression of defined factors. In theory, these cells--known as induced pluripotent stem cells (iPSCs)--are suitable for various purposes, including disease modelling, autologous cell therapy, drug or toxicity screening and basic research. Recent methodological improvements are increasing the ease and efficiency of reprogramming, and reducing the genomic modifications required to complete the process. However, depending on the downstream applications, certain technologies have advantages over others. Here, we provide a comprehensive overview of the existing reprogramming approaches with the aim of providing readers with a better understanding of the reprogramming process and a basis for selecting the most suitable method for basic or clinical applications.Pluripotent stem-cell lines can be obtained through the reprogramming of somatic cells from different tissues and species by ectopic expression of defined factors. In theory, these cells--known as induced pluripotent stem cells (iPSCs)--are suitable for various purposes, including disease modelling, autologous cell therapy, drug or toxicity screening and basic research. Recent methodological improvements are increasing the ease and efficiency of reprogramming, and reducing the genomic modifications required to complete the process. However, depending on the downstream applications, certain technologies have advantages over others. Here, we provide a comprehensive overview of the existing reprogramming approaches with the aim of providing readers with a better understanding of the reprogramming process and a basis for selecting the most suitable method for basic or clinical applications.
Audience Academic
Author Boué, Stéphanie
Belmonte, Juan Carlos Izpisúa
González, Federico
Author_xml – sequence: 1
  givenname: Federico
  surname: González
  fullname: González, Federico
  organization: Center for Regenerative Medicine in Barcelona (CMRB)
– sequence: 2
  givenname: Stéphanie
  surname: Boué
  fullname: Boué, Stéphanie
  organization: Center for Regenerative Medicine in Barcelona (CMRB)
– sequence: 3
  givenname: Juan Carlos Izpisúa
  surname: Belmonte
  fullname: Belmonte, Juan Carlos Izpisúa
  email: belmonte@salk.edu, izpisua@cmrb.eu
  organization: Center for Regenerative Medicine in Barcelona (CMRB), Gene Expression Laboratory, The Salk Institute for Biological Studies
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23953106$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21339765$$D View this record in MEDLINE/PubMed
BookMark eNqF0tuK1DAYAOAiK-5B8Q2kKJ4uuubQHOrdsnhYGBE8XIdM-reTtU3GJAV9G9_FFzNlZnecVZFcNIQv_6H5j4sD5x0UxX2MTjGi8oULPWmouFUc4VrgCiFeH1zvGT8sjmO8RAhzLOid4pBgShvB2VGxeAdp5dtYdj6Uo_5iXV9a104G2nI9TMGufQKXyphgLA0MQ3xZBlgH3wc9jrP--aMcdGl0SHC3uN3pIcK97fek-Pz61afzt9Xi_ZuL87NFZTiRqcKCG0kAaGOQxHSpscyFti1qWi47phlIvpRCM7LsBBaMdkhSI01Dm4YZpulJ8XQTN9fxdYKY1GjjXJx24KeoJK8bXmMk_i-ZkJgwgbN8eENe-im43MaM6iannsM9-hcivGGUEMbITvV6AGVd51PQZk6szggjokYUz-r0LyqvFkZr8vN2Np_vXXi-dyGbBN9Sr6cY1cXHD_v2yW92BXpIq-iHKVnv4j58sO1oWo7QqnWwow7f1dWEZPB4C3Q0euiCdsbGnaO5bYx4dtXGmeBjDNApY5Oe8-W27KAwUvOkqu2k7l7m2l-F_FM-28iYhesh7H76TfoLyL7vOA
CitedBy_id crossref_primary_10_1371_journal_pone_0054754
crossref_primary_10_1016_j_bbrc_2015_11_120
crossref_primary_10_1016_j_compbiomed_2024_108661
crossref_primary_10_1002_stem_1340
crossref_primary_10_1002_eat_22896
crossref_primary_10_1016_j_ymthe_2021_01_001
crossref_primary_10_1016_j_rslaot_2016_10_002
crossref_primary_10_1093_biosci_biv016
crossref_primary_10_1016_j_vph_2012_03_007
crossref_primary_10_1161_CIRCRESAHA_111_249235
crossref_primary_10_1155_2022_4537335
crossref_primary_10_1016_j_imbio_2012_08_277
crossref_primary_10_1371_journal_pone_0027925
crossref_primary_10_3233_JHD_160199
crossref_primary_10_1002_dvg_20831
crossref_primary_10_1007_s11033_012_2445_7
crossref_primary_10_1095_biolreprod_114_127308
crossref_primary_10_1002_jbm_a_35660
crossref_primary_10_1093_cvr_cvx125
crossref_primary_10_1002_stem_788
crossref_primary_10_1016_j_stem_2023_03_001
crossref_primary_10_1089_scd_2021_0305
crossref_primary_10_1016_j_tibtech_2016_09_003
crossref_primary_10_1016_j_jbior_2018_10_001
crossref_primary_10_1172_JCI64124
crossref_primary_10_1016_j_archoralbio_2021_105322
crossref_primary_10_1089_cell_2012_0076
crossref_primary_10_3389_fnmol_2017_00050
crossref_primary_10_1093_humrep_des204
crossref_primary_10_1155_2012_434529
crossref_primary_10_1007_s11936_025_01079_1
crossref_primary_10_1089_ten_tec_2013_0026
crossref_primary_10_1002_stem_2669
crossref_primary_10_3389_fimmu_2019_02809
crossref_primary_10_1007_s00277_016_2756_1
crossref_primary_10_1007_s12015_014_9581_5
crossref_primary_10_1016_j_gde_2017_07_003
crossref_primary_10_1016_j_chembiol_2016_02_015
crossref_primary_10_1038_473272a
crossref_primary_10_1002_sctm_18_0134
crossref_primary_10_3390_ijms160818894
crossref_primary_10_1155_2015_628368
crossref_primary_10_1177_1073858413493148
crossref_primary_10_1002_cyto_a_22231
crossref_primary_10_1007_s12015_012_9359_6
crossref_primary_10_3390_biology12081119
crossref_primary_10_1186_s13148_024_01639_5
crossref_primary_10_32708_uutfd_801247
crossref_primary_10_3390_ijms22020710
crossref_primary_10_1007_s12015_017_9782_9
crossref_primary_10_3390_ijms26073063
crossref_primary_10_1146_annurev_chembioeng_080615_033559
crossref_primary_10_1242_jcs_096032
crossref_primary_10_7717_peerj_4370
crossref_primary_10_1038_gt_2014_1
crossref_primary_10_3390_ijms22105377
crossref_primary_10_1002_jimd_70028
crossref_primary_10_1186_s13287_018_0796_2
crossref_primary_10_1016_j_exphem_2012_04_001
crossref_primary_10_1093_molehr_gau012
crossref_primary_10_1111_cpr_12229
crossref_primary_10_1007_s12265_016_9708_y
crossref_primary_10_1111_acel_12182
crossref_primary_10_3390_jdb12020014
crossref_primary_10_1186_scrt246
crossref_primary_10_1016_j_bioactmat_2021_12_004
crossref_primary_10_1016_j_yexcr_2023_113875
crossref_primary_10_1016_j_mehy_2012_04_034
crossref_primary_10_1155_2018_4835491
crossref_primary_10_1016_j_bbadis_2019_01_031
crossref_primary_10_1002_adbi_202000071
crossref_primary_10_1007_s12015_022_10435_8
crossref_primary_10_1007_s12272_013_0287_z
crossref_primary_10_1016_j_csbj_2020_08_026
crossref_primary_10_1038_nm_2504
crossref_primary_10_3390_cells13090745
crossref_primary_10_1007_s10522_013_9445_4
crossref_primary_10_1155_2017_7492914
crossref_primary_10_1016_j_ejphar_2011_05_084
crossref_primary_10_1089_scd_2016_0162
crossref_primary_10_1371_journal_pone_0034149
crossref_primary_10_3389_fnins_2022_947927
crossref_primary_10_1186_s40104_016_0070_3
crossref_primary_10_1242_bio_022111
crossref_primary_10_1517_14712598_2011_601293
crossref_primary_10_1016_j_alcohol_2018_03_008
crossref_primary_10_1371_journal_pone_0065324
crossref_primary_10_3390_jcm4040696
crossref_primary_10_1007_s10522_013_9455_2
crossref_primary_10_1038_ncomms1784
crossref_primary_10_1155_2016_4285938
crossref_primary_10_2174_0929867330666230503144619
crossref_primary_10_3389_fnins_2018_00651
crossref_primary_10_5966_sctm_2013_0043
crossref_primary_10_1007_s12033_012_9635_3
crossref_primary_10_1016_j_scr_2012_12_004
crossref_primary_10_3390_brainsci15020134
crossref_primary_10_1016_j_sdentj_2024_03_011
crossref_primary_10_1002_adtp_202100061
crossref_primary_10_1073_pnas_1219181110
crossref_primary_10_3390_ijms17010141
crossref_primary_10_1007_s12015_020_10061_2
crossref_primary_10_1038_embor_2012_52
crossref_primary_10_1016_j_diff_2013_06_002
crossref_primary_10_1242_dev_203090
crossref_primary_10_1007_s00441_017_2749_y
crossref_primary_10_1111_gtc_12017
crossref_primary_10_1007_s10545_018_0225_9
crossref_primary_10_1038_s44319_025_00433_5
crossref_primary_10_1007_s12015_013_9490_z
crossref_primary_10_1002_jmr_2602
crossref_primary_10_3390_cells8121530
crossref_primary_10_1016_j_ddmod_2012_04_002
crossref_primary_10_1038_nrg2951
crossref_primary_10_2492_inflammregen_31_393
crossref_primary_10_1186_s13287_018_1036_5
crossref_primary_10_3390_ma15103687
crossref_primary_10_1038_nbt_1889
crossref_primary_10_1038_nrg2955
crossref_primary_10_1093_cvr_cvv017
crossref_primary_10_1007_s12015_017_9757_x
crossref_primary_10_1152_physrev_00036_2015
crossref_primary_10_1007_s00018_017_2586_x
crossref_primary_10_1109_TDEI_2012_6260000
crossref_primary_10_3390_cancers13225789
crossref_primary_10_3390_ijms20112790
crossref_primary_10_1002_stem_2747
crossref_primary_10_3390_ijms241512433
crossref_primary_10_3390_nu13010275
crossref_primary_10_1139_y11_125
crossref_primary_10_1080_15368378_2020_1793165
crossref_primary_10_1016_j_bbrc_2020_09_099
crossref_primary_10_1007_s12015_018_9861_6
crossref_primary_10_1016_j_bbagrm_2013_10_001
crossref_primary_10_1089_cell_2013_0037
crossref_primary_10_5966_sctm_2014_0110
crossref_primary_10_1093_pcmedi_pbac004
crossref_primary_10_1016_j_tcb_2013_07_001
crossref_primary_10_1517_14712598_2015_996544
crossref_primary_10_1007_s10565_017_9384_y
crossref_primary_10_1111_gtc_12702
crossref_primary_10_1007_s40472_016_0107_8
crossref_primary_10_1038_srep13231
crossref_primary_10_3389_fimmu_2014_00439
crossref_primary_10_1002_adma_202501640
crossref_primary_10_1016_j_gde_2012_08_007
crossref_primary_10_1002_adma_202410908
crossref_primary_10_3892_or_2024_8736
crossref_primary_10_1016_j_preteyeres_2019_03_001
crossref_primary_10_1111_aej_12256
crossref_primary_10_1038_s12276_025_01439_8
crossref_primary_10_1088_0034_4885_78_3_036602
crossref_primary_10_3390_cells9020483
crossref_primary_10_1097_JS9_0000000000001892
crossref_primary_10_1371_journal_pone_0097397
crossref_primary_10_1016_j_gene_2018_11_069
crossref_primary_10_1016_j_ejphar_2020_173202
crossref_primary_10_1091_mbc_E22_06_0215
crossref_primary_10_1093_nar_gks1305
crossref_primary_10_5966_sctm_2012_0151
crossref_primary_10_1002_wdev_206
crossref_primary_10_1186_s13619_025_00229_x
crossref_primary_10_1177_1535370214565976
crossref_primary_10_1002_wdev_323
crossref_primary_10_1111_obr_13899
crossref_primary_10_1016_j_bbrc_2015_10_012
crossref_primary_10_1007_s13238_016_0362_6
crossref_primary_10_1016_j_neulet_2021_135911
crossref_primary_10_1371_journal_pone_0085419
crossref_primary_10_1016_j_beem_2015_10_012
crossref_primary_10_1111_febs_13704
crossref_primary_10_1038_srep11031
crossref_primary_10_1016_j_jconrel_2014_04_011
crossref_primary_10_1186_s13287_017_0735_7
crossref_primary_10_1093_schbul_sbt103
crossref_primary_10_1038_ncb3172
crossref_primary_10_1371_journal_pone_0164696
crossref_primary_10_1038_s41598_020_78932_9
crossref_primary_10_1089_cell_2018_0048
crossref_primary_10_1002_adma_202108757
crossref_primary_10_1186_s13619_015_0024_9
crossref_primary_10_1517_17425255_2012_639763
crossref_primary_10_1002_sctm_18_0087
crossref_primary_10_1007_s40883_023_00316_y
crossref_primary_10_3390_cells13171430
crossref_primary_10_1038_nprot_2013_094
crossref_primary_10_1155_2019_7858796
crossref_primary_10_1002_smll_201601993
crossref_primary_10_1128_JVI_00808_12
crossref_primary_10_1038_ncomms10458
crossref_primary_10_3390_cells11233833
crossref_primary_10_1016_j_biotechadv_2018_01_012
crossref_primary_10_1002_sctm_20_0247
crossref_primary_10_1007_s10561_014_9462_9
crossref_primary_10_1016_j_arr_2013_01_001
crossref_primary_10_1016_j_cmet_2013_08_010
crossref_primary_10_1016_j_bbamcr_2017_04_017
crossref_primary_10_1038_s41417_024_00838_9
crossref_primary_10_3727_096368914X685113
crossref_primary_10_1016_j_tibtech_2017_06_008
crossref_primary_10_3390_ijms25063562
crossref_primary_10_1681_ASN_2012121199
crossref_primary_10_3390_ani14020220
crossref_primary_10_1063_5_0004611
crossref_primary_10_1002_cyto_a_23163
crossref_primary_10_1038_embor_2011_176
crossref_primary_10_1038_cr_2011_126
crossref_primary_10_1016_j_brainres_2023_148688
crossref_primary_10_1038_emboj_2013_240
crossref_primary_10_1182_blood_2013_07_474825
crossref_primary_10_3390_jcm12093305
crossref_primary_10_1007_s12265_013_9494_8
crossref_primary_10_3390_cells9112465
crossref_primary_10_4252_wjsc_v13_i6_521
crossref_primary_10_1016_j_addr_2018_06_020
crossref_primary_10_1016_j_marenvres_2017_06_018
crossref_primary_10_1016_j_ijdevneu_2013_07_004
crossref_primary_10_1105_tpc_113_109538
crossref_primary_10_3390_jzbg6030043
crossref_primary_10_1016_j_exphem_2024_104669
crossref_primary_10_1016_j_chembiol_2016_07_007
crossref_primary_10_1089_cell_2014_0030
crossref_primary_10_1002_stem_727
crossref_primary_10_3727_096368912X662462
crossref_primary_10_1016_j_bjorl_2019_04_006
crossref_primary_10_1038_nrg_2016_156
crossref_primary_10_1371_journal_pone_0085645
crossref_primary_10_1371_journal_pcbi_1003734
crossref_primary_10_1007_s40291_022_00599_x
crossref_primary_10_1053_j_otsm_2016_12_005
crossref_primary_10_1007_s11515_016_1396_0
crossref_primary_10_1371_journal_pone_0070605
crossref_primary_10_1038_s41467_017_00661_x
crossref_primary_10_3390_ph4101355
crossref_primary_10_1016_j_bbrc_2013_12_121
crossref_primary_10_1186_s13287_019_1316_8
crossref_primary_10_1038_srep08081
crossref_primary_10_2478_aoas_2025_0073
crossref_primary_10_3390_ijms22179357
crossref_primary_10_1038_nbt_1862
crossref_primary_10_1002_1873_3468_12187
crossref_primary_10_1093_bmb_ldr031
crossref_primary_10_1080_14712598_2020_1748596
crossref_primary_10_1038_s12276_020_0383_3
crossref_primary_10_1098_rsob_150056
crossref_primary_10_1016_j_jbiosc_2014_12_009
crossref_primary_10_1002_aur_70005
crossref_primary_10_1155_2020_3692937
crossref_primary_10_1038_cr_2012_157
crossref_primary_10_1038_nrm3448
crossref_primary_10_1088_1478_3975_aa90e0
crossref_primary_10_1016_j_ejphar_2025_177786
crossref_primary_10_1186_s13287_020_01964_5
crossref_primary_10_1093_stcltm_szac058
crossref_primary_10_1016_j_gde_2017_06_011
crossref_primary_10_1371_journal_pone_0143272
crossref_primary_10_1007_s00018_016_2171_8
crossref_primary_10_1038_ncb2567
crossref_primary_10_7717_peerj_2695
crossref_primary_10_1016_j_pharmthera_2014_03_004
crossref_primary_10_1002_stem_1371
crossref_primary_10_1038_s41467_018_05059_x
crossref_primary_10_3390_cells10061544
crossref_primary_10_1002_term_2021
crossref_primary_10_3389_fvets_2023_1176772
crossref_primary_10_1016_j_bios_2018_09_035
crossref_primary_10_1007_s10565_016_9372_7
crossref_primary_10_1089_scd_2011_0599
crossref_primary_10_3390_cells12242847
crossref_primary_10_3389_fendo_2014_00096
crossref_primary_10_1089_ten_tec_2015_0131
crossref_primary_10_3389_fcvm_2018_00004
crossref_primary_10_3904_kjim_2014_29_5_547
crossref_primary_10_1016_j_pharmr_2025_100077
crossref_primary_10_1016_j_stem_2013_06_001
crossref_primary_10_1016_j_trim_2023_101804
crossref_primary_10_1007_s13238_013_2089_y
crossref_primary_10_1089_biores_2014_0045
crossref_primary_10_1186_scrt435
crossref_primary_10_1371_journal_pone_0182018
crossref_primary_10_3389_fmed_2024_1328474
crossref_primary_10_1016_j_biomaterials_2014_05_086
crossref_primary_10_1038_srep00208
crossref_primary_10_1002_stem_770
crossref_primary_10_1007_s12257_019_0204_5
crossref_primary_10_1038_s41598_018_25517_2
crossref_primary_10_2217_bmm_11_87
crossref_primary_10_1002_embr_201338254
crossref_primary_10_2217_rme_14_80
crossref_primary_10_1371_journal_pone_0076875
crossref_primary_10_1371_journal_pone_0049271
crossref_primary_10_2217_rme_15_35
crossref_primary_10_1016_j_brainres_2011_12_057
crossref_primary_10_7124_bc_000802
crossref_primary_10_3389_fnins_2020_546484
crossref_primary_10_1007_s12015_015_9622_8
crossref_primary_10_1002_stem_760
crossref_primary_10_1016_j_neuron_2011_05_003
crossref_primary_10_1111_wrr_12152
crossref_primary_10_1016_j_scr_2018_05_009
crossref_primary_10_1093_cvr_cvab335
crossref_primary_10_3390_cells1041293
crossref_primary_10_1016_j_actbio_2019_07_032
crossref_primary_10_1016_j_jdsr_2021_03_002
Cites_doi 10.1038/nature09017
10.1016/j.stem.2007.12.001
10.1016/j.stem.2009.02.009
10.1371/journal.pbio.0060253
10.1038/nprot.2007.418
10.1002/stem.255
10.1101/gad.1811609
10.1634/stemcells.2005-0034
10.1073/pnas.0611358104
10.1016/j.stem.2009.05.005
10.1099/0022-1317-78-4-699
10.1634/stemcells.2008-0317
10.1634/stemcells.2008-1075
10.1016/S0301-472X(03)00260-1
10.1016/j.bbagen.2010.04.004
10.1126/science.1164270
10.1016/j.cell.2009.01.023
10.1002/j.1460-2075.1994.tb06337.x
10.1111/j.1365-2583.1996.tb00048.x
10.1002/stem.201
10.1016/j.stem.2009.07.011
10.1634/stemcells.2006-0813
10.1073/pnas.78.12.7634
10.1073/pnas.79.13.4098
10.1016/j.stem.2009.08.001
10.1038/nature07864
10.1038/nature08290
10.1016/j.stem.2009.12.001
10.1038/nbt1374
10.1126/science.1172482
10.1073/pnas.0801017105
10.1038/nprot.2009.231
10.1038/nature02375
10.1016/S0168-1702(02)00047-3
10.1038/nbt.1535
10.1002/jcb.21912
10.1016/j.stem.2009.04.005
10.1016/j.stem.2008.10.002
10.1126/science.1154884
10.1371/journal.pone.0012664
10.1038/nbt.1502
10.2183/pjab.85.348
10.1073/pnas.0901471106
10.1038/nature05934
10.1002/stem.248
10.1016/j.stem.2008.10.004
10.1016/j.stem.2010.06.003
10.1002/stem.402
10.1128/JVI.77.5.3238-3246.2003
10.1126/science.282.5391.1145
10.1038/ng.250
10.1002/stem.493
10.1038/nature07056
10.1016/j.stem.2008.11.008
10.1016/j.stem.2009.02.010
10.1038/ng.428
10.1038/sj.mt.6300028
10.1073/pnas.0811426106
10.1038/nbt.1554
10.1046/j.1432-0436.1995.5910035.x
10.1073/pnas.77.11.6463
10.1634/stemcells.2008-0696
10.1038/nature08311
10.1128/JVI.74.14.6564-6569.2000
10.1038/nmeth.1323
10.1038/nbt1418
10.1038/nature08592
10.1016/j.eururo.2005.08.019
10.1073/pnas.81.12.3806
10.1038/nature05944
10.1016/j.cell.2006.07.024
10.1016/j.ymthe.2004.04.007
10.1038/nature718
10.1016/j.stem.2010.08.012
10.1038/nbt.1503
10.1074/jbc.M412430200
10.1182/blood-2009-02-204800
10.1038/292154a0
10.1016/0042-6822(89)90117-7
10.1016/j.cell.2007.11.019
10.1016/j.stem.2009.09.008
10.1016/j.stem.2008.06.019
10.1038/nature07061
10.1038/313812a0
10.1038/nmeth.1409
10.1038/nature08285
10.1006/scbi.2000.0317
10.1038/nature04955
10.1016/S0958-1669(02)00284-7
10.1111/j.1365-2443.2009.01301.x
10.1038/nature08235
10.1089/hum.2005.16.126
10.1016/j.stem.2007.08.008
10.1038/nature07863
10.1126/science.1152092
10.1038/nature06534
10.1016/j.cub.2008.05.010
10.1002/stem.240
10.1016/j.stem.2009.03.005
10.1006/viro.1995.1422
10.1016/S1525-0016(03)00168-0
10.1016/j.stem.2008.01.004
10.1126/science.1151526
10.1038/ncb1353
10.1038/nmeth.1426
10.1016/j.ydbio.2010.05.014
10.1016/j.stem.2007.05.014
10.1126/science.1162494
10.1038/298623a0
ContentType Journal Article
Copyright Springer Nature Limited 2011
2015 INIST-CNRS
COPYRIGHT 2011 Nature Publishing Group
Springer Nature Limited 2011.
Copyright Nature Publishing Group Apr 2011
Copyright_xml – notice: Springer Nature Limited 2011
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2011 Nature Publishing Group
– notice: Springer Nature Limited 2011.
– notice: Copyright Nature Publishing Group Apr 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
DOI 10.1038/nrg2937
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

ProQuest Central Student

Genetics Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1471-0064
EndPage 242
ExternalDocumentID 2295512501
A252740312
21339765
23953106
10_1038_nrg2937
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID ---
-DZ
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFFNX
AFKRA
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
IHW
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ACSTC
AFANA
AFFHD
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
IQODW
NFIDA
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c628t-176c82ee39c0813ba18471dd09d68f5a5e86b87a52bf71753f083c8c93995c5a3
IEDL.DBID M7P
ISICitedReferencesCount 386
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288531700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0056
1471-0064
IngestDate Thu Oct 02 18:30:29 EDT 2025
Wed Oct 01 14:03:40 EDT 2025
Tue Oct 07 05:11:20 EDT 2025
Tue Oct 07 05:11:47 EDT 2025
Tue Nov 11 10:19:44 EST 2025
Tue Nov 04 18:01:46 EST 2025
Thu Nov 13 15:12:52 EST 2025
Thu May 22 21:08:15 EDT 2025
Mon Jul 21 05:33:52 EDT 2025
Mon Jul 21 09:17:10 EDT 2025
Sat Nov 29 03:55:00 EST 2025
Tue Nov 18 21:26:43 EST 2025
Fri Feb 21 02:40:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Cellular reprogramming
Induced pluripotent stem cell
Review
Method
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c628t-176c82ee39c0813ba18471dd09d68f5a5e86b87a52bf71753f083c8c93995c5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21339765
PQID 2695322552
PQPubID 44267
PageCount 12
ParticipantIDs proquest_miscellaneous_864964107
proquest_miscellaneous_857812571
proquest_journals_857499957
proquest_journals_2695322552
gale_infotracmisc_A252740312
gale_infotracacademiconefile_A252740312
gale_incontextgauss_ISR_A252740312
gale_healthsolutions_A252740312
pubmed_primary_21339765
pascalfrancis_primary_23953106
crossref_citationtrail_10_1038_nrg2937
crossref_primary_10_1038_nrg2937
springer_journals_10_1038_nrg2937
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Genetics
PublicationTitleAbbrev Nat Rev Genet
PublicationTitleAlternate Nat Rev Genet
PublicationYear 2011
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kawamura (CR39) 2009; 460
Cary (CR74) 1989; 172
Esteban (CR48) 2010; 6
Hawley, Lieu, Fong, Hawley (CR57) 1994; 1
Hanna (CR29) 2009; 462
Ryan, Drew (CR66) 1994; 13
Zhao (CR30) 2008; 3
Banito (CR37) 2009; 23
Okita, Nakagawa, Hyenjong, Ichisaka, Yamanaka (CR91) 2008; 322
Seki (CR87) 2010; 7
González (CR92) 2009; 106
Takahashi, Okita, Nakagawa, Yamanaka (CR56) 2007; 2
Li (CR40) 2009; 460
Aoi (CR13) 2008; 321
Yu (CR22) 2007; 318
Yu (CR94) 2009; 324
Sommer (CR73) 2010; 28
Wang (CR35) 2008; 40
Okada, Oka, Yoneda (CR53) 2010; 1800
Chen, He, Ehrhardt, Kay (CR99) 2003; 8
Yates, Warren, Reisman, Sugden (CR97) 1984; 81
Hochedlinger, Jaenisch (CR6) 2002; 415
Huangfu (CR44) 2008; 26
Li (CR43) 2009; 27
Loh (CR19) 2009; 113
Park (CR32) 2008; 451
Mallanna, Rizzino (CR34) 2010; 344
Lacoste, Berenshteyn, Brivanlou (CR76) 2009; 5
Maherali, Hochedlinger (CR25) 2008; 3
Nakagawa (CR20) 2008; 26
Chung (CR49) 2010; 28
Hanna (CR64) 2007; 318
Woltjen (CR80) 2009; 458
Stadtfeld, Brennand, Hochedlinger (CR14) 2008; 18
Yoshida, Takahashi, Okita, Ichisaka, Yamanaka (CR50) 2009; 5
Thomson (CR3) 1998; 282
Pollack, Stein, Razin, Cedar (CR96) 1980; 77
Utikal (CR41) 2009; 460
Boué, Paramonov, Barrero, Izpisúa Belmonte (CR110) 2010; 5
Stewart, Stuhlmann, Jahner, Jaenisch (CR59) 1982; 79
Li (CR89) 2000; 74
Feng, Ng, Heng, Ng (CR108) 2009; 4
Li, Greco, Guasch, Fuchs, Mombaerts (CR7) 2007; 104
Michiue (CR103) 2005; 280
Hasegawa, Cowan, Nakatsuji, Suemori (CR68) 2007; 25
Okita, Ichisaka, Yamanaka (CR11) 2007; 448
Silva (CR33) 2008; 6
Blelloch, Venere, Yen, Ramalho-Santos (CR61) 2007; 1
Giorgetti (CR18) 2009; 5
Stadtfeld, Nagaya, Utikal, Weir, Hochedlinger (CR82) 2008; 322
Ryan, Flint (CR67) 1997; 78
Jia (CR93) 2010; 7
Hochedlinger, Jaenisch (CR4) 2006; 441
Wernig (CR12) 2007; 448
Yusa, Rad, Takeda, Bradley (CR81) 2009; 6
Jahner (CR58) 1982; 298
Huangfu (CR42) 2008; 26
Inoue (CR102) 2006; 49
Warren (CR101) 2010; 7
Ellis (CR24) 2009; 4
Zhou, Freed (CR85) 2009; 27
Hong (CR38) 2009; 460
Inoue (CR90) 2003; 77
Carey (CR71) 2009; 106
Mali (CR47) 2010; 28
Fraser, Ciszczon, Elick, Bauser (CR78) 1996; 5
Aasen (CR17) 2008; 26
Gupta (CR84) 2000; 10
Maherali (CR9) 2007; 1
Okita, Hong, Takahashi, Yamanaka (CR95) 2010; 5
Rodriguez-Piza (CR70) 2010; 28
Sigal (CR83) 1995; 59
Hotta, Ellis (CR60) 2008; 105
Kim (CR106) 2009; 4
Evans, Kaufman (CR1) 1981; 292
Zhou (CR105) 2009; 4
Kim (CR26) 2009; 136
Mikkelsen (CR10) 2008; 454
Eggan (CR5) 2004; 428
Wilson, Coates, George (CR79) 2007; 15
Takahashi, Yamanaka (CR8) 2006; 126
Fraser, Cary, Boonvisudhi, Wang (CR77) 1995; 211
Tokusumi (CR88) 2002; 86
Stadtfeld (CR109) 2010; 465
Takahashi (CR55) 2007; 131
Eminli, Utikal, Arnold, Jaenisch, Hochedlinger (CR15) 2008; 26
Varas (CR63) 2009; 27
Kitamura (CR54) 2003; 31
Feldman (CR45) 2006; 8
Kaji (CR69) 2009; 458
Sommer (CR72) 2009; 27
Wang (CR75) 2008; 105
Wadia, Dowdy (CR104) 2002; 13
Tsubooka (CR31) 2009; 14
Dravid (CR51) 2005; 23
Yao (CR62) 2004; 10
Martin (CR2) 1981; 78
Fusaki, Ban, Nishiyama, Saeki, Hasegawa (CR86) 2009; 85
Kim (CR16) 2008; 454
Chen, He, Kay (CR100) 2005; 16
Marson (CR52) 2008; 3
Daley (CR23) 2009; 4
Shi (CR46) 2008; 3
Yates, Warren, Sugden (CR98) 1985; 313
Eminli (CR27) 2009; 41
Miura (CR28) 2009; 27
Stadtfeld, Maherali, Borkent, Hochedlinger (CR107) 2009; 7
Brambrink (CR65) 2008; 2
Wernig, Meissner, Cassady, Jaenisch (CR21) 2008; 2
Judson, Babiarz, Venere, Blelloch (CR36) 2009; 27
W Li (BFnrg2937_CR43) 2009; 27
K Yusa (BFnrg2937_CR81) 2009; 6
T Brambrink (BFnrg2937_CR65) 2008; 2
K Hochedlinger (BFnrg2937_CR6) 2002; 415
D Huangfu (BFnrg2937_CR44) 2008; 26
MD Ryan (BFnrg2937_CR66) 1994; 13
CL Stewart (BFnrg2937_CR59) 1982; 79
CA Sommer (BFnrg2937_CR73) 2010; 28
M Stadtfeld (BFnrg2937_CR107) 2009; 7
Y Shi (BFnrg2937_CR46) 2008; 3
K Okita (BFnrg2937_CR91) 2008; 322
M Nakagawa (BFnrg2937_CR20) 2008; 26
Y Wang (BFnrg2937_CR35) 2008; 40
MD Ryan (BFnrg2937_CR67) 1997; 78
M Stadtfeld (BFnrg2937_CR82) 2008; 322
YH Loh (BFnrg2937_CR19) 2009; 113
M Wernig (BFnrg2937_CR12) 2007; 448
RL Judson (BFnrg2937_CR36) 2009; 27
I Rodriguez-Piza (BFnrg2937_CR70) 2010; 28
A Lacoste (BFnrg2937_CR76) 2009; 5
MJ Fraser (BFnrg2937_CR78) 1996; 5
K Okita (BFnrg2937_CR11) 2007; 448
RG Hawley (BFnrg2937_CR57) 1994; 1
J Yu (BFnrg2937_CR22) 2007; 318
T Tokusumi (BFnrg2937_CR88) 2002; 86
M Inoue (BFnrg2937_CR90) 2003; 77
B Feng (BFnrg2937_CR108) 2009; 4
T Seki (BFnrg2937_CR87) 2010; 7
A Marson (BFnrg2937_CR52) 2008; 3
JL Yates (BFnrg2937_CR98) 1985; 313
S Boué (BFnrg2937_CR110) 2010; 5
J Ellis (BFnrg2937_CR24) 2009; 4
ZY Chen (BFnrg2937_CR100) 2005; 16
H Hong (BFnrg2937_CR38) 2009; 460
D Huangfu (BFnrg2937_CR42) 2008; 26
N Maherali (BFnrg2937_CR25) 2008; 3
Y Zhao (BFnrg2937_CR30) 2008; 3
MJ Evans (BFnrg2937_CR1) 1981; 292
J Li (BFnrg2937_CR7) 2007; 104
A Banito (BFnrg2937_CR37) 2009; 23
K Eggan (BFnrg2937_CR5) 2004; 428
GR Martin (BFnrg2937_CR2) 1981; 78
S Yao (BFnrg2937_CR62) 2004; 10
J Hanna (BFnrg2937_CR64) 2007; 318
K Takahashi (BFnrg2937_CR56) 2007; 2
JB Kim (BFnrg2937_CR26) 2009; 136
N Tsubooka (BFnrg2937_CR31) 2009; 14
BW Carey (BFnrg2937_CR71) 2009; 106
M Stadtfeld (BFnrg2937_CR14) 2008; 18
Y Yoshida (BFnrg2937_CR50) 2009; 5
J Silva (BFnrg2937_CR33) 2008; 6
L Warren (BFnrg2937_CR101) 2010; 7
K Kaji (BFnrg2937_CR69) 2009; 458
TL Chung (BFnrg2937_CR49) 2010; 28
K Takahashi (BFnrg2937_CR55) 2007; 131
H Li (BFnrg2937_CR40) 2009; 460
R Blelloch (BFnrg2937_CR61) 2007; 1
N Fusaki (BFnrg2937_CR86) 2009; 85
K Takahashi (BFnrg2937_CR8) 2006; 126
N Maherali (BFnrg2937_CR9) 2007; 1
JB Kim (BFnrg2937_CR16) 2008; 454
CA Sommer (BFnrg2937_CR72) 2009; 27
M Okada (BFnrg2937_CR53) 2010; 1800
S Gupta (BFnrg2937_CR84) 2000; 10
GQ Daley (BFnrg2937_CR23) 2009; 4
S Eminli (BFnrg2937_CR15) 2008; 26
JA Thomson (BFnrg2937_CR3) 1998; 282
A Hotta (BFnrg2937_CR60) 2008; 105
K Okita (BFnrg2937_CR95) 2010; 5
D Kim (BFnrg2937_CR106) 2009; 4
JS Wadia (BFnrg2937_CR104) 2002; 13
K Woltjen (BFnrg2937_CR80) 2009; 458
SK Mallanna (BFnrg2937_CR34) 2010; 344
M Wernig (BFnrg2937_CR21) 2008; 2
K Hochedlinger (BFnrg2937_CR4) 2006; 441
G Dravid (BFnrg2937_CR51) 2005; 23
H Michiue (BFnrg2937_CR103) 2005; 280
F Varas (BFnrg2937_CR63) 2009; 27
T Aoi (BFnrg2937_CR13) 2008; 321
A Giorgetti (BFnrg2937_CR18) 2009; 5
TS Mikkelsen (BFnrg2937_CR10) 2008; 454
K Miura (BFnrg2937_CR28) 2009; 27
IH Park (BFnrg2937_CR32) 2008; 451
F Jia (BFnrg2937_CR93) 2010; 7
D Jahner (BFnrg2937_CR58) 1982; 298
J Yu (BFnrg2937_CR94) 2009; 324
H Zhou (BFnrg2937_CR105) 2009; 4
T Kawamura (BFnrg2937_CR39) 2009; 460
N Feldman (BFnrg2937_CR45) 2006; 8
T Aasen (BFnrg2937_CR17) 2008; 26
P Mali (BFnrg2937_CR47) 2010; 28
K Hasegawa (BFnrg2937_CR68) 2007; 25
M Inoue (BFnrg2937_CR102) 2006; 49
MA Esteban (BFnrg2937_CR48) 2010; 6
W Wang (BFnrg2937_CR75) 2008; 105
S Eminli (BFnrg2937_CR27) 2009; 41
W Zhou (BFnrg2937_CR85) 2009; 27
ZY Chen (BFnrg2937_CR99) 2003; 8
SH Sigal (BFnrg2937_CR83) 1995; 59
F González (BFnrg2937_CR92) 2009; 106
J Hanna (BFnrg2937_CR29) 2009; 462
HO Li (BFnrg2937_CR89) 2000; 74
J Utikal (BFnrg2937_CR41) 2009; 460
MH Wilson (BFnrg2937_CR79) 2007; 15
Y Pollack (BFnrg2937_CR96) 1980; 77
MJ Fraser (BFnrg2937_CR77) 1995; 211
M Stadtfeld (BFnrg2937_CR109) 2010; 465
T Kitamura (BFnrg2937_CR54) 2003; 31
LC Cary (BFnrg2937_CR74) 1989; 172
J Yates (BFnrg2937_CR97) 1984; 81
8112307 - EMBO J. 1994 Feb 15;13(4):928-33
19363475 - Nat Biotechnol. 2009 May;27(5):459-61
10936066 - Semin Cancer Biol. 2000 Jun;10(3):161-71
12946323 - Mol Ther. 2003 Sep;8(3):495-500
19697349 - Stem Cells. 2009 Nov;27(11):2667-74
18978791 - Nat Genet. 2008 Dec;40(12):1478-83
20010832 - Nat Methods. 2010 Jan;7(1):53-5
20139967 - Nat Methods. 2010 Mar;7(3):197-9
19668214 - Nat Genet. 2009 Sep;41(9):968-76
16810240 - Nature. 2006 Jun 29;441(7097):1061-7
20203661 - Nat Protoc. 2010 Mar;5(3):418-28
7589893 - Differentiation. 1995 Jul;59(1):35-42
18371436 - Cell Stem Cell. 2008 Feb 7;2(2):151-9
14990966 - Nature. 2004 Mar 4;428(6978):44-9
12584347 - J Virol. 2003 Mar;77(5):3238-46
19041776 - Cell Stem Cell. 2008 Dec 4;3(6):595-605
19008347 - Stem Cells. 2009 Feb;27(2):300-6
18371336 - Cell Stem Cell. 2007 Jun 7;1(1):55-70
17554336 - Nature. 2007 Jul 19;448(7151):318-24
19839055 - Stem Cells. 2009 Dec;27(12):2992-3000
6950406 - Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634-8
19109433 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):157-62
18063756 - Science. 2007 Dec 21;318(5858):1920-3
18276851 - Science. 2008 Aug 1;321(5889):699-702
6955793 - Proc Natl Acad Sci U S A. 1982 Jul;79(13):4098-102
2549707 - Virology. 1989 Sep;172(1):156-69
20418860 - Nature. 2010 May 13;465(7295):175-81
19668188 - Nature. 2009 Aug 27;460(7259):1136-9
18579772 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9290-5
20201064 - Stem Cells. 2010 Apr;28(4):713-20
20417254 - Biochim Biophys Acta. 2010 Sep;1800(9):956-63
18773452 - J Cell Biochem. 2008 Nov 1;105(4):940-8
18035408 - Cell. 2007 Nov 30;131(5):861-72
17395772 - Stem Cells. 2007 Jul;25(7):1707-12
6328526 - Proc Natl Acad Sci U S A. 1984 Jun;81(12):3806-10
6935661 - Proc Natl Acad Sci U S A. 1980 Nov;77(11):6463-7
19668191 - Nature. 2009 Aug 27;460(7259):1132-5
19796614 - Cell Stem Cell. 2009 Oct 2;5(4):353-7
19265657 - Cell Stem Cell. 2009 Mar 6;4(3):200-1; author reply 202
2983224 - Nature. 1985 Feb 28-Mar 6;313(6005):812-5
19096035 - Stem Cells. 2009 Mar;27(3):543-9
6285203 - Nature. 1982 Aug 12;298(5875):623-8
18501604 - Curr Biol. 2008 Jun 24;18(12):890-4
18983962 - Cell Stem Cell. 2008 Nov 6;3(5):475-9
18635867 - Stem Cells. 2008 Oct;26(10):2467-74
19458047 - Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8918-22
8673264 - Insect Mol Biol. 1996 May;5(2):141-51
19733544 - Cell Stem Cell. 2009 Sep 4;5(3):332-42
18983970 - Cell Stem Cell. 2008 Nov 6;3(5):568-74
11875572 - Nature. 2002 Feb 28;415(6875):1035-8
18594515 - Nature. 2008 Jul 31;454(7204):646-50
19668186 - Nature. 2009 Aug 27;460(7259):1140-4
19890879 - Stem Cells. 2010 Jan;28(1):36-44
18942890 - PLoS Biol. 2008 Oct 21;6(10):e253
9804556 - Science. 1998 Nov 6;282(5391):1145-7
19252477 - Nature. 2009 Apr 9;458(7239):771-5
19299331 - Blood. 2009 May 28;113(22):5476-9
19838014 - Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62
20478297 - Dev Biol. 2010 Aug 1;344(1):16-25
15611109 - J Biol Chem. 2005 Mar 4;280(9):8285-9
19341620 - Cell Stem Cell. 2009 Apr 3;4(4):301-12
18371415 - Cell Stem Cell. 2008 Jan 10;2(1):10-2
16904174 - Cell. 2006 Aug 25;126(4):663-76
19696146 - Genes Dev. 2009 Sep 15;23(18):2134-9
12076827 - Virus Res. 2002 Jun;86(1-2):33-8
19898493 - Nature. 2009 Dec 3;462(7273):595-601
16310931 - Eur Urol. 2006 Jan;49(1):161-8
7584069 - Gene Ther. 1994 Mar;1(2):136-8
19904830 - Stem Cells. 2010 Jan;28(1):64-74
20036631 - Cell Stem Cell. 2010 Jan 8;6(1):71-9
16415856 - Nat Cell Biol. 2006 Feb;8(2):188-94
19337237 - Nat Methods. 2009 May;6(5):363-9
9129643 - J Gen Virol. 1997 Apr;78 ( Pt 4):699-723
19325077 - Science. 2009 May 8;324(5928):797-801
18157115 - Nature. 2008 Jan 10;451(7175):141-6
18509334 - Nature. 2008 Jul 3;454(7200):49-55
19716359 - Cell Stem Cell. 2009 Sep 4;5(3):237-41
19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4
18845712 - Science. 2008 Nov 7;322(5903):949-53
17164785 - Mol Ther. 2007 Jan;15(1):139-45
19476507 - Genes Cells. 2009 Jun;14(6):683-94
18371358 - Cell Stem Cell. 2007 Sep 13;1(3):245-7
14585362 - Exp Hematol. 2003 Nov;31(11):1007-14
15233939 - Mol Ther. 2004 Jul;10(1):27-36
20687155 - Stem Cells. 2010 Oct;28(10):1848-55
20862250 - PLoS One. 2010 Sep 17;5(9):null
7242681 - Nature. 1981 Jul 9;292(5819):154-6
18059259 - Nat Biotechnol. 2008 Jan;26(1):101-6
15703495 - Hum Gene Ther. 2005 Jan;16(1):126-31
17299040 - Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2738-43
20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30
18849973 - Nat Biotechnol. 2008 Nov;26(11):1269-75
19203577 - Cell. 2009 Feb 6;136(3):411-9
10864670 - J Virol. 2000 Jul;74(14):6564-9
19265656 - Cell Stem Cell. 2009 Mar 6;4(3):198-9; author reply 202
19252478 - Nature. 2009 Apr 9;458(7239):766-70
18682236 - Cell Stem Cell. 2008 Aug 7;3(2):132-5
18818365 - Science. 2008 Nov 7;322(5903):945-9
16002782 - Stem Cells. 2005 Nov-Dec;23(10):1489-501
18931654 - Nat Biotechnol. 2008 Nov;26(11):1276-84
19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6
20621043 - Cell Stem Cell. 2010 Jul 2;7(1):11-4
17554338 - Nature. 2007 Jul 19;448(7151):313-7
19668190 - Nature. 2009 Aug 27;460(7259):1145-8
7645244 - Virology. 1995 Aug 20;211(2):397-407
18029452 - Science. 2007 Dec 21;318(5858):1917-20
18079707 - Nat Protoc. 2007;2(12):3081-9
11849958 - Curr Opin Biotechnol. 2002 Feb;13(1):52-6
References_xml – volume: 465
  start-page: 175
  year: 2010
  end-page: 181
  ident: CR109
  article-title: Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature09017
– volume: 2
  start-page: 10
  year: 2008
  end-page: 12
  ident: CR21
  article-title: c-Myc is dispensable for direct reprogramming of mouse fibroblasts
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.12.001
– volume: 4
  start-page: 200
  year: 2009
  end-page: 201
  ident: CR23
  article-title: Broader implications of defining standards for the pluripotency of iPSCs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.02.009
– volume: 6
  start-page: e253
  year: 2008
  ident: CR33
  article-title: Promotion of reprogramming to ground state pluripotency by signal inhibition
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060253
– volume: 2
  start-page: 3081
  year: 2007
  end-page: 3089
  ident: CR56
  article-title: Induction of pluripotent stem cells from fibroblast cultures
  publication-title: Nature Protoc.
  doi: 10.1038/nprot.2007.418
– volume: 28
  start-page: 64
  year: 2010
  end-page: 74
  ident: CR73
  article-title: Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector
  publication-title: Stem Cells
  doi: 10.1002/stem.255
– volume: 23
  start-page: 2134
  year: 2009
  end-page: 2139
  ident: CR37
  article-title: Senescence impairs successful reprogramming to pluripotent stem cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.1811609
– volume: 23
  start-page: 1489
  year: 2005
  end-page: 1501
  ident: CR51
  article-title: Defining the role of Wnt/β-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2005-0034
– volume: 104
  start-page: 2738
  year: 2007
  end-page: 2743
  ident: CR7
  article-title: Mice cloned from skin cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0611358104
– volume: 4
  start-page: 472
  year: 2009
  end-page: 476
  ident: CR106
  article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.05.005
– volume: 78
  start-page: 699
  year: 1997
  end-page: 723
  ident: CR67
  article-title: Virus-encoded proteinases of the picornavirus super-group
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-78-4-699
– volume: 26
  start-page: 2467
  year: 2008
  end-page: 2474
  ident: CR15
  article-title: Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0317
– volume: 27
  start-page: 543
  year: 2009
  end-page: 549
  ident: CR72
  article-title: Induced pluripotent stem cell generation using a single lentiviral stem cell cassette
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-1075
– volume: 31
  start-page: 1007
  year: 2003
  end-page: 1014
  ident: CR54
  article-title: Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics
  publication-title: Exp. Hematol.
  doi: 10.1016/S0301-472X(03)00260-1
– volume: 1800
  start-page: 956
  year: 2010
  end-page: 963
  ident: CR53
  article-title: Effective culture conditions for the induction of pluripotent stem cells
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2010.04.004
– volume: 322
  start-page: 949
  year: 2008
  end-page: 953
  ident: CR91
  article-title: Generation of mouse induced pluripotent stem cells without viral vectors
  publication-title: Science
  doi: 10.1126/science.1164270
– volume: 136
  start-page: 411
  year: 2009
  end-page: 419
  ident: CR26
  article-title: Oct4-induced pluripotency in adult neural stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.023
– volume: 13
  start-page: 928
  year: 1994
  end-page: 933
  ident: CR66
  article-title: Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06337.x
– volume: 5
  start-page: 141
  year: 1996
  end-page: 151
  ident: CR78
  article-title: Precise excision of TTAA-specific lepidopteran transposons (IFP2) and (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.1996.tb00048.x
– volume: 27
  start-page: 2667
  year: 2009
  end-page: 2674
  ident: CR85
  article-title: Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.201
– volume: 5
  start-page: 332
  year: 2009
  end-page: 342
  ident: CR76
  article-title: An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.07.011
– volume: 25
  start-page: 1707
  year: 2007
  end-page: 1712
  ident: CR68
  article-title: Efficient multicistronic expression of a transgene in human embryonic stem cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2006-0813
– volume: 78
  start-page: 7634
  year: 1981
  end-page: 7638
  ident: CR2
  article-title: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.78.12.7634
– volume: 79
  start-page: 4098
  year: 1982
  end-page: 4102
  ident: CR59
  article-title: methylation, expression, and infectivity of retroviral genomes introduced into embryonal carcinoma cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.79.13.4098
– volume: 5
  start-page: 237
  year: 2009
  end-page: 241
  ident: CR50
  article-title: Hypoxia enhances the generation of induced pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.08.001
– volume: 458
  start-page: 771
  year: 2009
  end-page: 775
  ident: CR69
  article-title: Virus-free induction of pluripotency and subsequent excision of reprogramming factors
  publication-title: Nature
  doi: 10.1038/nature07864
– volume: 460
  start-page: 1136
  year: 2009
  end-page: 1139
  ident: CR40
  article-title: The / locus is a barrier for iPS cell reprogramming
  publication-title: Nature
  doi: 10.1038/nature08290
– volume: 6
  start-page: 71
  year: 2010
  end-page: 79
  ident: CR48
  article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.12.001
– volume: 26
  start-page: 101
  year: 2008
  end-page: 106
  ident: CR20
  article-title: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts
  publication-title: Nature Biotech.
  doi: 10.1038/nbt1374
– volume: 324
  start-page: 797
  year: 2009
  end-page: 801
  ident: CR94
  article-title: Human induced pluripotent stem cells free of vector and transgene sequences
  publication-title: Science
  doi: 10.1126/science.1172482
– volume: 105
  start-page: 9290
  year: 2008
  end-page: 9295
  ident: CR75
  article-title: Chromosomal transposition of in mouse embryonic stem cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0801017105
– volume: 5
  start-page: 418
  year: 2010
  end-page: 428
  ident: CR95
  article-title: Generation of mouse-induced pluripotent stem cells with plasmid vectors
  publication-title: Nature Protoc.
  doi: 10.1038/nprot.2009.231
– volume: 428
  start-page: 44
  year: 2004
  end-page: 49
  ident: CR5
  article-title: Mice cloned from olfactory sensory neurons
  publication-title: Nature
  doi: 10.1038/nature02375
– volume: 86
  start-page: 33
  year: 2002
  end-page: 38
  ident: CR88
  article-title: Recombinant Sendai viruses expressing different levels of a foreign reporter gene
  publication-title: Virus Res.
  doi: 10.1016/S0168-1702(02)00047-3
– volume: 27
  start-page: 459
  year: 2009
  end-page: 461
  ident: CR36
  article-title: Embryonic stem cell-specific microRNAs promote induced pluripotency
  publication-title: Nature Biotech.
  doi: 10.1038/nbt.1535
– volume: 105
  start-page: 940
  year: 2008
  end-page: 948
  ident: CR60
  article-title: Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.21912
– volume: 4
  start-page: 381
  year: 2009
  end-page: 384
  ident: CR105
  article-title: Generation of induced pluripotent stem cells using recombinant proteins
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.04.005
– volume: 3
  start-page: 475
  year: 2008
  end-page: 479
  ident: CR30
  article-title: Two supporting factors greatly improve the efficiency of human iPSC generation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.10.002
– volume: 321
  start-page: 699
  year: 2008
  end-page: 702
  ident: CR13
  article-title: Generation of pluripotent stem cells from adult mouse liver and stomach cells
  publication-title: Science
  doi: 10.1126/science.1154884
– volume: 5
  start-page: e12664
  year: 2010
  ident: CR110
  article-title: Analysis of human and mouse reprogramming of somatic cells to induced pluripotent stem cells. What is in the plate?
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0012664
– volume: 26
  start-page: 1269
  year: 2008
  end-page: 1275
  ident: CR44
  article-title: Induction of pluripotent stem cells from primary human fibroblasts with only and
  publication-title: Nature Biotech.
  doi: 10.1038/nbt.1502
– volume: 85
  start-page: 348
  year: 2009
  end-page: 362
  ident: CR86
  article-title: Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome
  publication-title: Proc. Jpn Acad. Ser. B Phys. Biol. Sci.
  doi: 10.2183/pjab.85.348
– volume: 106
  start-page: 8918
  year: 2009
  end-page: 8922
  ident: CR92
  article-title: Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector.
  publication-title: USA
  doi: 10.1073/pnas.0901471106
– volume: 448
  start-page: 313
  year: 2007
  end-page: 317
  ident: CR11
  article-title: Generation of germline-competent induced pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature05934
– volume: 28
  start-page: 36
  year: 2010
  end-page: 44
  ident: CR70
  article-title: Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions
  publication-title: Stem Cells
  doi: 10.1002/stem.248
– volume: 3
  start-page: 568
  year: 2008
  end-page: 574
  ident: CR46
  article-title: Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.10.004
– volume: 7
  start-page: 11
  year: 2010
  end-page: 14
  ident: CR87
  article-title: Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.06.003
– volume: 28
  start-page: 713
  year: 2010
  end-page: 720
  ident: CR47
  article-title: Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes
  publication-title: Stem Cells
  doi: 10.1002/stem.402
– volume: 77
  start-page: 3238
  year: 2003
  end-page: 3246
  ident: CR90
  article-title: Nontransmissible virus-like particle formation by F-deficient Sendai virus is temperature sensitive and reduced by mutations in M and HN proteins
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.5.3238-3246.2003
– volume: 282
  start-page: 1145
  year: 1998
  end-page: 1147
  ident: CR3
  article-title: Embryonic stem cell lines derived from human blastocysts
  publication-title: Science
  doi: 10.1126/science.282.5391.1145
– volume: 40
  start-page: 1478
  year: 2008
  end-page: 1483
  ident: CR35
  article-title: Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation
  publication-title: Nature Genet.
  doi: 10.1038/ng.250
– volume: 28
  start-page: 1848
  year: 2010
  end-page: 1855
  ident: CR49
  article-title: Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.493
– volume: 454
  start-page: 49
  year: 2008
  end-page: 55
  ident: CR10
  article-title: Dissecting direct reprogramming through integrative genomic analysis
  publication-title: Nature
  doi: 10.1038/nature07056
– volume: 3
  start-page: 595
  year: 2008
  end-page: 605
  ident: CR25
  article-title: Guidelines and techniques for the generation of induced pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.11.008
– volume: 4
  start-page: 198
  year: 2009
  end-page: 199
  ident: CR24
  article-title: Alternative induced pluripotent stem cell characterization criteria for applications
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.02.010
– volume: 41
  start-page: 968
  year: 2009
  end-page: 976
  ident: CR27
  article-title: Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells
  publication-title: Nature Genet.
  doi: 10.1038/ng.428
– volume: 15
  start-page: 139
  year: 2007
  end-page: 145
  ident: CR79
  article-title: transposon-mediated gene transfer in human cells
  publication-title: Mol. Ther.
  doi: 10.1038/sj.mt.6300028
– volume: 106
  start-page: 157
  year: 2009
  end-page: 162
  ident: CR71
  article-title: Reprogramming of murine and human somatic cells using a single polycistronic vector
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0811426106
– volume: 27
  start-page: 743
  year: 2009
  end-page: 745
  ident: CR28
  article-title: Variation in the safety of induced pluripotent stem cell lines
  publication-title: Nature Biotech.
  doi: 10.1038/nbt.1554
– volume: 59
  start-page: 35
  year: 1995
  end-page: 42
  ident: CR83
  article-title: Evidence for a terminal differentiation process in the rat liver
  publication-title: Differentiation
  doi: 10.1046/j.1432-0436.1995.5910035.x
– volume: 77
  start-page: 6463
  year: 1980
  end-page: 6467
  ident: CR96
  article-title: Methylation of foreign DNA sequences in eukaryotic cells.
  publication-title: USA
  doi: 10.1073/pnas.77.11.6463
– volume: 27
  start-page: 300
  year: 2009
  end-page: 306
  ident: CR63
  article-title: Fibroblast-derived induced pluripotent stem cells show no common retroviral vector insertions
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0696
– volume: 460
  start-page: 1140
  year: 2009
  end-page: 1144
  ident: CR39
  article-title: Linking the p53 tumour suppressor pathway to somatic cell reprogramming
  publication-title: Nature
  doi: 10.1038/nature08311
– volume: 74
  start-page: 6564
  year: 2000
  end-page: 6569
  ident: CR89
  article-title: A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.14.6564-6569.2000
– volume: 6
  start-page: 363
  year: 2009
  end-page: 369
  ident: CR81
  article-title: Generation of transgene-free induced pluripotent mouse stem cells by the transposon
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1323
– volume: 26
  start-page: 795
  year: 2008
  end-page: 797
  ident: CR42
  article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
  publication-title: Nature Biotech.
  doi: 10.1038/nbt1418
– volume: 462
  start-page: 595
  year: 2009
  end-page: 601
  ident: CR29
  article-title: Direct cell reprogramming is a stochastic process amenable to acceleration
  publication-title: Nature
  doi: 10.1038/nature08592
– volume: 49
  start-page: 161
  year: 2006
  end-page: 168
  ident: CR102
  article-title: p53 protein transduction therapy: successful targeting and inhibition of the growth of the bladder cancer cells
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2005.08.019
– volume: 81
  start-page: 3806
  year: 1984
  end-page: 3810
  ident: CR97
  article-title: A -acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.81.12.3806
– volume: 448
  start-page: 318
  year: 2007
  end-page: 324
  ident: CR12
  article-title: reprogramming of fibroblasts into a pluripotent ES-cell-like state
  publication-title: Nature
  doi: 10.1038/nature05944
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: CR8
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 10
  start-page: 27
  year: 2004
  end-page: 36
  ident: CR62
  article-title: Retrovirus silencing, variegation, extinction, and memory are controlled by a dynamic interplay of multiple epigenetic modifications
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2004.04.007
– volume: 415
  start-page: 1035
  year: 2002
  end-page: 1038
  ident: CR6
  article-title: Monoclonal mice generated by nuclear transfer from mature B and T donor cells
  publication-title: Nature
  doi: 10.1038/nature718
– volume: 7
  start-page: 618
  year: 2010
  end-page: 630
  ident: CR101
  article-title: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.08.012
– volume: 26
  start-page: 1276
  year: 2008
  end-page: 1284
  ident: CR17
  article-title: Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes
  publication-title: Nature Biotech.
  doi: 10.1038/nbt.1503
– volume: 280
  start-page: 8285
  year: 2005
  end-page: 8289
  ident: CR103
  article-title: The NH terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M412430200
– volume: 113
  start-page: 5476
  year: 2009
  end-page: 5479
  ident: CR19
  article-title: Generation of induced pluripotent stem cells from human blood
  publication-title: Blood
  doi: 10.1182/blood-2009-02-204800
– volume: 292
  start-page: 154
  year: 1981
  end-page: 156
  ident: CR1
  article-title: Establishment in culture of pluripotential cells from mouse embryos
  publication-title: Nature
  doi: 10.1038/292154a0
– volume: 172
  start-page: 156
  year: 1989
  end-page: 169
  ident: CR74
  article-title: Transposon mutagenesis of baculoviruses: analysis of transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses
  publication-title: Virology
  doi: 10.1016/0042-6822(89)90117-7
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  ident: CR55
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 5
  start-page: 353
  year: 2009
  end-page: 357
  ident: CR18
  article-title: Generation of induced pluripotent stem cells from human cord blood using and
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.09.008
– volume: 3
  start-page: 132
  year: 2008
  end-page: 135
  ident: CR52
  article-title: Wnt signaling promotes reprogramming of somatic cells to pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.06.019
– volume: 454
  start-page: 646
  year: 2008
  end-page: 650
  ident: CR16
  article-title: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors
  publication-title: Nature
  doi: 10.1038/nature07061
– volume: 313
  start-page: 812
  year: 1985
  end-page: 815
  ident: CR98
  article-title: Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells
  publication-title: Nature
  doi: 10.1038/313812a0
– volume: 7
  start-page: 53
  year: 2009
  end-page: 55
  ident: CR107
  article-title: A reprogrammable mouse strain from gene-targeted embryonic stem cells
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1409
– volume: 460
  start-page: 1145
  year: 2009
  end-page: 1148
  ident: CR41
  article-title: Immortalization eliminates a roadblock during cellular reprogramming into iPS cells
  publication-title: Nature
  doi: 10.1038/nature08285
– volume: 1
  start-page: 136
  year: 1994
  end-page: 138
  ident: CR57
  article-title: Versatile retroviral vectors for potential use in gene therapy
  publication-title: Gene Ther.
– volume: 10
  start-page: 161
  year: 2000
  end-page: 171
  ident: CR84
  article-title: Hepatic polyploidy and liver growth control
  publication-title: Semin. Cancer Biol.
  doi: 10.1006/scbi.2000.0317
– volume: 441
  start-page: 1061
  year: 2006
  end-page: 1067
  ident: CR4
  article-title: Nuclear reprogramming and pluripotency
  publication-title: Nature
  doi: 10.1038/nature04955
– volume: 13
  start-page: 52
  year: 2002
  end-page: 56
  ident: CR104
  article-title: Protein transduction technology
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/S0958-1669(02)00284-7
– volume: 14
  start-page: 683
  year: 2009
  end-page: 694
  ident: CR31
  article-title: Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2009.01301.x
– volume: 460
  start-page: 1132
  year: 2009
  end-page: 1135
  ident: CR38
  article-title: Suppression of induced pluripotent stem cell generation by the p53–p21 pathway
  publication-title: Nature
  doi: 10.1038/nature08235
– volume: 16
  start-page: 126
  year: 2005
  end-page: 131
  ident: CR100
  article-title: Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2005.16.126
– volume: 1
  start-page: 245
  year: 2007
  end-page: 247
  ident: CR61
  article-title: Generation of induced pluripotent stem cells in the absence of drug selection
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.08.008
– volume: 458
  start-page: 766
  year: 2009
  end-page: 770
  ident: CR80
  article-title: transposition reprograms fibroblasts to induced pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature07863
– volume: 318
  start-page: 1920
  year: 2007
  end-page: 1923
  ident: CR64
  article-title: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin
  publication-title: Science
  doi: 10.1126/science.1152092
– volume: 451
  start-page: 141
  year: 2008
  end-page: 146
  ident: CR32
  article-title: Reprogramming of human somatic cells to pluripotency with defined factors
  publication-title: Nature
  doi: 10.1038/nature06534
– volume: 18
  start-page: 890
  year: 2008
  end-page: 894
  ident: CR14
  article-title: Reprogramming of pancreatic β cells into induced pluripotent stem cells
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.05.010
– volume: 27
  start-page: 2992
  year: 2009
  end-page: 3000
  ident: CR43
  article-title: Generation of human-induced pluripotent stem cells in the absence of exogenous
  publication-title: Stem Cells
  doi: 10.1002/stem.240
– volume: 4
  start-page: 301
  year: 2009
  end-page: 312
  ident: CR108
  article-title: Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.03.005
– volume: 211
  start-page: 397
  year: 1995
  end-page: 407
  ident: CR77
  article-title: Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA
  publication-title: Virology
  doi: 10.1006/viro.1995.1422
– volume: 8
  start-page: 495
  year: 2003
  end-page: 500
  ident: CR99
  article-title: Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression
  publication-title: Mol. Ther.
  doi: 10.1016/S1525-0016(03)00168-0
– volume: 2
  start-page: 151
  year: 2008
  end-page: 159
  ident: CR65
  article-title: Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.01.004
– volume: 318
  start-page: 1917
  year: 2007
  end-page: 1920
  ident: CR22
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 8
  start-page: 188
  year: 2006
  end-page: 194
  ident: CR45
  article-title: G9a-mediated irreversible epigenetic inactivation of / during early embryogenesis
  publication-title: Nature Cell Biol.
  doi: 10.1038/ncb1353
– volume: 7
  start-page: 197
  year: 2010
  end-page: 199
  ident: CR93
  article-title: A nonviral minicircle vector for deriving human iPS cells
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1426
– volume: 344
  start-page: 16
  year: 2010
  end-page: 25
  ident: CR34
  article-title: Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2010.05.014
– volume: 1
  start-page: 55
  year: 2007
  end-page: 70
  ident: CR9
  article-title: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.05.014
– volume: 322
  start-page: 945
  year: 2008
  end-page: 949
  ident: CR82
  article-title: Induced pluripotent stem cells generated without viral integration
  publication-title: Science
  doi: 10.1126/science.1162494
– volume: 298
  start-page: 623
  year: 1982
  end-page: 628
  ident: CR58
  article-title: methylation and expression of retroviral genomes during mouse embryogenesis
  publication-title: Nature
  doi: 10.1038/298623a0
– volume: 3
  start-page: 132
  year: 2008
  ident: BFnrg2937_CR52
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.06.019
– volume: 105
  start-page: 9290
  year: 2008
  ident: BFnrg2937_CR75
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0801017105
– volume: 27
  start-page: 459
  year: 2009
  ident: BFnrg2937_CR36
  publication-title: Nature Biotech.
  doi: 10.1038/nbt.1535
– volume: 292
  start-page: 154
  year: 1981
  ident: BFnrg2937_CR1
  publication-title: Nature
  doi: 10.1038/292154a0
– volume: 322
  start-page: 945
  year: 2008
  ident: BFnrg2937_CR82
  publication-title: Science
  doi: 10.1126/science.1162494
– volume: 2
  start-page: 10
  year: 2008
  ident: BFnrg2937_CR21
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.12.001
– volume: 27
  start-page: 543
  year: 2009
  ident: BFnrg2937_CR72
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-1075
– volume: 10
  start-page: 27
  year: 2004
  ident: BFnrg2937_CR62
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2004.04.007
– volume: 460
  start-page: 1136
  year: 2009
  ident: BFnrg2937_CR40
  publication-title: Nature
  doi: 10.1038/nature08290
– volume: 77
  start-page: 3238
  year: 2003
  ident: BFnrg2937_CR90
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.5.3238-3246.2003
– volume: 4
  start-page: 472
  year: 2009
  ident: BFnrg2937_CR106
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.05.005
– volume: 78
  start-page: 7634
  year: 1981
  ident: BFnrg2937_CR2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.78.12.7634
– volume: 27
  start-page: 300
  year: 2009
  ident: BFnrg2937_CR63
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0696
– volume: 14
  start-page: 683
  year: 2009
  ident: BFnrg2937_CR31
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2009.01301.x
– volume: 415
  start-page: 1035
  year: 2002
  ident: BFnrg2937_CR6
  publication-title: Nature
  doi: 10.1038/nature718
– volume: 13
  start-page: 52
  year: 2002
  ident: BFnrg2937_CR104
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/S0958-1669(02)00284-7
– volume: 6
  start-page: e253
  year: 2008
  ident: BFnrg2937_CR33
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060253
– volume: 7
  start-page: 53
  year: 2009
  ident: BFnrg2937_CR107
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1409
– volume: 78
  start-page: 699
  year: 1997
  ident: BFnrg2937_CR67
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-78-4-699
– volume: 74
  start-page: 6564
  year: 2000
  ident: BFnrg2937_CR89
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.14.6564-6569.2000
– volume: 86
  start-page: 33
  year: 2002
  ident: BFnrg2937_CR88
  publication-title: Virus Res.
  doi: 10.1016/S0168-1702(02)00047-3
– volume: 5
  start-page: 237
  year: 2009
  ident: BFnrg2937_CR50
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.08.001
– volume: 454
  start-page: 49
  year: 2008
  ident: BFnrg2937_CR10
  publication-title: Nature
  doi: 10.1038/nature07056
– volume: 27
  start-page: 2992
  year: 2009
  ident: BFnrg2937_CR43
  publication-title: Stem Cells
  doi: 10.1002/stem.240
– volume: 4
  start-page: 301
  year: 2009
  ident: BFnrg2937_CR108
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.03.005
– volume: 1
  start-page: 136
  year: 1994
  ident: BFnrg2937_CR57
  publication-title: Gene Ther.
– volume: 172
  start-page: 156
  year: 1989
  ident: BFnrg2937_CR74
  publication-title: Virology
  doi: 10.1016/0042-6822(89)90117-7
– volume: 448
  start-page: 313
  year: 2007
  ident: BFnrg2937_CR11
  publication-title: Nature
  doi: 10.1038/nature05934
– volume: 59
  start-page: 35
  year: 1995
  ident: BFnrg2937_CR83
  publication-title: Differentiation
  doi: 10.1046/j.1432-0436.1995.5910035.x
– volume: 298
  start-page: 623
  year: 1982
  ident: BFnrg2937_CR58
  publication-title: Nature
  doi: 10.1038/298623a0
– volume: 1800
  start-page: 956
  year: 2010
  ident: BFnrg2937_CR53
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2010.04.004
– volume: 460
  start-page: 1140
  year: 2009
  ident: BFnrg2937_CR39
  publication-title: Nature
  doi: 10.1038/nature08311
– volume: 5
  start-page: 418
  year: 2010
  ident: BFnrg2937_CR95
  publication-title: Nature Protoc.
  doi: 10.1038/nprot.2009.231
– volume: 4
  start-page: 381
  year: 2009
  ident: BFnrg2937_CR105
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.04.005
– volume: 40
  start-page: 1478
  year: 2008
  ident: BFnrg2937_CR35
  publication-title: Nature Genet.
  doi: 10.1038/ng.250
– volume: 3
  start-page: 475
  year: 2008
  ident: BFnrg2937_CR30
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.10.002
– volume: 451
  start-page: 141
  year: 2008
  ident: BFnrg2937_CR32
  publication-title: Nature
  doi: 10.1038/nature06534
– volume: 211
  start-page: 397
  year: 1995
  ident: BFnrg2937_CR77
  publication-title: Virology
  doi: 10.1006/viro.1995.1422
– volume: 26
  start-page: 1276
  year: 2008
  ident: BFnrg2937_CR17
  publication-title: Nature Biotech.
  doi: 10.1038/nbt.1503
– volume: 16
  start-page: 126
  year: 2005
  ident: BFnrg2937_CR100
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2005.16.126
– volume: 136
  start-page: 411
  year: 2009
  ident: BFnrg2937_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.023
– volume: 28
  start-page: 1848
  year: 2010
  ident: BFnrg2937_CR49
  publication-title: Stem Cells
  doi: 10.1002/stem.493
– volume: 7
  start-page: 11
  year: 2010
  ident: BFnrg2937_CR87
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.06.003
– volume: 6
  start-page: 363
  year: 2009
  ident: BFnrg2937_CR81
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1323
– volume: 28
  start-page: 36
  year: 2010
  ident: BFnrg2937_CR70
  publication-title: Stem Cells
  doi: 10.1002/stem.248
– volume: 81
  start-page: 3806
  year: 1984
  ident: BFnrg2937_CR97
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.81.12.3806
– volume: 126
  start-page: 663
  year: 2006
  ident: BFnrg2937_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 113
  start-page: 5476
  year: 2009
  ident: BFnrg2937_CR19
  publication-title: Blood
  doi: 10.1182/blood-2009-02-204800
– volume: 31
  start-page: 1007
  year: 2003
  ident: BFnrg2937_CR54
  publication-title: Exp. Hematol.
  doi: 10.1016/S0301-472X(03)00260-1
– volume: 428
  start-page: 44
  year: 2004
  ident: BFnrg2937_CR5
  publication-title: Nature
  doi: 10.1038/nature02375
– volume: 280
  start-page: 8285
  year: 2005
  ident: BFnrg2937_CR103
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M412430200
– volume: 4
  start-page: 198
  year: 2009
  ident: BFnrg2937_CR24
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.02.010
– volume: 26
  start-page: 101
  year: 2008
  ident: BFnrg2937_CR20
  publication-title: Nature Biotech.
  doi: 10.1038/nbt1374
– volume: 5
  start-page: 332
  year: 2009
  ident: BFnrg2937_CR76
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.07.011
– volume: 131
  start-page: 861
  year: 2007
  ident: BFnrg2937_CR55
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 28
  start-page: 64
  year: 2010
  ident: BFnrg2937_CR73
  publication-title: Stem Cells
  doi: 10.1002/stem.255
– volume: 10
  start-page: 161
  year: 2000
  ident: BFnrg2937_CR84
  publication-title: Semin. Cancer Biol.
  doi: 10.1006/scbi.2000.0317
– volume: 465
  start-page: 175
  year: 2010
  ident: BFnrg2937_CR109
  publication-title: Nature
  doi: 10.1038/nature09017
– volume: 3
  start-page: 568
  year: 2008
  ident: BFnrg2937_CR46
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.10.004
– volume: 28
  start-page: 713
  year: 2010
  ident: BFnrg2937_CR47
  publication-title: Stem Cells
  doi: 10.1002/stem.402
– volume: 6
  start-page: 71
  year: 2010
  ident: BFnrg2937_CR48
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.12.001
– volume: 85
  start-page: 348
  year: 2009
  ident: BFnrg2937_CR86
  publication-title: Proc. Jpn Acad. Ser. B Phys. Biol. Sci.
  doi: 10.2183/pjab.85.348
– volume: 1
  start-page: 55
  year: 2007
  ident: BFnrg2937_CR9
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.05.014
– volume: 23
  start-page: 1489
  year: 2005
  ident: BFnrg2937_CR51
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2005-0034
– volume: 105
  start-page: 940
  year: 2008
  ident: BFnrg2937_CR60
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.21912
– volume: 322
  start-page: 949
  year: 2008
  ident: BFnrg2937_CR91
  publication-title: Science
  doi: 10.1126/science.1164270
– volume: 2
  start-page: 151
  year: 2008
  ident: BFnrg2937_CR65
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.01.004
– volume: 324
  start-page: 797
  year: 2009
  ident: BFnrg2937_CR94
  publication-title: Science
  doi: 10.1126/science.1172482
– volume: 313
  start-page: 812
  year: 1985
  ident: BFnrg2937_CR98
  publication-title: Nature
  doi: 10.1038/313812a0
– volume: 3
  start-page: 595
  year: 2008
  ident: BFnrg2937_CR25
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.11.008
– volume: 318
  start-page: 1917
  year: 2007
  ident: BFnrg2937_CR22
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 454
  start-page: 646
  year: 2008
  ident: BFnrg2937_CR16
  publication-title: Nature
  doi: 10.1038/nature07061
– volume: 462
  start-page: 595
  year: 2009
  ident: BFnrg2937_CR29
  publication-title: Nature
  doi: 10.1038/nature08592
– volume: 5
  start-page: 141
  year: 1996
  ident: BFnrg2937_CR78
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.1996.tb00048.x
– volume: 104
  start-page: 2738
  year: 2007
  ident: BFnrg2937_CR7
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0611358104
– volume: 27
  start-page: 2667
  year: 2009
  ident: BFnrg2937_CR85
  publication-title: Stem Cells
  doi: 10.1002/stem.201
– volume: 344
  start-page: 16
  year: 2010
  ident: BFnrg2937_CR34
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2010.05.014
– volume: 77
  start-page: 6463
  year: 1980
  ident: BFnrg2937_CR96
  publication-title: USA
  doi: 10.1073/pnas.77.11.6463
– volume: 5
  start-page: 353
  year: 2009
  ident: BFnrg2937_CR18
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.09.008
– volume: 18
  start-page: 890
  year: 2008
  ident: BFnrg2937_CR14
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.05.010
– volume: 318
  start-page: 1920
  year: 2007
  ident: BFnrg2937_CR64
  publication-title: Science
  doi: 10.1126/science.1152092
– volume: 13
  start-page: 928
  year: 1994
  ident: BFnrg2937_CR66
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06337.x
– volume: 4
  start-page: 200
  year: 2009
  ident: BFnrg2937_CR23
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.02.009
– volume: 106
  start-page: 157
  year: 2009
  ident: BFnrg2937_CR71
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0811426106
– volume: 458
  start-page: 766
  year: 2009
  ident: BFnrg2937_CR80
  publication-title: Nature
  doi: 10.1038/nature07863
– volume: 5
  start-page: e12664
  year: 2010
  ident: BFnrg2937_CR110
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0012664
– volume: 2
  start-page: 3081
  year: 2007
  ident: BFnrg2937_CR56
  publication-title: Nature Protoc.
  doi: 10.1038/nprot.2007.418
– volume: 321
  start-page: 699
  year: 2008
  ident: BFnrg2937_CR13
  publication-title: Science
  doi: 10.1126/science.1154884
– volume: 26
  start-page: 1269
  year: 2008
  ident: BFnrg2937_CR44
  publication-title: Nature Biotech.
  doi: 10.1038/nbt.1502
– volume: 8
  start-page: 188
  year: 2006
  ident: BFnrg2937_CR45
  publication-title: Nature Cell Biol.
  doi: 10.1038/ncb1353
– volume: 7
  start-page: 197
  year: 2010
  ident: BFnrg2937_CR93
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1426
– volume: 79
  start-page: 4098
  year: 1982
  ident: BFnrg2937_CR59
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.79.13.4098
– volume: 282
  start-page: 1145
  year: 1998
  ident: BFnrg2937_CR3
  publication-title: Science
  doi: 10.1126/science.282.5391.1145
– volume: 25
  start-page: 1707
  year: 2007
  ident: BFnrg2937_CR68
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2006-0813
– volume: 41
  start-page: 968
  year: 2009
  ident: BFnrg2937_CR27
  publication-title: Nature Genet.
  doi: 10.1038/ng.428
– volume: 8
  start-page: 495
  year: 2003
  ident: BFnrg2937_CR99
  publication-title: Mol. Ther.
  doi: 10.1016/S1525-0016(03)00168-0
– volume: 448
  start-page: 318
  year: 2007
  ident: BFnrg2937_CR12
  publication-title: Nature
  doi: 10.1038/nature05944
– volume: 7
  start-page: 618
  year: 2010
  ident: BFnrg2937_CR101
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.08.012
– volume: 1
  start-page: 245
  year: 2007
  ident: BFnrg2937_CR61
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.08.008
– volume: 441
  start-page: 1061
  year: 2006
  ident: BFnrg2937_CR4
  publication-title: Nature
  doi: 10.1038/nature04955
– volume: 460
  start-page: 1132
  year: 2009
  ident: BFnrg2937_CR38
  publication-title: Nature
  doi: 10.1038/nature08235
– volume: 26
  start-page: 795
  year: 2008
  ident: BFnrg2937_CR42
  publication-title: Nature Biotech.
  doi: 10.1038/nbt1418
– volume: 26
  start-page: 2467
  year: 2008
  ident: BFnrg2937_CR15
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0317
– volume: 458
  start-page: 771
  year: 2009
  ident: BFnrg2937_CR69
  publication-title: Nature
  doi: 10.1038/nature07864
– volume: 106
  start-page: 8918
  year: 2009
  ident: BFnrg2937_CR92
  publication-title: USA
  doi: 10.1073/pnas.0901471106
– volume: 23
  start-page: 2134
  year: 2009
  ident: BFnrg2937_CR37
  publication-title: Genes Dev.
  doi: 10.1101/gad.1811609
– volume: 15
  start-page: 139
  year: 2007
  ident: BFnrg2937_CR79
  publication-title: Mol. Ther.
  doi: 10.1038/sj.mt.6300028
– volume: 49
  start-page: 161
  year: 2006
  ident: BFnrg2937_CR102
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2005.08.019
– volume: 27
  start-page: 743
  year: 2009
  ident: BFnrg2937_CR28
  publication-title: Nature Biotech.
  doi: 10.1038/nbt.1554
– volume: 460
  start-page: 1145
  year: 2009
  ident: BFnrg2937_CR41
  publication-title: Nature
  doi: 10.1038/nature08285
– reference: 19838014 - Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62
– reference: 14990966 - Nature. 2004 Mar 4;428(6978):44-9
– reference: 9804556 - Science. 1998 Nov 6;282(5391):1145-7
– reference: 20010832 - Nat Methods. 2010 Jan;7(1):53-5
– reference: 16310931 - Eur Urol. 2006 Jan;49(1):161-8
– reference: 18594515 - Nature. 2008 Jul 31;454(7204):646-50
– reference: 12584347 - J Virol. 2003 Mar;77(5):3238-46
– reference: 20203661 - Nat Protoc. 2010 Mar;5(3):418-28
– reference: 7645244 - Virology. 1995 Aug 20;211(2):397-407
– reference: 19904830 - Stem Cells. 2010 Jan;28(1):64-74
– reference: 19716359 - Cell Stem Cell. 2009 Sep 4;5(3):237-41
– reference: 6328526 - Proc Natl Acad Sci U S A. 1984 Jun;81(12):3806-10
– reference: 18682236 - Cell Stem Cell. 2008 Aug 7;3(2):132-5
– reference: 6955793 - Proc Natl Acad Sci U S A. 1982 Jul;79(13):4098-102
– reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76
– reference: 20417254 - Biochim Biophys Acta. 2010 Sep;1800(9):956-63
– reference: 11849958 - Curr Opin Biotechnol. 2002 Feb;13(1):52-6
– reference: 19668188 - Nature. 2009 Aug 27;460(7259):1136-9
– reference: 19096035 - Stem Cells. 2009 Mar;27(3):543-9
– reference: 18845712 - Science. 2008 Nov 7;322(5903):949-53
– reference: 6285203 - Nature. 1982 Aug 12;298(5875):623-8
– reference: 18276851 - Science. 2008 Aug 1;321(5889):699-702
– reference: 20418860 - Nature. 2010 May 13;465(7295):175-81
– reference: 18371358 - Cell Stem Cell. 2007 Sep 13;1(3):245-7
– reference: 20036631 - Cell Stem Cell. 2010 Jan 8;6(1):71-9
– reference: 19041776 - Cell Stem Cell. 2008 Dec 4;3(6):595-605
– reference: 12076827 - Virus Res. 2002 Jun;86(1-2):33-8
– reference: 19668214 - Nat Genet. 2009 Sep;41(9):968-76
– reference: 19337237 - Nat Methods. 2009 May;6(5):363-9
– reference: 6935661 - Proc Natl Acad Sci U S A. 1980 Nov;77(11):6463-7
– reference: 19299331 - Blood. 2009 May 28;113(22):5476-9
– reference: 18579772 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9290-5
– reference: 18371415 - Cell Stem Cell. 2008 Jan 10;2(1):10-2
– reference: 7584069 - Gene Ther. 1994 Mar;1(2):136-8
– reference: 9129643 - J Gen Virol. 1997 Apr;78 ( Pt 4):699-723
– reference: 18059259 - Nat Biotechnol. 2008 Jan;26(1):101-6
– reference: 16002782 - Stem Cells. 2005 Nov-Dec;23(10):1489-501
– reference: 19265657 - Cell Stem Cell. 2009 Mar 6;4(3):200-1; author reply 202
– reference: 14585362 - Exp Hematol. 2003 Nov;31(11):1007-14
– reference: 6950406 - Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634-8
– reference: 17554336 - Nature. 2007 Jul 19;448(7151):318-24
– reference: 8673264 - Insect Mol Biol. 1996 May;5(2):141-51
– reference: 19265656 - Cell Stem Cell. 2009 Mar 6;4(3):198-9; author reply 202
– reference: 19697349 - Stem Cells. 2009 Nov;27(11):2667-74
– reference: 19696146 - Genes Dev. 2009 Sep 15;23(18):2134-9
– reference: 20201064 - Stem Cells. 2010 Apr;28(4):713-20
– reference: 16810240 - Nature. 2006 Jun 29;441(7097):1061-7
– reference: 15703495 - Hum Gene Ther. 2005 Jan;16(1):126-31
– reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72
– reference: 18079707 - Nat Protoc. 2007;2(12):3081-9
– reference: 18371436 - Cell Stem Cell. 2008 Feb 7;2(2):151-9
– reference: 19008347 - Stem Cells. 2009 Feb;27(2):300-6
– reference: 18635867 - Stem Cells. 2008 Oct;26(10):2467-74
– reference: 18931654 - Nat Biotechnol. 2008 Nov;26(11):1276-84
– reference: 8112307 - EMBO J. 1994 Feb 15;13(4):928-33
– reference: 20621043 - Cell Stem Cell. 2010 Jul 2;7(1):11-4
– reference: 19252478 - Nature. 2009 Apr 9;458(7239):766-70
– reference: 15233939 - Mol Ther. 2004 Jul;10(1):27-36
– reference: 18063756 - Science. 2007 Dec 21;318(5858):1920-3
– reference: 19476507 - Genes Cells. 2009 Jun;14(6):683-94
– reference: 19203577 - Cell. 2009 Feb 6;136(3):411-9
– reference: 11875572 - Nature. 2002 Feb 28;415(6875):1035-8
– reference: 19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6
– reference: 20139967 - Nat Methods. 2010 Mar;7(3):197-9
– reference: 19341620 - Cell Stem Cell. 2009 Apr 3;4(4):301-12
– reference: 17554338 - Nature. 2007 Jul 19;448(7151):313-7
– reference: 20478297 - Dev Biol. 2010 Aug 1;344(1):16-25
– reference: 18978791 - Nat Genet. 2008 Dec;40(12):1478-83
– reference: 18942890 - PLoS Biol. 2008 Oct 21;6(10):e253
– reference: 18983970 - Cell Stem Cell. 2008 Nov 6;3(5):568-74
– reference: 15611109 - J Biol Chem. 2005 Mar 4;280(9):8285-9
– reference: 19839055 - Stem Cells. 2009 Dec;27(12):2992-3000
– reference: 18849973 - Nat Biotechnol. 2008 Nov;26(11):1269-75
– reference: 19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4
– reference: 19898493 - Nature. 2009 Dec 3;462(7273):595-601
– reference: 7589893 - Differentiation. 1995 Jul;59(1):35-42
– reference: 20862250 - PLoS One. 2010 Sep 17;5(9):null
– reference: 19325077 - Science. 2009 May 8;324(5928):797-801
– reference: 18371336 - Cell Stem Cell. 2007 Jun 7;1(1):55-70
– reference: 19890879 - Stem Cells. 2010 Jan;28(1):36-44
– reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20
– reference: 19458047 - Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8918-22
– reference: 19109433 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):157-62
– reference: 18157115 - Nature. 2008 Jan 10;451(7175):141-6
– reference: 19363475 - Nat Biotechnol. 2009 May;27(5):459-61
– reference: 2983224 - Nature. 1985 Feb 28-Mar 6;313(6005):812-5
– reference: 10936066 - Semin Cancer Biol. 2000 Jun;10(3):161-71
– reference: 20687155 - Stem Cells. 2010 Oct;28(10):1848-55
– reference: 19252477 - Nature. 2009 Apr 9;458(7239):771-5
– reference: 20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30
– reference: 17299040 - Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2738-43
– reference: 18983962 - Cell Stem Cell. 2008 Nov 6;3(5):475-9
– reference: 18509334 - Nature. 2008 Jul 3;454(7200):49-55
– reference: 18501604 - Curr Biol. 2008 Jun 24;18(12):890-4
– reference: 18818365 - Science. 2008 Nov 7;322(5903):945-9
– reference: 17164785 - Mol Ther. 2007 Jan;15(1):139-45
– reference: 7242681 - Nature. 1981 Jul 9;292(5819):154-6
– reference: 18773452 - J Cell Biochem. 2008 Nov 1;105(4):940-8
– reference: 16415856 - Nat Cell Biol. 2006 Feb;8(2):188-94
– reference: 19733544 - Cell Stem Cell. 2009 Sep 4;5(3):332-42
– reference: 19668190 - Nature. 2009 Aug 27;460(7259):1145-8
– reference: 10864670 - J Virol. 2000 Jul;74(14):6564-9
– reference: 12946323 - Mol Ther. 2003 Sep;8(3):495-500
– reference: 19668186 - Nature. 2009 Aug 27;460(7259):1140-4
– reference: 2549707 - Virology. 1989 Sep;172(1):156-69
– reference: 19668191 - Nature. 2009 Aug 27;460(7259):1132-5
– reference: 17395772 - Stem Cells. 2007 Jul;25(7):1707-12
– reference: 19796614 - Cell Stem Cell. 2009 Oct 2;5(4):353-7
SSID ssj0016173
Score 2.52917
SecondaryResourceType review_article
Snippet Key Points Direct reprogramming enables the generation of pluripotent stem-cell lines from almost any somatic tissue and mammalian species, thereby avoiding...
Pluripotent stem-cell lines can be obtained through the reprogramming of somatic cells from different tissues and species by ectopic expression of defined...
Key PointsDirect reprogramming enables the generation of pluripotent stem-cell lines from almost any somatic tissue and mammalian species, thereby avoiding the...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 231
SubjectTerms 631/136/2444
631/532/2064/2158
631/532/2435
Agriculture
Animal Genetics and Genomics
Animals
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cell culture
Cell Differentiation
Cell lines
Cell Physiological Phenomena
Cell proliferation
Cellular Reprogramming - physiology
Chromatin
Comparative analysis
Efficiency
Embryo cells
Epigenetics
Fibroblasts
Fundamental and applied biological sciences. Psychology
Gene Function
Gene therapy
Genetics of eukaryotes. Biological and molecular evolution
Genomes
Health aspects
Human Genetics
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
KLF4 protein
Laboratories
Mice
miRNA
mRNA
Myc protein
Oct-4 protein
Physiological aspects
Pluripotency
Pluripotent Stem Cells - physiology
review-article
Somatic cells
Stem cell transplantation
Stem cells
Toxicity
Transcription factors
Transplantation
Whole genome sequencing
Title Methods for making induced pluripotent stem cells: reprogramming à la carte
URI https://link.springer.com/article/10.1038/nrg2937
https://www.ncbi.nlm.nih.gov/pubmed/21339765
https://www.proquest.com/docview/2695322552
https://www.proquest.com/docview/857499957
https://www.proquest.com/docview/857812571
https://www.proquest.com/docview/864964107
Volume 12
WOSCitedRecordID wos000288531700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-0064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016173
  issn: 1471-0056
  databaseCode: M7P
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-0064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016173
  issn: 1471-0056
  databaseCode: 7X7
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1471-0064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016173
  issn: 1471-0056
  databaseCode: 7RV
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-0064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016173
  issn: 1471-0056
  databaseCode: BENPR
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (ProQuest)
  customDbUrl:
  eissn: 1471-0064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016173
  issn: 1471-0056
  databaseCode: 8C1
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSQkxPdH2CgGIfYUrUnq2OEFjWkTCKiq8qG-RY7tTEhdUpoWif-eO8fNFIr2wotf_IviOOe7s-_8O4BXEk1QMqJrv0WchCNheFgYbJSUvDRDVWjlKPM_ifFYzmbZxOfmND6tcqMTnaI2taYz8iPJBTnnXLxd_AypaBQFV30FjR3YI5KExGXuTbogQtoGmCPUvyFRXrZ3ZokR_KhanqOdEz1j5FXyrYVqcHrKtq7FvxzPraCps0Vnd_7zK-7Cbe-EsuNWau7BNVvdhxttWcrfD-DjZ1dWumHo0LILV66K4dYdhcCwxXyNaqZGT3vFiAOa0cl_84YROabL9LogtGJzxTSliz6Eb2enX0_eh77oQqjTWK6IMFLL2Nok0-gtJIWKyH4ZM8xMKkuuuJVpIYXicVEKovks0YnTUmd0R1ZzlTyC3aqu7BNgmUmkGVqOYDkyVihc7EZYnqIFtGUcBfB6M_u59ozkVBhjnrvIeCJz_5sCYB1w0ZJwbEOe0-_L29uj3bLNj2OO-27UXHEALx2CSC8qyqo5V-umyT98mfZAhx5U1jgUrfwlBfwg4snqIQ96SFyVutc96MlRN-44yVDtDVN8fiMhuVcbTR6n2IkaluPz-9vdnfTghHS99GJKlKtsvXYQdNm4iK6ApKMsHeG2P4DHrUBfDi5KyD_lAbzYSPjl2_-a8adXjnAfbran75TjdAC7q-XaPoPr-tfqR7McwI6Yfqd2JlwrsZUn0QD23p2OJ9OBW8d_ACPfSSs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAIGEuA4oG5tBwJ6iJU4cO0gITcC0ql2FxkB7C47tTJO6tDQtaD-K_8g5zmUKRXvbAy998ZfEsY-_c9JzI-SVBBUURpj2m7HQi4ThXmbgR0nJc-OrTCtXMn8oRiN5fJx8XiG_m1wYDKtsONERtZlo_I98R3KBxjkX76c_PGwahc7VpoNGJRUDe_4LvtjKd_2PsL2vGdv7dPRh36ubCng6ZnKOBRG1ZNaGiQZtGGYqQH42xk9MLHOuuJVxJoXiLMsFlrHMwUjRUieYA6q5CuG-18h1oPEAI8jE4bfWaRFXDu0A7udhic0qRxcrkO8UsxPQq6Kj_GoVcGeqStiOvOqj8S9Dd8lJ63Tf3r3_bNXuk7u1kU13q1PxgKzY4iG5WbXdPH9EBgeubXZJwWCnZ64dFz0tDAi5odPxAmh0Al8Sc4o1ril6Nsq3FIt_uki2M0QrOlZUYzjsGvl6JW_ymKwWk8I-JTQxoTS-5QCWkbFCAZkZYXkMGt7mLOiRN81up7quuI6NP8ap8_yHMq3FokdoC5xWRUaWIVsoLmmVHdvSUrrLOBMRMDPrkZcOgUU9CowaOlGLskz7Xw47oO0alE9gKlrVSRjwQlgHrIPc6CCBdXRneLMjt-28WZgArfsxXN9IZFrTYpmyGAZBg3C4fn15uJVWWJB2FB-MgYCFnSwcBExSLoJLIHGUxFHgw12eVAfoYnJBiPY375EXzYm6ePpfK_7s0hlukVv7RwfDdNgfDdbJ7crTgPFcG2R1PlvY5-SG_jk_LWebjiMo-X7Vx-sP9r2fYw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwELZKOYSEuI-lpTWI4ylq4sSxg4RQ1bJitWVVcUh9C47tVJW2ybLZBfWn8e-YcY4qLOpbH3jZF39xHHs8M17PfEPISwkmKIww7TdjoRcJw73MwI-SkufGV5lWjjL_QEwm8ugoOVwjv9tcGAyrbHWiU9Sm1Pgf-Y7kAp1zOL_nTVTE4f7w_eyHhwWk8KK1raZRS8jYnv2C01v1brQPS_2KseGHr3sfvabAgKdjJhdIjqglszZMNFjGMFMB6mpj_MTEMueKWxlnUijOslwgpWUODouWOsF8UM1VCP1eIVdFCEKMSep7XXQJnhpcbD_05yHdZp2vi2zkO8X8GGys6BnCxhzcmqkKliava2r8y-ldubB1dnB45z-ewbvkduN80916t9wja7a4T67X5TjPHpDxJ1dOu6LgyNNTV6aLnhQGhN_Q2XQJ6rWEE8aCIvc1xRuP6i1FUlAX4XaKaEWnimoMk31Ivl3Klzwi60VZ2CeEJiaUxrccwDIyVihQckZYHoPltzkLBuR1u_KpbpjYsSDINHURAaFMGxEZENoBZzX5yCpkG0UnrbNmO3WV7jLORAQamw3IC4dAso8CV_1YLasqHX353AO9aUB5CUPRqknOgA9CfrAecrOHBG2ke81bPRnuxs3CBNS9H8PzrXSmjbqsUhZDI1gWDs9vrDZ3kgsT0rXiizFAsLDl0kHAVeUiuAASR0kcBT708rjeTOeDC0L0y_mAPG931_nb_5rxpxeOcJvcgF2VHowm4w1ys76AwDCvTbK-mC_tM3JN_1ycVPMtpy4o-X7Zu-sPOs6nvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+making+induced+pluripotent+stem+cells%3A+reprogramming+%C3%A0+la+carte&rft.jtitle=Nature+reviews.+Genetics&rft.au=Gonz%C3%A1lez%2C+Federico&rft.au=Bou%C3%A9%2C+St%C3%A9phanie&rft.au=Belmonte%2C+Juan+Carlos+Izpis%C3%BAa&rft.date=2011-04-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=12&rft.issue=4&rft.spage=231&rft.epage=242&rft_id=info:doi/10.1038%2Fnrg2937&rft.externalDocID=10_1038_nrg2937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon