Anomaly detection in multivariate time series data using deep ensemble models
Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing...
Saved in:
| Published in: | PloS one Vol. 19; no. 6; p. e0303890 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
06.06.2024
|
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing solutions. This study introduces deep ensemble models to improve traditional time series analysis and anomaly detection methods. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks effectively handle variable-length sequences and capture long-term relationships. Convolutional Neural Networks (CNNs) are also investigated, especially for univariate or multivariate time series forecasting. The Transformer, an architecture based on Artificial Neural Networks (ANN), has demonstrated promising results in various applications, including time series prediction and anomaly detection. Graph Neural Networks (GNNs) identify time series anomalies by capturing temporal connections and interdependencies between periods, leveraging the underlying graph structure of time series data. A novel feature selection approach is proposed to address challenges posed by high-dimensional data, improving anomaly detection by selecting different or more critical features from the data. This approach outperforms previous techniques in several aspects. Overall, this research introduces state-of-the-art algorithms for anomaly detection in time series data, offering advancements in real-time processing and decision-making across various industrial sectors. |
|---|---|
| AbstractList | Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing solutions. This study introduces deep ensemble models to improve traditional time series analysis and anomaly detection methods. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks effectively handle variable-length sequences and capture long-term relationships. Convolutional Neural Networks (CNNs) are also investigated, especially for univariate or multivariate time series forecasting. The Transformer, an architecture based on Artificial Neural Networks (ANN), has demonstrated promising results in various applications, including time series prediction and anomaly detection. Graph Neural Networks (GNNs) identify time series anomalies by capturing temporal connections and interdependencies between periods, leveraging the underlying graph structure of time series data. A novel feature selection approach is proposed to address challenges posed by high-dimensional data, improving anomaly detection by selecting different or more critical features from the data. This approach outperforms previous techniques in several aspects. Overall, this research introduces state-of-the-art algorithms for anomaly detection in time series data, offering advancements in real-time processing and decision-making across various industrial sectors. Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing solutions. This study introduces deep ensemble models to improve traditional time series analysis and anomaly detection methods. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks effectively handle variable-length sequences and capture long-term relationships. Convolutional Neural Networks (CNNs) are also investigated, especially for univariate or multivariate time series forecasting. The Transformer, an architecture based on Artificial Neural Networks (ANN), has demonstrated promising results in various applications, including time series prediction and anomaly detection. Graph Neural Networks (GNNs) identify time series anomalies by capturing temporal connections and interdependencies between periods, leveraging the underlying graph structure of time series data. A novel feature selection approach is proposed to address challenges posed by high-dimensional data, improving anomaly detection by selecting different or more critical features from the data. This approach outperforms previous techniques in several aspects. Overall, this research introduces state-of-the-art algorithms for anomaly detection in time series data, offering advancements in real-time processing and decision-making across various industrial sectors.Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing solutions. This study introduces deep ensemble models to improve traditional time series analysis and anomaly detection methods. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks effectively handle variable-length sequences and capture long-term relationships. Convolutional Neural Networks (CNNs) are also investigated, especially for univariate or multivariate time series forecasting. The Transformer, an architecture based on Artificial Neural Networks (ANN), has demonstrated promising results in various applications, including time series prediction and anomaly detection. Graph Neural Networks (GNNs) identify time series anomalies by capturing temporal connections and interdependencies between periods, leveraging the underlying graph structure of time series data. A novel feature selection approach is proposed to address challenges posed by high-dimensional data, improving anomaly detection by selecting different or more critical features from the data. This approach outperforms previous techniques in several aspects. Overall, this research introduces state-of-the-art algorithms for anomaly detection in time series data, offering advancements in real-time processing and decision-making across various industrial sectors. |
| Audience | Academic |
| Author | Alsubaei, Faisal S. Iqbal, Amjad Alzahrani, Abdulrahman Amin, Rashid |
| AuthorAffiliation | Air University, PAKISTAN 1 Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan 2 Department of Computer Science and Information Technology, University of Chakwal, Chakwal, Pakistan 4 Department of Information System and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia 3 Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia |
| AuthorAffiliation_xml | – name: 1 Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan – name: 4 Department of Information System and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia – name: Air University, PAKISTAN – name: 3 Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia – name: 2 Department of Computer Science and Information Technology, University of Chakwal, Chakwal, Pakistan |
| Author_xml | – sequence: 1 givenname: Amjad orcidid: 0009-0001-3288-1485 surname: Iqbal fullname: Iqbal, Amjad – sequence: 2 givenname: Rashid orcidid: 0000-0002-3143-689X surname: Amin fullname: Amin, Rashid – sequence: 3 givenname: Faisal S. surname: Alsubaei fullname: Alsubaei, Faisal S. – sequence: 4 givenname: Abdulrahman surname: Alzahrani fullname: Alzahrani, Abdulrahman |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38843255$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNku9r3CAcxmV0rD-2_2BsgcHYXtxNoyZxb8ZRuq3QUdivt2LMN3cWo7doyvrf16y5cSllDEFFP8-jfn2O0YHzDhB6TvCS0JK8u_JD75RdbtPyElNMK4EfoSMiaL4ockwP9uaH6DiEK4w5rYriCTqkVcVozvkR-rJyvlP2Jmsggo7Gu8y4rBtsNNeqNypCFk0HWYDeQMgaFVU2BOPWSQDbDFyArraQdb4BG56ix62yAZ5N4wn68fHs--nnxcXlp_PT1cVCF3kZF6qpa62ZUpQyrgnkqYdW0BZ0KRhO27Qp8qbO65KxWoicCAVlDbSpgAvG6Ql6eee7tT7IqRJBUlyIvMS0pIn4MBFD3UGjwcVeWbntTaf6G-mVkfMdZzZy7a8lIYQXjLDk8GZy6P2vAUKUnQkarFUO_PDnMC4qKghO6Kt76MNXmqi1siCNa306WI-mclWKouBEcJKo5QNUag10Rqe_bk1anwnezgSJifA7rtUQgjz_9vX_2cufc_b1HrsBZeMmeDuMGQlz8MV-qf_WeBeyBLy_A3TvQ-ihldpENfqkpxkrCZZjondFk2Oi5ZToJGb3xDv_f8puASTt-vI |
| CitedBy_id | crossref_primary_10_1007_s42417_025_02074_3 crossref_primary_10_1145_3719203 crossref_primary_10_1371_journal_pone_0328888 crossref_primary_10_3390_s24175628 crossref_primary_10_1016_j_comnet_2025_111082 crossref_primary_10_1109_ACCESS_2024_3470518 crossref_primary_10_1145_3737279 crossref_primary_10_1007_s41666_025_00192_x crossref_primary_10_1371_journal_pone_0324543 crossref_primary_10_3390_s24227277 crossref_primary_10_1371_journal_pone_0326983 |
| Cites_doi | 10.1016/j.engappai.2023.105964 10.1016/j.neucom.2017.04.070 10.1016/j.ijforecast.2021.11.001 10.1109/TKDE.2013.184 10.1016/j.engappai.2022.104743 10.1186/s13677-023-00491-x 10.1007/978-3-030-83819-5_7 10.1016/j.csda.2019.106839 10.1016/j.asoc.2021.107751 10.3390/s23052844 10.1162/neco.1997.9.8.1735 10.3390/s23052426 10.1007/s00146-020-00985-1 10.1145/3444690 10.1109/TIM.2023.3236354 10.1109/ASYU56188.2022.9925392 10.1109/ACCESS.2021.3083060 10.1016/j.inffus.2022.10.008 10.1007/978-3-030-11821-1_16 10.3390/app11073194 10.1016/j.engappai.2010.09.007 10.14778/3538598.3538602 10.1016/j.compchemeng.2023.108560 10.1109/MOBISECSERV.2018.8311440 10.1145/3572780 10.1002/jnm.2816 10.1148/radiol.2433060372 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Iqbal et al 2024 Iqbal et al 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Iqbal et al 2024 Iqbal et al – notice: 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM |
| DOI | 10.1371/journal.pone.0303890 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Anom Detc time series |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3069270373 PMC11156414 A796651951 38843255 10_1371_journal_pone_0303890 |
| Genre | Retracted Publication Journal Article |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c627t-adbbcc4aa3345c1e245cef93fec7940adb3d62db2b744b99219ae7be3d8e59453 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001241954400098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:19:59 EDT 2025 Tue Nov 04 02:05:37 EST 2025 Fri Sep 05 06:47:34 EDT 2025 Tue Oct 07 07:45:51 EDT 2025 Sat Nov 29 14:02:14 EST 2025 Sat Nov 29 10:39:49 EST 2025 Wed Nov 26 11:29:22 EST 2025 Wed Nov 26 11:00:56 EST 2025 Thu May 22 21:24:39 EDT 2025 Wed Jul 02 01:57:07 EDT 2025 Tue Nov 18 22:01:44 EST 2025 Sat Nov 29 03:58:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright: © 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c627t-adbbcc4aa3345c1e245cef93fec7940adb3d62db2b744b99219ae7be3d8e59453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The author have declared that no competing interest exit. |
| ORCID | 0009-0001-3288-1485 0000-0002-3143-689X |
| OpenAccessLink | https://www.proquest.com/docview/3069270373?pq-origsite=%requestingapplication% |
| PMID | 38843255 |
| PQID | 3069270373 |
| PQPubID | 1436336 |
| PageCount | e0303890 |
| ParticipantIDs | plos_journals_3069270373 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11156414 proquest_miscellaneous_3065983910 proquest_journals_3069270373 gale_infotracmisc_A796651951 gale_infotracacademiconefile_A796651951 gale_incontextgauss_ISR_A796651951 gale_incontextgauss_IOV_A796651951 gale_healthsolutions_A796651951 pubmed_primary_38843255 crossref_citationtrail_10_1371_journal_pone_0303890 crossref_primary_10_1371_journal_pone_0303890 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-06 |
| PublicationDateYYYYMMDD | 2024-06-06 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2024 |
| Publisher | Public Library of Science |
| Publisher_xml | – name: Public Library of Science |
| References | M Gupta (pone.0303890.ref008) 2013; 26 L Rettig (pone.0303890.ref030) 2019 A Terbuch (pone.0303890.ref033) 2023; 72 (pone.0303890.ref042) 2023 W Chen (pone.0303890.ref034) 2022 B Zong (pone.0303890.ref037) 2018 R Caruana (pone.0303890.ref044) 2004 P Malhotra (pone.0303890.ref038) 2015 KG Ranjan (pone.0303890.ref023) 2021; 34 B Sharma (pone.0303890.ref006) 2019 WH Suh (pone.0303890.ref026) 2023 S Hochreiter (pone.0303890.ref036) 1997; 9 Springer (pone.0303890.ref001) 2020 A Iqbal (pone.0303890.ref011) 2024; 182 ŞM Kaya (pone.0303890.ref046) 2023; 23 F Petropoulos (pone.0303890.ref003) 2022; 38 J Cyranka (pone.0303890.ref024) 2023 MA Belay (pone.0303890.ref025) 2023; 23 A Mohammed (pone.0303890.ref028) 2023 T-c Fu (pone.0303890.ref004) 2011; 24 G Li (pone.0303890.ref027) 2023; 91 K Yıldız (pone.0303890.ref045) 2022 V Kozitsin (pone.0303890.ref017) 2021; 11 M Thill (pone.0303890.ref020) 2021; 112 E Šabić (pone.0303890.ref005) 2021; 36 A Blázquez-García (pone.0303890.ref013) 2021; 54 AB Nassif (pone.0303890.ref015) 2021; 9 SF Ahmed (pone.0303890.ref021) 2023 M Toledano (pone.0303890.ref022) 2018 MA Lopez (pone.0303890.ref029) 2018 H Xu (pone.0303890.ref019) 2023 KM Hasib (pone.0303890.ref009) 2023 H Tang (pone.0303890.ref018) 2022 AE Ezugwu (pone.0303890.ref002) 2022; 110 S Schmidl (pone.0303890.ref016) 2022; 15 S Ahmad (pone.0303890.ref040) 2017; 262 A-R Al-Ghuwairi (pone.0303890.ref047) 2023; 12 Springer (pone.0303890.ref010) 2023 T Barbariol (pone.0303890.ref014) 2022 F Zhou (pone.0303890.ref031) 2023 A Bommert (pone.0303890.ref012) 2020; 143 J Kim (pone.0303890.ref032) 2023; 120 (pone.0303890.ref041) 2013 Z Li (pone.0303890.ref039) 2023 MJ Schell (pone.0303890.ref043) 2007; 243 W Hilal (pone.0303890.ref007) 2022; 193 Z Zhang (pone.0303890.ref035) 2023; 17 40591588 - PLoS One. 2025 Jul 1;20(7):e0326983. doi: 10.1371/journal.pone.0326983. |
| References_xml | – year: 2023 ident: pone.0303890.ref024 article-title: Unified Long-Term Time-Series Forecasting Benchmark. publication-title: arXiv preprint arXiv:230915946. – volume: 120 start-page: 105964 year: 2023 ident: pone.0303890.ref032 article-title: Time-series anomaly detection with stacked Transformer representations and 1D convolutional network publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.105964 – volume: 262 start-page: 134 year: 2017 ident: pone.0303890.ref040 article-title: Unsupervised real-time anomaly detection for streaming data. publication-title: Neurocomputing. doi: 10.1016/j.neucom.2017.04.070 – volume: 38 start-page: 705 issue: 3 year: 2022 ident: pone.0303890.ref003 article-title: Forecasting: theory and practice. publication-title: International Journal of Forecasting. doi: 10.1016/j.ijforecast.2021.11.001 – volume: 26 start-page: 2250 issue: 9 year: 2013 ident: pone.0303890.ref008 article-title: Outlier detection for temporal data: A survey publication-title: IEEE Transactions on Knowledge and data Engineering doi: 10.1109/TKDE.2013.184 – volume: 110 start-page: 104743 year: 2022 ident: pone.0303890.ref002 article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.104743 – year: 2022 ident: pone.0303890.ref034 article-title: editors. Deep variational graph convolutional recurrent network for multivariate time series anomaly detection publication-title: International Conference on Machine Learning – volume: 12 start-page: 127 issue: 1 year: 2023 ident: pone.0303890.ref047 article-title: Intrusion detection in cloud computing based on time series anomalies utilizing machine learning publication-title: Journal of Cloud Computing doi: 10.1186/s13677-023-00491-x – start-page: 149 year: 2022 ident: pone.0303890.ref014 article-title: A review of tree-based approaches for anomaly detection. publication-title: Control Charts and Machine Learning for Anomaly Detection in Manufacturing. doi: 10.1007/978-3-030-83819-5_7 – volume: 143 start-page: 106839 year: 2020 ident: pone.0303890.ref012 article-title: Benchmark for filter methods for feature selection in high-dimensional classification data. publication-title: Computational Statistics & Data Analysis. doi: 10.1016/j.csda.2019.106839 – year: 2018 ident: pone.0303890.ref022 article-title: Real-time anomaly detection system for time series at scale. publication-title: KDD 2017 Workshop on Anomaly Detection in Finance – year: 2019 ident: pone.0303890.ref006 article-title: Anomaly detection techniques using deep learning in IoT: a survey. publication-title: 2019 International conference on computational intelligence and knowledge economy (ICCIKE); – volume: 112 start-page: 107751 year: 2021 ident: pone.0303890.ref020 article-title: Temporal convolutional autoencoder for unsupervised anomaly detection in time series. publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107751 – start-page: 2022 year: 2022 ident: pone.0303890.ref018 article-title: Time Series Anomaly Detection Model Based on Multi-Features. publication-title: Computational Intelligence and Neuroscience – year: 2023 ident: pone.0303890.ref042 publication-title: CreditCardFraud2023 – volume: 23 start-page: 2844 issue: 5 year: 2023 ident: pone.0303890.ref025 article-title: Unsupervised Anomaly Detection for IoT-Based Multivariate Time Series: Existing Solutions, Performance Analysis and Future Directions. publication-title: Sensors. doi: 10.3390/s23052844 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: pone.0303890.ref036 article-title: Long Short-Term Memory. publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – year: 2023 ident: pone.0303890.ref039 article-title: Graph Neural Network based Log Anomaly Detection and Explanation. publication-title: arXiv preprint arXiv:230700527. – year: 2004 ident: pone.0303890.ref044 article-title: Data mining in metric space: an empirical analysis of supervised learning performance criteria. publication-title: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining – volume: 23 start-page: 2426 issue: 5 year: 2023 ident: pone.0303890.ref046 article-title: An Intelligent Anomaly Detection Approach for Accurate and Reliable Weather Forecasting at IoT Edges: A Case Study. publication-title: Sensors doi: 10.3390/s23052426 – year: 2023 ident: pone.0303890.ref028 article-title: A comprehensive review on ensemble deep learning: Opportunities and challenges publication-title: Journal of King Saud University-Computer and Information Sciences – year: 2013 ident: pone.0303890.ref041 publication-title: Credit card Fraud – year: 2023 ident: pone.0303890.ref031 article-title: Semi-Supervised Anomaly Detection via Neural Process publication-title: IEEE Transactions on Knowledge and Data Engineering – volume-title: Emerging Technology in Modelling and Graphics: Proceedings of IEM Graph 2018 year: 2020 ident: pone.0303890.ref001 – volume: 36 start-page: 149 issue: 1 year: 2021 ident: pone.0303890.ref005 article-title: Healthcare and anomaly detection: using machine learning to predict anomalies in heart rate data. publication-title: AI & SOCIETY. doi: 10.1007/s00146-020-00985-1 – volume: 54 start-page: 1 issue: 3 year: 2021 ident: pone.0303890.ref013 article-title: A review on outlier/anomaly detection in time series data publication-title: ACM Computing Surveys (CSUR). doi: 10.1145/3444690 – volume: 193 start-page: 34 issue: C year: 2022 ident: pone.0303890.ref007 article-title: Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances. publication-title: Expert Syst Appl. – volume: 72 start-page: 1 year: 2023 ident: pone.0303890.ref033 article-title: Detecting Anomalous Multivariate Time-Series via Hybrid Machine Learning publication-title: IEEE transactions on instrumentation and measurement doi: 10.1109/TIM.2023.3236354 – year: 2022 ident: pone.0303890.ref045 article-title: Anomaly Detection in Financial Data using Deep Learning: A Comparative Analysis. publication-title: 2022 Innovations in Intelligent Systems and Applications Conference (ASYU); doi: 10.1109/ASYU56188.2022.9925392 – volume: 9 start-page: 78658 year: 2021 ident: pone.0303890.ref015 article-title: Machine learning for anomaly detection: A systematic review. publication-title: Ieee Access doi: 10.1109/ACCESS.2021.3083060 – year: 2023 ident: pone.0303890.ref019 article-title: Deep isolation forest for anomaly detection publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 91 start-page: 93 year: 2023 ident: pone.0303890.ref027 article-title: Deep learning for anomaly detection in multivariate time series: Approaches, applications, and challenges. publication-title: Information Fusion doi: 10.1016/j.inffus.2022.10.008 – year: 2015 ident: pone.0303890.ref038 article-title: Long Short Term Memory Networks for Anomaly Detection in Time Series. publication-title: Esann – start-page: 289 year: 2019 ident: pone.0303890.ref030 article-title: Online anomaly detection over big data streams publication-title: Applied Data Science: Lessons Learned for the Data-Driven Business doi: 10.1007/978-3-030-11821-1_16 – volume: 11 start-page: 3194 issue: 7 year: 2021 ident: pone.0303890.ref017 article-title: Online forecasting and anomaly detection based on the ARIMA model. publication-title: Applied Sciences doi: 10.3390/app11073194 – volume: 24 start-page: 164 issue: 1 year: 2011 ident: pone.0303890.ref004 article-title: A review on time series data mining. publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2010.09.007 – volume: 15 start-page: 1779 issue: 9 year: 2022 ident: pone.0303890.ref016 article-title: Anomaly detection in time series: a comprehensive evaluation. publication-title: Proceedings of the VLDB Endowment doi: 10.14778/3538598.3538602 – volume: 182 start-page: 108560 year: 2024 ident: pone.0303890.ref011 article-title: Time series forecasting and anomaly detection using deep learning. publication-title: Computers & Chemical Engineering. doi: 10.1016/j.compchemeng.2023.108560 – start-page: 1 year: 2023 ident: pone.0303890.ref021 article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges publication-title: Artificial Intelligence Review – start-page: 1 year: 2023 ident: pone.0303890.ref026 article-title: Metaheuristic-based time series clustering for anomaly detection in manufacturing industry publication-title: Applied Intelligence – year: 2018 ident: pone.0303890.ref029 article-title: An evaluation of a virtual network function for real-time threat detection using stream processing. publication-title: 2018 Fourth international conference on mobile and secure services (MobiSecServ) doi: 10.1109/MOBISECSERV.2018.8311440 – volume: 17 start-page: 1 issue: 5 year: 2023 ident: pone.0303890.ref035 article-title: STAD-GAN: unsupervised anomaly detection on multivariate time series with self-training generative adversarial networks. publication-title: ACM Transactions on Knowledge Discovery from Data doi: 10.1145/3572780 – year: 2018 ident: pone.0303890.ref037 article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. publication-title: International conference on learning representations – start-page: 31 volume-title: Economic and Financial Crime, Sustainability and Good Governance year: 2023 ident: pone.0303890.ref010 – volume: 34 start-page: e2816 issue: 1 year: 2021 ident: pone.0303890.ref023 article-title: An improved sliding window prediction‐based outlier detection and correction for volatile time‐series publication-title: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. doi: 10.1002/jnm.2816 – volume: 243 start-page: 681 issue: 3 year: 2007 ident: pone.0303890.ref043 article-title: Evidence-based target recall rates for screening mammography. publication-title: Radiology. doi: 10.1148/radiol.2433060372 – year: 2023 ident: pone.0303890.ref009 article-title: MCNN-LSTM: Combining CNN and LSTM to Classify Multi-Class Text in Imbalanced News Data. publication-title: IEEE Access. – reference: 40591588 - PLoS One. 2025 Jul 1;20(7):e0326983. doi: 10.1371/journal.pone.0326983. |
| SSID | ssj0053866 |
| Score | 2.5228052 |
| SecondaryResourceType | retracted_publication |
| Snippet | Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data... |
| SourceID | plos pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0303890 |
| SubjectTerms | Algorithms Anomalies Artificial neural networks Biology and Life Sciences Clustering Complexity Computer and Information Sciences Data analysis Data transmission Datasets Decision making Deep Learning Engineering and Technology Forecasting Forecasts and trends Fraud Graph neural networks Industrial applications Learning strategies Long short-term memory Machine learning Manufacturing Multivariate Analysis Neural networks Neural Networks, Computer Physical Sciences Real time Recurrent neural networks Research and Analysis Methods Sequences Social Sciences Statistical analysis Time Factors Time series |
| SummonAdditionalLinks | – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQlgMXaPnqQgGDkIBD2iZ2nPhYIVYglVLxpd4ix5mUlbbZVbNbiX_Ps-MNpGoFXHLxTGRPZjzzlOcxYy-NVXmCxOSYahRJJavIALNFiqTZr0yd6tgfFD7Mjo7ykxN9_BsoXvqDL7J4L9h0dzFvaBcuiQwLiL6RCKUchWtyfLjeeRG7SoXjcddpDtJP2IRHi9m8varCvEyU_CPzTO7875w32e1QY_KDzim22A1q7rKtEMUtfx1aTb-5xz4C_Z-Z2U9e0dJzsho-bbgnGV4ARKMO5e7yee78FJqOTsodU_4UCrTggMB0Vs6I-_t02vvs2-Td17fvo3DBQmRVki0jU5WltdIYIWRqY0rwpFqLmizCdB_DolJJVSZlJmWpNXY3Q1lJosop1TIVD9iowRK3GddIhgh9UddWS1QpxhAJmRiUTwJlQjVmYm33wobu4-4SjFnhf6llQCGdcQpnsyLYbMyiXmvRdd_4i_wz90mL7gxpH7zFQQZU5_roxGP2wku41heN49acmlXbFh8-ff8HoS-fB0KvglA9x0qsCecZMB3XUmsguTOQRADbwfC2c8D1gtoCKE4nsGUmoLl2yquHn_fD7qWOL9fQfOVlUo3aN4ZJHnY-3BtQ5LkUQJJjlg-8uxdwHceHI830h-88jsSYKhnLR9dP-TG7laDu82w6tcNGy_MVPWE37cVy2p4_9fH6Cx01QO0 priority: 102 providerName: Public Library of Science |
| Title | Anomaly detection in multivariate time series data using deep ensemble models |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38843255 https://www.proquest.com/docview/3069270373 https://www.proquest.com/docview/3065983910 https://pubmed.ncbi.nlm.nih.gov/PMC11156414 http://dx.doi.org/10.1371/journal.pone.0303890 |
| Volume | 19 |
| WOSCitedRecordID | wos001241954400098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdYx4ELY3ytYxSDkIBDuiZ2vk6om1YxbS1RB1PHJXIcZ1TqkrC0k_jvec9xA0ETIHF5Fz9Hif0-nZ_fI-S1kF7ggGNCpJqyuMdTS0DOZnmKi0EqMje09UXhU38yCWazMDIHbpWBVa5tojbUaSHxjHwfQtvQAfH02fvym4Vdo_DvqmmhsUE2sUoC09C9aG2JQZc9z1yXY769b3anXxa56oNwg68etNyRMcqdclFUt0WcvwMnf_FEo63__YYH5L6JQemwFpptckflD8m20fKKvjWlqN89IuNhXlyJxXeaqqXGbOV0nlMNQryBJBviVIrN6SnKMcxEuClFJP0lTFAlhRRZXSULRXW_neox-Tw6-nT4wTINGCzpOf7SEmmSSMmFYIy70lYOUJWFLFMS1HgAwyz1nDRxEp_zJAzB-gnlJ4qlgXJD7rInpJPDYu8QGoKzBNPAskyGHKIYIZRi3BEQXjEII9IuYet9iKWpTo5NMhax_uXmQ5ZSL06Muxeb3esSq5lV1tU5_sL_Arc4ru-YNsodD33I-rDOjt0lrzQHlsbIEXtzKVZVFR9_PP8HprNpi-mNYcoK-BIpzH0HeB0sudXi3GtxgoLL1vAOCuT6g6r4pxjBzLWg3T78shnGhyKeLlfFSvO4IcTGNizJ01qmmwVkQcAZZJpdErSkvWHAiuTtkXz-VVcmB8fpetzmu39-r2fkngOxoUbceXuks7xeqefkrrxZzqvrHtnwp-dIZ76mAdDg0O6RzYOjSTTt6WMToKPoFOjJQR_oeHDS07qv6RnQyP0CM6LjcXTxA8EaXzg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VAQkuQHk1UOiCQMDBbezd-HFAKAKqRk0DKm3Vm1mvxyVSYofaKeqf4jcys14HjCrg0gOXXGY28u7OfPutPQ_Gninthx4eTBSpBo70ZeoovLM5PkjVS1XWj1yTKDwKxuPw-Dj6uMK-N7kwFFbZYKIB6rTQ9I58C6lt5KF5BuLN_KtDXaPo62rTQqM2i104_4ZXtvL18B3u73PP235_8HbHsV0FHO17QeWoNEm0lkoJIfvaBQ9_IYtEBhpts4dikfpemnhJIGUSRejSCoIERBpCP5LUJQIh_wriuEshZMH-UYP8iB2-b9PzROBuWWvYnBc5bKIzITfotY4_ewh05tOivIjh_h6o-cvJt33zf1uzW-yG5dh8UDvFKluB_DZbtShW8pe21ParO2xvkBczNT3nKVQmJi3nk5ybIMszha5ZAa8mM-DkpziSwmk5ZQqc4ACYc8hLmCVT4KafUHmXHV7KtO6xTo6bu8Z4hGQAoU9kmY4ksjSlAIT0FNJHgTQp7TLR7HusbfV1agIyjc0nxQBvYfXixGQtsbWWLnOWo-Z19ZG_6G-QScV1Du0SvOJBgLdaqiPkdtlTo0GlP3KKLTpRi7KMhx-O_kHp035L6YVVygqciVY2nwMfh0qKtTTXW5oIYLolXiMHaCZUxj_NFkc2hn2x-MlSTH9K8YI5FAuj04-Q-7u4JPdrH1ouoAhDKfAm3WVhy7uWClRxvS3JJ19M5XUkBn1fuvLBn59rg13bOdgbxaPhePchu-4hDzbRhf4661SnC3jEruqzalKePjb4wdnny3a-HwZYsrY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqBSEuQHl1oVCDQMAh3Y3tvA4IrVpWrFqWCijqLTjOpKy0myxNtqh_jV_H2HECQRVw6YFLLh5HsfPNeCb5ZoaQJ1L5IcODSTPVwBG-SB2JMZvjg5DDVGZe5JpE4f1gOg2PjqKDNfK9yYXRtMrGJhpDnRZKfyMfoGsbMYRnwAeZpUUc7I5fLb86uoOU_tPatNOoIbIHZ98wfCtfTnbxXT9lbPz6484bx3YYcJTPgsqRaZIoJaTkXHjKBYZXyCKegUKcDnGYpz5LE5YEQiRRhOotIUiApyF4kdAdI9D8Xwo4olhnqe-09BK0I75vU_V44A4sMraXRQ7bqFjoJww7R6E9EHrLeVGe5-3-Ttr85RQcX_-f9-8GuWZ9bzqqlWWdrEF-k6xb61bS57YE94tb5O0oLxZyfkZTqAxXLaeznBry5alEla2AVrMFUK2_OFPTbKnOIDjGCbCkkJewSOZATZ-h8jY5vJBl3SG9HF_0BqEROgloEnmWqUig9yYlABdMolvJ0X1K-4Q3GIiVrcqum4PMY_OrMcDorN6cWCMntsjpE6edtayrkvxFfkvDK65za1ujFo8CjHZ1fSG3Tx4bCV0SJNfgOJarsown7z79g9CH9x2hZ1YoK3AlSto8D3wcXWqsI7nZkUTDpjrDG1oZmgWV8U8I48wG5OcPP2qH9U01jzCHYmVkvAhjAhe35G6tT-0G8jAUHCPsPgk7mtYK6Ers3ZF89sVUZEeHwfOFK-79-bm2yBXUuXh_Mt27T64ydI8N6dDfJL3qZAUPyGV1Ws3Kk4fGlFDy-aJ17wdjgrsR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+in+multivariate+time+series+data+using+deep+ensemble+models&rft.jtitle=PloS+one&rft.au=Iqbal%2C+Amjad&rft.au=Amin%2C+Rashid&rft.au=Alsubaei%2C+Faisal+S&rft.au=Alzahrani%2C+Abdulrahman&rft.date=2024-06-06&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=6&rft.spage=e0303890&rft_id=info:doi/10.1371%2Fjournal.pone.0303890&rft.externalDocID=A796651951 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |