Anomaly detection in multivariate time series data using deep ensemble models

Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 19; no. 6; p. e0303890
Main Authors: Iqbal, Amjad, Amin, Rashid, Alsubaei, Faisal S., Alzahrani, Abdulrahman
Format: Journal Article
Language:English
Published: United States Public Library of Science 06.06.2024
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing solutions. This study introduces deep ensemble models to improve traditional time series analysis and anomaly detection methods. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks effectively handle variable-length sequences and capture long-term relationships. Convolutional Neural Networks (CNNs) are also investigated, especially for univariate or multivariate time series forecasting. The Transformer, an architecture based on Artificial Neural Networks (ANN), has demonstrated promising results in various applications, including time series prediction and anomaly detection. Graph Neural Networks (GNNs) identify time series anomalies by capturing temporal connections and interdependencies between periods, leveraging the underlying graph structure of time series data. A novel feature selection approach is proposed to address challenges posed by high-dimensional data, improving anomaly detection by selecting different or more critical features from the data. This approach outperforms previous techniques in several aspects. Overall, this research introduces state-of-the-art algorithms for anomaly detection in time series data, offering advancements in real-time processing and decision-making across various industrial sectors.
AbstractList Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing solutions. This study introduces deep ensemble models to improve traditional time series analysis and anomaly detection methods. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks effectively handle variable-length sequences and capture long-term relationships. Convolutional Neural Networks (CNNs) are also investigated, especially for univariate or multivariate time series forecasting. The Transformer, an architecture based on Artificial Neural Networks (ANN), has demonstrated promising results in various applications, including time series prediction and anomaly detection. Graph Neural Networks (GNNs) identify time series anomalies by capturing temporal connections and interdependencies between periods, leveraging the underlying graph structure of time series data. A novel feature selection approach is proposed to address challenges posed by high-dimensional data, improving anomaly detection by selecting different or more critical features from the data. This approach outperforms previous techniques in several aspects. Overall, this research introduces state-of-the-art algorithms for anomaly detection in time series data, offering advancements in real-time processing and decision-making across various industrial sectors.
Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing solutions. This study introduces deep ensemble models to improve traditional time series analysis and anomaly detection methods. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks effectively handle variable-length sequences and capture long-term relationships. Convolutional Neural Networks (CNNs) are also investigated, especially for univariate or multivariate time series forecasting. The Transformer, an architecture based on Artificial Neural Networks (ANN), has demonstrated promising results in various applications, including time series prediction and anomaly detection. Graph Neural Networks (GNNs) identify time series anomalies by capturing temporal connections and interdependencies between periods, leveraging the underlying graph structure of time series data. A novel feature selection approach is proposed to address challenges posed by high-dimensional data, improving anomaly detection by selecting different or more critical features from the data. This approach outperforms previous techniques in several aspects. Overall, this research introduces state-of-the-art algorithms for anomaly detection in time series data, offering advancements in real-time processing and decision-making across various industrial sectors.Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing solutions. This study introduces deep ensemble models to improve traditional time series analysis and anomaly detection methods. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks effectively handle variable-length sequences and capture long-term relationships. Convolutional Neural Networks (CNNs) are also investigated, especially for univariate or multivariate time series forecasting. The Transformer, an architecture based on Artificial Neural Networks (ANN), has demonstrated promising results in various applications, including time series prediction and anomaly detection. Graph Neural Networks (GNNs) identify time series anomalies by capturing temporal connections and interdependencies between periods, leveraging the underlying graph structure of time series data. A novel feature selection approach is proposed to address challenges posed by high-dimensional data, improving anomaly detection by selecting different or more critical features from the data. This approach outperforms previous techniques in several aspects. Overall, this research introduces state-of-the-art algorithms for anomaly detection in time series data, offering advancements in real-time processing and decision-making across various industrial sectors.
Audience Academic
Author Alsubaei, Faisal S.
Iqbal, Amjad
Alzahrani, Abdulrahman
Amin, Rashid
AuthorAffiliation Air University, PAKISTAN
1 Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan
2 Department of Computer Science and Information Technology, University of Chakwal, Chakwal, Pakistan
4 Department of Information System and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
3 Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
AuthorAffiliation_xml – name: 1 Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan
– name: 4 Department of Information System and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
– name: Air University, PAKISTAN
– name: 3 Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
– name: 2 Department of Computer Science and Information Technology, University of Chakwal, Chakwal, Pakistan
Author_xml – sequence: 1
  givenname: Amjad
  orcidid: 0009-0001-3288-1485
  surname: Iqbal
  fullname: Iqbal, Amjad
– sequence: 2
  givenname: Rashid
  orcidid: 0000-0002-3143-689X
  surname: Amin
  fullname: Amin, Rashid
– sequence: 3
  givenname: Faisal S.
  surname: Alsubaei
  fullname: Alsubaei, Faisal S.
– sequence: 4
  givenname: Abdulrahman
  surname: Alzahrani
  fullname: Alzahrani, Abdulrahman
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38843255$$D View this record in MEDLINE/PubMed
BookMark eNqNku9r3CAcxmV0rD-2_2BsgcHYXtxNoyZxb8ZRuq3QUdivt2LMN3cWo7doyvrf16y5cSllDEFFP8-jfn2O0YHzDhB6TvCS0JK8u_JD75RdbtPyElNMK4EfoSMiaL4ockwP9uaH6DiEK4w5rYriCTqkVcVozvkR-rJyvlP2Jmsggo7Gu8y4rBtsNNeqNypCFk0HWYDeQMgaFVU2BOPWSQDbDFyArraQdb4BG56ix62yAZ5N4wn68fHs--nnxcXlp_PT1cVCF3kZF6qpa62ZUpQyrgnkqYdW0BZ0KRhO27Qp8qbO65KxWoicCAVlDbSpgAvG6Ql6eee7tT7IqRJBUlyIvMS0pIn4MBFD3UGjwcVeWbntTaf6G-mVkfMdZzZy7a8lIYQXjLDk8GZy6P2vAUKUnQkarFUO_PDnMC4qKghO6Kt76MNXmqi1siCNa306WI-mclWKouBEcJKo5QNUag10Rqe_bk1anwnezgSJifA7rtUQgjz_9vX_2cufc_b1HrsBZeMmeDuMGQlz8MV-qf_WeBeyBLy_A3TvQ-ihldpENfqkpxkrCZZjondFk2Oi5ZToJGb3xDv_f8puASTt-vI
CitedBy_id crossref_primary_10_1007_s42417_025_02074_3
crossref_primary_10_1145_3719203
crossref_primary_10_1371_journal_pone_0328888
crossref_primary_10_3390_s24175628
crossref_primary_10_1016_j_comnet_2025_111082
crossref_primary_10_1109_ACCESS_2024_3470518
crossref_primary_10_1145_3737279
crossref_primary_10_1007_s41666_025_00192_x
crossref_primary_10_1371_journal_pone_0324543
crossref_primary_10_3390_s24227277
crossref_primary_10_1371_journal_pone_0326983
Cites_doi 10.1016/j.engappai.2023.105964
10.1016/j.neucom.2017.04.070
10.1016/j.ijforecast.2021.11.001
10.1109/TKDE.2013.184
10.1016/j.engappai.2022.104743
10.1186/s13677-023-00491-x
10.1007/978-3-030-83819-5_7
10.1016/j.csda.2019.106839
10.1016/j.asoc.2021.107751
10.3390/s23052844
10.1162/neco.1997.9.8.1735
10.3390/s23052426
10.1007/s00146-020-00985-1
10.1145/3444690
10.1109/TIM.2023.3236354
10.1109/ASYU56188.2022.9925392
10.1109/ACCESS.2021.3083060
10.1016/j.inffus.2022.10.008
10.1007/978-3-030-11821-1_16
10.3390/app11073194
10.1016/j.engappai.2010.09.007
10.14778/3538598.3538602
10.1016/j.compchemeng.2023.108560
10.1109/MOBISECSERV.2018.8311440
10.1145/3572780
10.1002/jnm.2816
10.1148/radiol.2433060372
ContentType Journal Article
Copyright Copyright: © 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Iqbal et al 2024 Iqbal et al
2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Iqbal et al 2024 Iqbal et al
– notice: 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOI 10.1371/journal.pone.0303890
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic



Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Anom Detc time series
EISSN 1932-6203
ExternalDocumentID 3069270373
PMC11156414
A796651951
38843255
10_1371_journal_pone_0303890
Genre Retracted Publication
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c627t-adbbcc4aa3345c1e245cef93fec7940adb3d62db2b744b99219ae7be3d8e59453
IEDL.DBID M7P
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001241954400098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:59 EDT 2025
Tue Nov 04 02:05:37 EST 2025
Fri Sep 05 06:47:34 EDT 2025
Tue Oct 07 07:45:51 EDT 2025
Sat Nov 29 14:02:14 EST 2025
Sat Nov 29 10:39:49 EST 2025
Wed Nov 26 11:29:22 EST 2025
Wed Nov 26 11:00:56 EST 2025
Thu May 22 21:24:39 EDT 2025
Wed Jul 02 01:57:07 EDT 2025
Tue Nov 18 22:01:44 EST 2025
Sat Nov 29 03:58:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2024 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-adbbcc4aa3345c1e245cef93fec7940adb3d62db2b744b99219ae7be3d8e59453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The author have declared that no competing interest exit.
ORCID 0009-0001-3288-1485
0000-0002-3143-689X
OpenAccessLink https://www.proquest.com/docview/3069270373?pq-origsite=%requestingapplication%
PMID 38843255
PQID 3069270373
PQPubID 1436336
PageCount e0303890
ParticipantIDs plos_journals_3069270373
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11156414
proquest_miscellaneous_3065983910
proquest_journals_3069270373
gale_infotracmisc_A796651951
gale_infotracacademiconefile_A796651951
gale_incontextgauss_ISR_A796651951
gale_incontextgauss_IOV_A796651951
gale_healthsolutions_A796651951
pubmed_primary_38843255
crossref_citationtrail_10_1371_journal_pone_0303890
crossref_primary_10_1371_journal_pone_0303890
PublicationCentury 2000
PublicationDate 2024-06-06
PublicationDateYYYYMMDD 2024-06-06
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Publisher_xml – name: Public Library of Science
References M Gupta (pone.0303890.ref008) 2013; 26
L Rettig (pone.0303890.ref030) 2019
A Terbuch (pone.0303890.ref033) 2023; 72
(pone.0303890.ref042) 2023
W Chen (pone.0303890.ref034) 2022
B Zong (pone.0303890.ref037) 2018
R Caruana (pone.0303890.ref044) 2004
P Malhotra (pone.0303890.ref038) 2015
KG Ranjan (pone.0303890.ref023) 2021; 34
B Sharma (pone.0303890.ref006) 2019
WH Suh (pone.0303890.ref026) 2023
S Hochreiter (pone.0303890.ref036) 1997; 9
Springer (pone.0303890.ref001) 2020
A Iqbal (pone.0303890.ref011) 2024; 182
ŞM Kaya (pone.0303890.ref046) 2023; 23
F Petropoulos (pone.0303890.ref003) 2022; 38
J Cyranka (pone.0303890.ref024) 2023
MA Belay (pone.0303890.ref025) 2023; 23
A Mohammed (pone.0303890.ref028) 2023
T-c Fu (pone.0303890.ref004) 2011; 24
G Li (pone.0303890.ref027) 2023; 91
K Yıldız (pone.0303890.ref045) 2022
V Kozitsin (pone.0303890.ref017) 2021; 11
M Thill (pone.0303890.ref020) 2021; 112
E Šabić (pone.0303890.ref005) 2021; 36
A Blázquez-García (pone.0303890.ref013) 2021; 54
AB Nassif (pone.0303890.ref015) 2021; 9
SF Ahmed (pone.0303890.ref021) 2023
M Toledano (pone.0303890.ref022) 2018
MA Lopez (pone.0303890.ref029) 2018
H Xu (pone.0303890.ref019) 2023
KM Hasib (pone.0303890.ref009) 2023
H Tang (pone.0303890.ref018) 2022
AE Ezugwu (pone.0303890.ref002) 2022; 110
S Schmidl (pone.0303890.ref016) 2022; 15
S Ahmad (pone.0303890.ref040) 2017; 262
A-R Al-Ghuwairi (pone.0303890.ref047) 2023; 12
Springer (pone.0303890.ref010) 2023
T Barbariol (pone.0303890.ref014) 2022
F Zhou (pone.0303890.ref031) 2023
A Bommert (pone.0303890.ref012) 2020; 143
J Kim (pone.0303890.ref032) 2023; 120
(pone.0303890.ref041) 2013
Z Li (pone.0303890.ref039) 2023
MJ Schell (pone.0303890.ref043) 2007; 243
W Hilal (pone.0303890.ref007) 2022; 193
Z Zhang (pone.0303890.ref035) 2023; 17
40591588 - PLoS One. 2025 Jul 1;20(7):e0326983. doi: 10.1371/journal.pone.0326983.
References_xml – year: 2023
  ident: pone.0303890.ref024
  article-title: Unified Long-Term Time-Series Forecasting Benchmark.
  publication-title: arXiv preprint arXiv:230915946.
– volume: 120
  start-page: 105964
  year: 2023
  ident: pone.0303890.ref032
  article-title: Time-series anomaly detection with stacked Transformer representations and 1D convolutional network
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.105964
– volume: 262
  start-page: 134
  year: 2017
  ident: pone.0303890.ref040
  article-title: Unsupervised real-time anomaly detection for streaming data.
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2017.04.070
– volume: 38
  start-page: 705
  issue: 3
  year: 2022
  ident: pone.0303890.ref003
  article-title: Forecasting: theory and practice.
  publication-title: International Journal of Forecasting.
  doi: 10.1016/j.ijforecast.2021.11.001
– volume: 26
  start-page: 2250
  issue: 9
  year: 2013
  ident: pone.0303890.ref008
  article-title: Outlier detection for temporal data: A survey
  publication-title: IEEE Transactions on Knowledge and data Engineering
  doi: 10.1109/TKDE.2013.184
– volume: 110
  start-page: 104743
  year: 2022
  ident: pone.0303890.ref002
  article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.104743
– year: 2022
  ident: pone.0303890.ref034
  article-title: editors. Deep variational graph convolutional recurrent network for multivariate time series anomaly detection
  publication-title: International Conference on Machine Learning
– volume: 12
  start-page: 127
  issue: 1
  year: 2023
  ident: pone.0303890.ref047
  article-title: Intrusion detection in cloud computing based on time series anomalies utilizing machine learning
  publication-title: Journal of Cloud Computing
  doi: 10.1186/s13677-023-00491-x
– start-page: 149
  year: 2022
  ident: pone.0303890.ref014
  article-title: A review of tree-based approaches for anomaly detection.
  publication-title: Control Charts and Machine Learning for Anomaly Detection in Manufacturing.
  doi: 10.1007/978-3-030-83819-5_7
– volume: 143
  start-page: 106839
  year: 2020
  ident: pone.0303890.ref012
  article-title: Benchmark for filter methods for feature selection in high-dimensional classification data.
  publication-title: Computational Statistics & Data Analysis.
  doi: 10.1016/j.csda.2019.106839
– year: 2018
  ident: pone.0303890.ref022
  article-title: Real-time anomaly detection system for time series at scale.
  publication-title: KDD 2017 Workshop on Anomaly Detection in Finance
– year: 2019
  ident: pone.0303890.ref006
  article-title: Anomaly detection techniques using deep learning in IoT: a survey.
  publication-title: 2019 International conference on computational intelligence and knowledge economy (ICCIKE);
– volume: 112
  start-page: 107751
  year: 2021
  ident: pone.0303890.ref020
  article-title: Temporal convolutional autoencoder for unsupervised anomaly detection in time series.
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107751
– start-page: 2022
  year: 2022
  ident: pone.0303890.ref018
  article-title: Time Series Anomaly Detection Model Based on Multi-Features.
  publication-title: Computational Intelligence and Neuroscience
– year: 2023
  ident: pone.0303890.ref042
  publication-title: CreditCardFraud2023
– volume: 23
  start-page: 2844
  issue: 5
  year: 2023
  ident: pone.0303890.ref025
  article-title: Unsupervised Anomaly Detection for IoT-Based Multivariate Time Series: Existing Solutions, Performance Analysis and Future Directions.
  publication-title: Sensors.
  doi: 10.3390/s23052844
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: pone.0303890.ref036
  article-title: Long Short-Term Memory.
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– year: 2023
  ident: pone.0303890.ref039
  article-title: Graph Neural Network based Log Anomaly Detection and Explanation.
  publication-title: arXiv preprint arXiv:230700527.
– year: 2004
  ident: pone.0303890.ref044
  article-title: Data mining in metric space: an empirical analysis of supervised learning performance criteria.
  publication-title: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining
– volume: 23
  start-page: 2426
  issue: 5
  year: 2023
  ident: pone.0303890.ref046
  article-title: An Intelligent Anomaly Detection Approach for Accurate and Reliable Weather Forecasting at IoT Edges: A Case Study.
  publication-title: Sensors
  doi: 10.3390/s23052426
– year: 2023
  ident: pone.0303890.ref028
  article-title: A comprehensive review on ensemble deep learning: Opportunities and challenges
  publication-title: Journal of King Saud University-Computer and Information Sciences
– year: 2013
  ident: pone.0303890.ref041
  publication-title: Credit card Fraud
– year: 2023
  ident: pone.0303890.ref031
  article-title: Semi-Supervised Anomaly Detection via Neural Process
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume-title: Emerging Technology in Modelling and Graphics: Proceedings of IEM Graph 2018
  year: 2020
  ident: pone.0303890.ref001
– volume: 36
  start-page: 149
  issue: 1
  year: 2021
  ident: pone.0303890.ref005
  article-title: Healthcare and anomaly detection: using machine learning to predict anomalies in heart rate data.
  publication-title: AI & SOCIETY.
  doi: 10.1007/s00146-020-00985-1
– volume: 54
  start-page: 1
  issue: 3
  year: 2021
  ident: pone.0303890.ref013
  article-title: A review on outlier/anomaly detection in time series data
  publication-title: ACM Computing Surveys (CSUR).
  doi: 10.1145/3444690
– volume: 193
  start-page: 34
  issue: C
  year: 2022
  ident: pone.0303890.ref007
  article-title: Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances.
  publication-title: Expert Syst Appl.
– volume: 72
  start-page: 1
  year: 2023
  ident: pone.0303890.ref033
  article-title: Detecting Anomalous Multivariate Time-Series via Hybrid Machine Learning
  publication-title: IEEE transactions on instrumentation and measurement
  doi: 10.1109/TIM.2023.3236354
– year: 2022
  ident: pone.0303890.ref045
  article-title: Anomaly Detection in Financial Data using Deep Learning: A Comparative Analysis.
  publication-title: 2022 Innovations in Intelligent Systems and Applications Conference (ASYU);
  doi: 10.1109/ASYU56188.2022.9925392
– volume: 9
  start-page: 78658
  year: 2021
  ident: pone.0303890.ref015
  article-title: Machine learning for anomaly detection: A systematic review.
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2021.3083060
– year: 2023
  ident: pone.0303890.ref019
  article-title: Deep isolation forest for anomaly detection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 91
  start-page: 93
  year: 2023
  ident: pone.0303890.ref027
  article-title: Deep learning for anomaly detection in multivariate time series: Approaches, applications, and challenges.
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2022.10.008
– year: 2015
  ident: pone.0303890.ref038
  article-title: Long Short Term Memory Networks for Anomaly Detection in Time Series.
  publication-title: Esann
– start-page: 289
  year: 2019
  ident: pone.0303890.ref030
  article-title: Online anomaly detection over big data streams
  publication-title: Applied Data Science: Lessons Learned for the Data-Driven Business
  doi: 10.1007/978-3-030-11821-1_16
– volume: 11
  start-page: 3194
  issue: 7
  year: 2021
  ident: pone.0303890.ref017
  article-title: Online forecasting and anomaly detection based on the ARIMA model.
  publication-title: Applied Sciences
  doi: 10.3390/app11073194
– volume: 24
  start-page: 164
  issue: 1
  year: 2011
  ident: pone.0303890.ref004
  article-title: A review on time series data mining.
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2010.09.007
– volume: 15
  start-page: 1779
  issue: 9
  year: 2022
  ident: pone.0303890.ref016
  article-title: Anomaly detection in time series: a comprehensive evaluation.
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3538598.3538602
– volume: 182
  start-page: 108560
  year: 2024
  ident: pone.0303890.ref011
  article-title: Time series forecasting and anomaly detection using deep learning.
  publication-title: Computers & Chemical Engineering.
  doi: 10.1016/j.compchemeng.2023.108560
– start-page: 1
  year: 2023
  ident: pone.0303890.ref021
  article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges
  publication-title: Artificial Intelligence Review
– start-page: 1
  year: 2023
  ident: pone.0303890.ref026
  article-title: Metaheuristic-based time series clustering for anomaly detection in manufacturing industry
  publication-title: Applied Intelligence
– year: 2018
  ident: pone.0303890.ref029
  article-title: An evaluation of a virtual network function for real-time threat detection using stream processing.
  publication-title: 2018 Fourth international conference on mobile and secure services (MobiSecServ)
  doi: 10.1109/MOBISECSERV.2018.8311440
– volume: 17
  start-page: 1
  issue: 5
  year: 2023
  ident: pone.0303890.ref035
  article-title: STAD-GAN: unsupervised anomaly detection on multivariate time series with self-training generative adversarial networks.
  publication-title: ACM Transactions on Knowledge Discovery from Data
  doi: 10.1145/3572780
– year: 2018
  ident: pone.0303890.ref037
  article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection.
  publication-title: International conference on learning representations
– start-page: 31
  volume-title: Economic and Financial Crime, Sustainability and Good Governance
  year: 2023
  ident: pone.0303890.ref010
– volume: 34
  start-page: e2816
  issue: 1
  year: 2021
  ident: pone.0303890.ref023
  article-title: An improved sliding window prediction‐based outlier detection and correction for volatile time‐series
  publication-title: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields.
  doi: 10.1002/jnm.2816
– volume: 243
  start-page: 681
  issue: 3
  year: 2007
  ident: pone.0303890.ref043
  article-title: Evidence-based target recall rates for screening mammography.
  publication-title: Radiology.
  doi: 10.1148/radiol.2433060372
– year: 2023
  ident: pone.0303890.ref009
  article-title: MCNN-LSTM: Combining CNN and LSTM to Classify Multi-Class Text in Imbalanced News Data.
  publication-title: IEEE Access.
– reference: 40591588 - PLoS One. 2025 Jul 1;20(7):e0326983. doi: 10.1371/journal.pone.0326983.
SSID ssj0053866
Score 2.5228052
SecondaryResourceType retracted_publication
Snippet Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data...
SourceID plos
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0303890
SubjectTerms Algorithms
Anomalies
Artificial neural networks
Biology and Life Sciences
Clustering
Complexity
Computer and Information Sciences
Data analysis
Data transmission
Datasets
Decision making
Deep Learning
Engineering and Technology
Forecasting
Forecasts and trends
Fraud
Graph neural networks
Industrial applications
Learning strategies
Long short-term memory
Machine learning
Manufacturing
Multivariate Analysis
Neural networks
Neural Networks, Computer
Physical Sciences
Real time
Recurrent neural networks
Research and Analysis Methods
Sequences
Social Sciences
Statistical analysis
Time Factors
Time series
SummonAdditionalLinks – databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQlgMXaPnqQgGDkIBD2iZ2nPhYIVYglVLxpd4ix5mUlbbZVbNbiX_Ps-MNpGoFXHLxTGRPZjzzlOcxYy-NVXmCxOSYahRJJavIALNFiqTZr0yd6tgfFD7Mjo7ykxN9_BsoXvqDL7J4L9h0dzFvaBcuiQwLiL6RCKUchWtyfLjeeRG7SoXjcddpDtJP2IRHi9m8varCvEyU_CPzTO7875w32e1QY_KDzim22A1q7rKtEMUtfx1aTb-5xz4C_Z-Z2U9e0dJzsho-bbgnGV4ARKMO5e7yee78FJqOTsodU_4UCrTggMB0Vs6I-_t02vvs2-Td17fvo3DBQmRVki0jU5WltdIYIWRqY0rwpFqLmizCdB_DolJJVSZlJmWpNXY3Q1lJosop1TIVD9iowRK3GddIhgh9UddWS1QpxhAJmRiUTwJlQjVmYm33wobu4-4SjFnhf6llQCGdcQpnsyLYbMyiXmvRdd_4i_wz90mL7gxpH7zFQQZU5_roxGP2wku41heN49acmlXbFh8-ff8HoS-fB0KvglA9x0qsCecZMB3XUmsguTOQRADbwfC2c8D1gtoCKE4nsGUmoLl2yquHn_fD7qWOL9fQfOVlUo3aN4ZJHnY-3BtQ5LkUQJJjlg-8uxdwHceHI830h-88jsSYKhnLR9dP-TG7laDu82w6tcNGy_MVPWE37cVy2p4_9fH6Cx01QO0
  priority: 102
  providerName: Public Library of Science
Title Anomaly detection in multivariate time series data using deep ensemble models
URI https://www.ncbi.nlm.nih.gov/pubmed/38843255
https://www.proquest.com/docview/3069270373
https://www.proquest.com/docview/3065983910
https://pubmed.ncbi.nlm.nih.gov/PMC11156414
http://dx.doi.org/10.1371/journal.pone.0303890
Volume 19
WOSCitedRecordID wos001241954400098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdYx4ELY3ytYxSDkIBDuiZ2vk6om1YxbS1RB1PHJXIcZ1TqkrC0k_jvec9xA0ETIHF5Fz9Hif0-nZ_fI-S1kF7ggGNCpJqyuMdTS0DOZnmKi0EqMje09UXhU38yCWazMDIHbpWBVa5tojbUaSHxjHwfQtvQAfH02fvym4Vdo_DvqmmhsUE2sUoC09C9aG2JQZc9z1yXY769b3anXxa56oNwg68etNyRMcqdclFUt0WcvwMnf_FEo63__YYH5L6JQemwFpptckflD8m20fKKvjWlqN89IuNhXlyJxXeaqqXGbOV0nlMNQryBJBviVIrN6SnKMcxEuClFJP0lTFAlhRRZXSULRXW_neox-Tw6-nT4wTINGCzpOf7SEmmSSMmFYIy70lYOUJWFLFMS1HgAwyz1nDRxEp_zJAzB-gnlJ4qlgXJD7rInpJPDYu8QGoKzBNPAskyGHKIYIZRi3BEQXjEII9IuYet9iKWpTo5NMhax_uXmQ5ZSL06Muxeb3esSq5lV1tU5_sL_Arc4ru-YNsodD33I-rDOjt0lrzQHlsbIEXtzKVZVFR9_PP8HprNpi-mNYcoK-BIpzH0HeB0sudXi3GtxgoLL1vAOCuT6g6r4pxjBzLWg3T78shnGhyKeLlfFSvO4IcTGNizJ01qmmwVkQcAZZJpdErSkvWHAiuTtkXz-VVcmB8fpetzmu39-r2fkngOxoUbceXuks7xeqefkrrxZzqvrHtnwp-dIZ76mAdDg0O6RzYOjSTTt6WMToKPoFOjJQR_oeHDS07qv6RnQyP0CM6LjcXTxA8EaXzg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VAQkuQHk1UOiCQMDBbezd-HFAKAKqRk0DKm3Vm1mvxyVSYofaKeqf4jcys14HjCrg0gOXXGY28u7OfPutPQ_Gninthx4eTBSpBo70ZeoovLM5PkjVS1XWj1yTKDwKxuPw-Dj6uMK-N7kwFFbZYKIB6rTQ9I58C6lt5KF5BuLN_KtDXaPo62rTQqM2i104_4ZXtvL18B3u73PP235_8HbHsV0FHO17QeWoNEm0lkoJIfvaBQ9_IYtEBhpts4dikfpemnhJIGUSRejSCoIERBpCP5LUJQIh_wriuEshZMH-UYP8iB2-b9PzROBuWWvYnBc5bKIzITfotY4_ewh05tOivIjh_h6o-cvJt33zf1uzW-yG5dh8UDvFKluB_DZbtShW8pe21ParO2xvkBczNT3nKVQmJi3nk5ybIMszha5ZAa8mM-DkpziSwmk5ZQqc4ACYc8hLmCVT4KafUHmXHV7KtO6xTo6bu8Z4hGQAoU9kmY4ksjSlAIT0FNJHgTQp7TLR7HusbfV1agIyjc0nxQBvYfXixGQtsbWWLnOWo-Z19ZG_6G-QScV1Du0SvOJBgLdaqiPkdtlTo0GlP3KKLTpRi7KMhx-O_kHp035L6YVVygqciVY2nwMfh0qKtTTXW5oIYLolXiMHaCZUxj_NFkc2hn2x-MlSTH9K8YI5FAuj04-Q-7u4JPdrH1ouoAhDKfAm3WVhy7uWClRxvS3JJ19M5XUkBn1fuvLBn59rg13bOdgbxaPhePchu-4hDzbRhf4661SnC3jEruqzalKePjb4wdnny3a-HwZYsrY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqBSEuQHl1oVCDQMAh3Y3tvA4IrVpWrFqWCijqLTjOpKy0myxNtqh_jV_H2HECQRVw6YFLLh5HsfPNeCb5ZoaQJ1L5IcODSTPVwBG-SB2JMZvjg5DDVGZe5JpE4f1gOg2PjqKDNfK9yYXRtMrGJhpDnRZKfyMfoGsbMYRnwAeZpUUc7I5fLb86uoOU_tPatNOoIbIHZ98wfCtfTnbxXT9lbPz6484bx3YYcJTPgsqRaZIoJaTkXHjKBYZXyCKegUKcDnGYpz5LE5YEQiRRhOotIUiApyF4kdAdI9D8Xwo4olhnqe-09BK0I75vU_V44A4sMraXRQ7bqFjoJww7R6E9EHrLeVGe5-3-Ttr85RQcX_-f9-8GuWZ9bzqqlWWdrEF-k6xb61bS57YE94tb5O0oLxZyfkZTqAxXLaeznBry5alEla2AVrMFUK2_OFPTbKnOIDjGCbCkkJewSOZATZ-h8jY5vJBl3SG9HF_0BqEROgloEnmWqUig9yYlABdMolvJ0X1K-4Q3GIiVrcqum4PMY_OrMcDorN6cWCMntsjpE6edtayrkvxFfkvDK65za1ujFo8CjHZ1fSG3Tx4bCV0SJNfgOJarsown7z79g9CH9x2hZ1YoK3AlSto8D3wcXWqsI7nZkUTDpjrDG1oZmgWV8U8I48wG5OcPP2qH9U01jzCHYmVkvAhjAhe35G6tT-0G8jAUHCPsPgk7mtYK6Ers3ZF89sVUZEeHwfOFK-79-bm2yBXUuXh_Mt27T64ydI8N6dDfJL3qZAUPyGV1Ws3Kk4fGlFDy-aJ17wdjgrsR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+in+multivariate+time+series+data+using+deep+ensemble+models&rft.jtitle=PloS+one&rft.au=Iqbal%2C+Amjad&rft.au=Amin%2C+Rashid&rft.au=Alsubaei%2C+Faisal+S&rft.au=Alzahrani%2C+Abdulrahman&rft.date=2024-06-06&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=6&rft.spage=e0303890&rft_id=info:doi/10.1371%2Fjournal.pone.0303890&rft.externalDocID=A796651951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon