Improving the precision of fMRI BOLD signal deconvolution with implications for connectivity analysis

An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying fMRI BOLD signal despite the known presence of confounds. Here, we develop and test a new meta-algorithm for conducting semi-blind (i.e., no knowledge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging Jg. 33; H. 10; S. 1314 - 1323
Hauptverfasser: Bush, Keith, Cisler, Josh, Bian, Jiang, Hazaroglu, Gokce, Hazaroglu, Onder, Kilts, Clint
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Inc 01.12.2015
Schlagworte:
ISSN:0730-725X, 1873-5894, 1873-5894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying fMRI BOLD signal despite the known presence of confounds. Here, we develop and test a new meta-algorithm for conducting semi-blind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that estimates, via bootstrapping, both the underlying neural events driving BOLD as well as the confidence of these estimates. Our approach includes two improvements over the current best performing deconvolution approach; 1) we optimize the parametric form of the deconvolution feature space; and, 2) we pre-classify neural event estimates into two subgroups, either known or unknown, based on the confidence of the estimates prior to conducting neural event classification. This knows-what-it-knows approach significantly improves neural event classification over the current best performing algorithm, as tested in a detailed computer simulation of highly-confounded fMRI BOLD signal. We then implemented a massively parallelized version of the bootstrapping-based deconvolution algorithm and executed it on a high-performance computer to conduct large scale (i.e., voxelwise) estimation of the neural events for a group of 17 human subjects. We show that by restricting the computation of inter-regional correlation to include only those neural events estimated with high-confidence the method appeared to have higher sensitivity for identifying the default mode network compared to a standard BOLD signal correlation analysis when compared across subjects.
AbstractList An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying fMRI BOLD signal despite the known presence of confounds. Here, we develop and test a new meta-algorithm for conducting semi-blind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that estimates, via bootstrapping, both the underlying neural events driving BOLD as well as the confidence of these estimates. Our approach includes two improvements over the current best performing deconvolution approach; 1) we optimize the parametric form of the deconvolution feature space; and, 2) we pre-classify neural event estimates into two subgroups, either known or unknown, based on the confidence of the estimates prior to conducting neural event classification. This knows-what-it-knows approach significantly improves neural event classification over the current best performing algorithm, as tested in a detailed computer simulation of highly-confounded fMRI BOLD signal. We then implemented a massively parallelized version of the bootstrapping-based deconvolution algorithm and executed it on a high-performance computer to conduct large scale (i.e., voxelwise) estimation of the neural events for a group of 17 human subjects. We show that by restricting the computation of inter-regional correlation to include only those neural events estimated with high-confidence the method appeared to have higher sensitivity for identifying the default mode network compared to a standard BOLD signal correlation analysis when compared across subjects.
Abstract An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying fMRI BOLD signal despite the known presence of confounds. Here, we develop and test a new meta-algorithm for conducting semi-blind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that estimates, via bootstrapping, both the underlying neural events driving BOLD as well as the confidence of these estimates. Our approach includes two improvements over the current best performing deconvolution approach; 1) we optimize the parametric form of the deconvolution feature space; and, 2) we pre-classify neural event estimates into two subgroups, either known or unknown , based on the confidence of the estimates prior to conducting neural event classification. This knows-what-it-knows approach significantly improves neural event classification over the current best performing algorithm, as tested in a detailed computer simulation of highly-confounded fMRI BOLD signal. We then implemented a massively parallelized version of the bootstrapping-based deconvolution algorithm and executed it on a high-performance computer to conduct large scale (i.e., voxelwise) estimation of the neural events for a group of 17 human subjects. We show that by restricting the computation of inter-regional correlation to include only those neural events estimated with high-confidence the method appeared to have higher sensitivity for identifying the default mode network compared to a standard BOLD signal correlation analysis when compared across subjects.
An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying fMRI BOLD signal despite the known presence of confounds. Here, we develop and test a new meta-algorithm for conducting semi-blind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that estimates, via bootstrapping, both the underlying neural events driving BOLD as well as the confidence of these estimates. Our approach includes two improvements over the current best performing deconvolution approach; 1) we optimize the parametric form of the deconvolution feature space; and, 2) we pre-classify neural event estimates into two subgroups, either known or unknown, based on the confidence of the estimates prior to conducting neural event classification. This knows-what-it-knows approach significantly improves neural event classification over the current best performing algorithm, as tested in a detailed computer simulation of highly-confounded fMRI BOLD signal. We then implemented a massively parallelized version of the bootstrapping-based deconvolution algorithm and executed it on a high-performance computer to conduct large scale (i.e., voxelwise) estimation of the neural events for a group of 17 human subjects. We show that by restricting the computation of inter-regional correlation to include only those neural events estimated with high-confidence the method appeared to have higher sensitivity for identifying the default mode network compared to a standard BOLD signal correlation analysis when compared across subjects.An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying fMRI BOLD signal despite the known presence of confounds. Here, we develop and test a new meta-algorithm for conducting semi-blind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that estimates, via bootstrapping, both the underlying neural events driving BOLD as well as the confidence of these estimates. Our approach includes two improvements over the current best performing deconvolution approach; 1) we optimize the parametric form of the deconvolution feature space; and, 2) we pre-classify neural event estimates into two subgroups, either known or unknown, based on the confidence of the estimates prior to conducting neural event classification. This knows-what-it-knows approach significantly improves neural event classification over the current best performing algorithm, as tested in a detailed computer simulation of highly-confounded fMRI BOLD signal. We then implemented a massively parallelized version of the bootstrapping-based deconvolution algorithm and executed it on a high-performance computer to conduct large scale (i.e., voxelwise) estimation of the neural events for a group of 17 human subjects. We show that by restricting the computation of inter-regional correlation to include only those neural events estimated with high-confidence the method appeared to have higher sensitivity for identifying the default mode network compared to a standard BOLD signal correlation analysis when compared across subjects.
Author Cisler, Josh
Bush, Keith
Hazaroglu, Gokce
Kilts, Clint
Bian, Jiang
Hazaroglu, Onder
AuthorAffiliation a Department of Computer Science, University of Arkansas at Little Rock (UALR), 2801 S. University Ave., Little Rock, Arkansas, USA 72204
c Division of Biomedical Informatics, University of Arkansas for Medical Sciences (UAMS), 4301 W. Markham St., Little Rock, Arkansas, USA 72205
b Brain Imaging Research Center, University of Arkansas for Medical Sciences (UAMS), 4301 W. Markham St., Little Rock, Arkansas, USA 72205
AuthorAffiliation_xml – name: b Brain Imaging Research Center, University of Arkansas for Medical Sciences (UAMS), 4301 W. Markham St., Little Rock, Arkansas, USA 72205
– name: a Department of Computer Science, University of Arkansas at Little Rock (UALR), 2801 S. University Ave., Little Rock, Arkansas, USA 72204
– name: c Division of Biomedical Informatics, University of Arkansas for Medical Sciences (UAMS), 4301 W. Markham St., Little Rock, Arkansas, USA 72205
Author_xml – sequence: 1
  givenname: Keith
  surname: Bush
  fullname: Bush, Keith
  email: kabush@ualr.edu
  organization: Department of Computer Science, University of Arkansas at Little Rock (UALR), 2801 S. University Ave., Little Rock, AR, USA 72204
– sequence: 2
  givenname: Josh
  surname: Cisler
  fullname: Cisler, Josh
  email: jcisler@uams.edu
  organization: Brain Imaging Research Center, University of Arkansas for Medical Sciences (UAMS), 4301 W. Markham St., Little Rock, AR, USA 72205
– sequence: 3
  givenname: Jiang
  orcidid: 0000-0002-2238-5429
  surname: Bian
  fullname: Bian, Jiang
  email: jbian@uams.edu
  organization: Division of Biomedical Informatics, University of Arkansas for Medical Sciences (UAMS), 4301 W. Markham St., Little Rock, AR, USA 72205
– sequence: 4
  givenname: Gokce
  surname: Hazaroglu
  fullname: Hazaroglu, Gokce
  email: gxhazaroglu@ualr.edu
  organization: Department of Computer Science, University of Arkansas at Little Rock (UALR), 2801 S. University Ave., Little Rock, AR, USA 72204
– sequence: 5
  givenname: Onder
  surname: Hazaroglu
  fullname: Hazaroglu, Onder
  email: oxhazaroglu@ualr.edu
  organization: Department of Computer Science, University of Arkansas at Little Rock (UALR), 2801 S. University Ave., Little Rock, AR, USA 72204
– sequence: 6
  givenname: Clint
  surname: Kilts
  fullname: Kilts, Clint
  email: cdkilts@uams.edu
  organization: Brain Imaging Research Center, University of Arkansas for Medical Sciences (UAMS), 4301 W. Markham St., Little Rock, AR, USA 72205
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26226647$$D View this record in MEDLINE/PubMed
BookMark eNqFkltvEzEQhS1URNPCD-AF-ZGXhLF3vRchVYJyixRUiYvEm-V4Z5MJu3Zqb4Ly7_GSUkElypMl-5wz4_nmjJ0475CxpwJmAkTxYjPrA80kCDWDcgZQPmATUZXZVFV1fsImUGYwLaX6dsrOYtwAgJKZesROZSFlUeTlhOG83wa_J7fiwxr5NqClSN5x3_L246c5f321eMMjrZzpeIPWu73vdsOo-EHDmlO_7cia8SLy1geeFA7tQHsaDtwk1yFSfMwetqaL-OTmPGdf3739cvlhurh6P798tZjaQhbD1Eo0tckqoXIBWbVU2DaVAmNBmDZv1bISKG2l2lbIOssbKRoLdlnkQloBaLJzdnHM3e6WPTYW3RBMp7eBehMO2hvSf784WuuV3-u8UFUGMgU8vwkI_nqHcdA9RYtdZxz6XdSizFQNqq5H6bM_a90W-T3bJBBHgQ0-xoDtrUSAHvnpjU789MhPQ6kTv-Qp73gsDb-mm9ql7l7ny6MT03z3hEFHS-gsNpSYDrrxdK_74o7bduQS2O47HjBu_C4klOn_OkoN-vO4WeNiCQUgylylgPrfAf8p_hN8U9--
CitedBy_id crossref_primary_10_1162_netn_a_00062
crossref_primary_10_1016_j_media_2023_103010
crossref_primary_10_3389_fnins_2023_934138
crossref_primary_10_1038_s41467_020_18864_0
crossref_primary_10_1162_netn_a_00252
crossref_primary_10_1016_j_neuroimage_2019_116081
crossref_primary_10_1002_mrm_27146
crossref_primary_10_1002_hbm_26114
crossref_primary_10_1016_j_nicl_2018_04_013
crossref_primary_10_3389_fnhum_2018_00184
crossref_primary_10_1162_netn_a_00099
crossref_primary_10_1016_j_mri_2015_07_015
Cites_doi 10.1523/JNEUROSCI.23-10-03963.2003
10.1073/pnas.98.2.676
10.1016/j.mri.2010.10.012
10.1002/hbm.460020107
10.1002/mrm.1910390602
10.1016/j.neuroimage.2011.03.005
10.1002/mrm.1910330602
10.1214/09-STS282
10.1002/hbm.21116
10.1214/aos/1176344552
10.1162/rest.90.3.414
10.1002/(SICI)1097-0193(1998)6:4<239::AID-HBM4>3.0.CO;2-4
10.1073/pnas.87.24.9868
10.1002/hbm.1026
10.1073/pnas.95.3.803
10.1371/journal.pbio.0060315
10.1214/aos/1018031117
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2010.08.063
10.1038/35084005
10.1038/nature06976
10.1016/j.mri.2014.03.002
10.1006/nimg.2000.0568
10.1038/nrn2575
10.1002/hbm.21333
10.1016/j.neuroimage.2012.01.034
10.1006/nimg.2001.0900
10.1073/pnas.0504136102
10.1214/aos/1176349025
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.mri.2015.07.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 1323
ExternalDocumentID PMC4658302
26226647
10_1016_j_mri_2015_07_007
S0730725X15001745
1_s2_0_S0730725X15001745
Genre Journal Article
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA036360
– fundername: NIMH NIH HHS
  grantid: R21 MH097784
– fundername: NIDA NIH HHS
  grantid: T32 DA022981
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~HD
~S-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
DOVZS
G8K
LCYCR
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c626t-c2ea9a381541038b5efd850ac01af4f5b81e2c85ff12934d21dc0cb6412c10ea3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365934800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0730-725X
1873-5894
IngestDate Tue Sep 30 16:54:15 EDT 2025
Sun Sep 28 00:40:29 EDT 2025
Wed Feb 19 02:33:21 EST 2025
Tue Nov 18 22:38:08 EST 2025
Sat Nov 29 07:12:33 EST 2025
Fri Feb 23 02:22:55 EST 2024
Sun Feb 23 10:19:08 EST 2025
Tue Oct 14 19:31:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Bootstrapping
Functional connectivity
fMRI
Deconvolution
BOLD
Imaging analysis
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c626t-c2ea9a381541038b5efd850ac01af4f5b81e2c85ff12934d21dc0cb6412c10ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2238-5429
OpenAccessLink http://doi.org/10.1016/j.mri.2015.07.007
PMID 26226647
PQID 1735905992
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4658302
proquest_miscellaneous_1735905992
pubmed_primary_26226647
crossref_primary_10_1016_j_mri_2015_07_007
crossref_citationtrail_10_1016_j_mri_2015_07_007
elsevier_sciencedirect_doi_10_1016_j_mri_2015_07_007
elsevier_clinicalkeyesjournals_1_s2_0_S0730725X15001745
elsevier_clinicalkey_doi_10_1016_j_mri_2015_07_007
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Friston, Ashburner, Kiebel, Penny (bb0115) 2006
Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bb0190) 2001; 98
Efron (bb0110) 1979; 7
Lahiri (bb0155) 1999; 27
Sanderson (bb0180) 2010
Wu (bb0140) 1986; 14
Logothetis (bb0020) 2008; 453
Bullmore, Sporns (bb0130) 2009; 10
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg (bb0170) 2004; 23
Mammen (bb0145) 1993; 21
Stephan, Roebroeck (bb0075) 2012; 62
Friston (bb0030) 1994; 2
Bush, Cisler (bb0165) 2014; 32
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bb0185) 2005; 102
Lindquist (bb0040) 2008; 23
Cameron, Gelbach, Miller (bb0160) 2008; 90
McKeown, Jung, Makeig, Brown, Kindermann, Lee (bb0120) 1998; 95
Hernandez-Garcia, Ulfarsson (bb0080) 2011; 29
Purdon, Weisskoff (bb0035) 1998; 6
Buxton, Wong, Frank (bb0025) 1998; 39
Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols (bb0065) 2011; 54
Gaudes, Petridou, Dyrden, Bai, Francis, Gowland (bb0085) 2011; 32
David, Guillemain, Saillet, Reyt, Deransart, Segebarth (bb0070) 2008; 6
Logothetis, Pauls, Augath, Trinath, Oeltermann (bb0010) 2001; 412
Dayan, Abbott (bb0135) 2001
Bush, Cisler (bb0090) 2013; 29
Miezin, Maccotta, Ollinger, Petersen, Buckner (bb0055) 2000; 11
Havlicek, Friston, Jan, Brazdil, Calhoun (bb0095) 2011; 56
Duch, Jankowski (bb0100) 2000; 3
Logothetis (bb0015) 2003; 23
Huettel, Mccarthy (bb0050) 2001; 14
Guyon, Elisseef (bb0105) 2003; 3
Saad, Ropella, Cox, DeYoe (bb0045) 2001; 13
Stallman (bb0175) 2013
Craddock, James, Holtzheimer, Xiaoping, Mayberg (bb0125) 2012; 33
Davison, Hinkley (bb0150) 1997
Lee, Glover, Meyer (bb0060) 1995; 33
Ogawa, Lee, Kay, Tank (bb0005) 1990; 87
Havlicek (10.1016/j.mri.2015.07.007_bb0095) 2011; 56
Huettel (10.1016/j.mri.2015.07.007_bb0050) 2001; 14
Raichle (10.1016/j.mri.2015.07.007_bb0190) 2001; 98
Lahiri (10.1016/j.mri.2015.07.007_bb0155) 1999; 27
Sanderson (10.1016/j.mri.2015.07.007_bb0180) 2010
Logothetis (10.1016/j.mri.2015.07.007_bb0010) 2001; 412
Stephan (10.1016/j.mri.2015.07.007_bb0075) 2012; 62
Bush (10.1016/j.mri.2015.07.007_bb0090) 2013; 29
Dayan (10.1016/j.mri.2015.07.007_bb0135) 2001
Mammen (10.1016/j.mri.2015.07.007_bb0145) 1993; 21
Bush (10.1016/j.mri.2015.07.007_bb0165) 2014; 32
Saad (10.1016/j.mri.2015.07.007_bb0045) 2001; 13
Lee (10.1016/j.mri.2015.07.007_bb0060) 1995; 33
Friston (10.1016/j.mri.2015.07.007_bb0030) 1994; 2
Hernandez-Garcia (10.1016/j.mri.2015.07.007_bb0080) 2011; 29
Wu (10.1016/j.mri.2015.07.007_bb0140) 1986; 14
Stallman (10.1016/j.mri.2015.07.007_bb0175) 2013
Duch (10.1016/j.mri.2015.07.007_bb0100) 2000; 3
Davison (10.1016/j.mri.2015.07.007_bb0150) 1997
Gaudes (10.1016/j.mri.2015.07.007_bb0085) 2011; 32
Guyon (10.1016/j.mri.2015.07.007_bb0105) 2003; 3
Logothetis (10.1016/j.mri.2015.07.007_bb0020) 2008; 453
Fox (10.1016/j.mri.2015.07.007_bb0185) 2005; 102
Buxton (10.1016/j.mri.2015.07.007_bb0025) 1998; 39
Craddock (10.1016/j.mri.2015.07.007_bb0125) 2012; 33
Bullmore (10.1016/j.mri.2015.07.007_bb0130) 2009; 10
Logothetis (10.1016/j.mri.2015.07.007_bb0015) 2003; 23
Smith (10.1016/j.mri.2015.07.007_bb0170) 2004; 23
Purdon (10.1016/j.mri.2015.07.007_bb0035) 1998; 6
David (10.1016/j.mri.2015.07.007_bb0070) 2008; 6
Friston (10.1016/j.mri.2015.07.007_bb0115) 2006
McKeown (10.1016/j.mri.2015.07.007_bb0120) 1998; 95
Miezin (10.1016/j.mri.2015.07.007_bb0055) 2000; 11
Lindquist (10.1016/j.mri.2015.07.007_bb0040) 2008; 23
Cameron (10.1016/j.mri.2015.07.007_bb0160) 2008; 90
Efron (10.1016/j.mri.2015.07.007_bb0110) 1979; 7
Smith (10.1016/j.mri.2015.07.007_bb0065) 2011; 54
Ogawa (10.1016/j.mri.2015.07.007_bb0005) 1990; 87
References_xml – volume: 32
  start-page: 1400
  year: 2011
  end-page: 1418
  ident: bb0085
  article-title: Detection and characterization of single-trial fMRI bold responses: paradigm free mapping
  publication-title: Hum Brain Mapp
– volume: 3
  start-page: 477
  year: 2000
  end-page: 482
  ident: bb0100
  article-title: Taxonomy of neural transfer functions
  publication-title: Neural Netw
– volume: 14
  start-page: 967
  year: 2001
  end-page: 976
  ident: bb0050
  article-title: Regional differences in the refractory period of the hemodynamic response: an event-related fMRI study
  publication-title: NeuroImage
– year: 2006
  ident: bb0115
  article-title: Statistical parametric mapping: the analysis of functional brain images
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bb0105
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 27
  start-page: 386
  year: 1999
  end-page: 404
  ident: bb0155
  article-title: Theoretical comparisons of block bootstrap methods
  publication-title: Ann Stat
– volume: 412
  start-page: 150
  year: 2001
  end-page: 157
  ident: bb0010
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
– volume: 14
  start-page: 1261
  year: 1986
  end-page: 1295
  ident: bb0140
  article-title: Jackknife, bootstrap and other resampling methods in regression analysis
  publication-title: Ann Stat
– year: 2001
  ident: bb0135
  article-title: Theoretical neuroscience: computational and mathematical modeling of neural systems
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bb0170
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– year: 2013
  ident: bb0175
  article-title: Using the GNU compiler collection
– volume: 11
  start-page: 735
  year: 2000
  end-page: 759
  ident: bb0055
  article-title: Characterizing the hemodynamic response: effect of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing
  publication-title: NeuroImage
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  ident: bb0190
  article-title: A default mode of brain function
  publication-title: Proc Natl Acad Sci U S A
– volume: 21
  start-page: 255
  year: 1993
  end-page: 285
  ident: bb0145
  article-title: Bootstrap and wild bootstrap for high dimensional linear models
  publication-title: Ann Stat
– volume: 33
  start-page: 1914
  year: 2012
  end-page: 1928
  ident: bb0125
  article-title: A whole brain fMRI Atlas generated via spatially constrained clustering
  publication-title: Hum Brain Mapp
– volume: 29
  start-page: 353
  year: 2013
  end-page: 364
  ident: bb0090
  article-title: Decoding neural events from fMRI BOLD signal: a comparison of existing approaches and development of a new algorithm
  publication-title: Magn Reson Imaging
– volume: 29
  start-page: 353
  year: 2011
  end-page: 364
  ident: bb0080
  article-title: Neuronal event detection in fMRI time series using iterative deconvolution techniques
  publication-title: Magn Reson Imaging
– volume: 90
  start-page: 414
  year: 2008
  end-page: 427
  ident: bb0160
  article-title: Bootstrap-based improvements for inference with clustered errors
  publication-title: Rev Econ Stat
– year: 1997
  ident: bb0150
  article-title: Bootstrap methods and their application
  publication-title: Cambridge series in statistical and probabilistic mathematics
– volume: 453
  start-page: 869
  year: 2008
  end-page: 878
  ident: bb0020
  article-title: What we can do and what we cannot do with fMRI
  publication-title: Nature
– volume: 62
  start-page: 856
  year: 2012
  end-page: 863
  ident: bb0075
  article-title: A short history of causal modeling of fMRI data
  publication-title: NeuroImage
– year: 2010
  ident: bb0180
  article-title: Armadillo: an open source C++ linear algebra library for fast prototyping and computationally intensive experiments
– volume: 56
  start-page: 2109
  year: 2011
  end-page: 2128
  ident: bb0095
  article-title: Dynamic modeling of neuronal responses in fmri using cubature Kalman filtering
  publication-title: Neuroimage
– volume: 87
  start-page: 9868
  year: 1990
  end-page: 9872
  ident: bb0005
  article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation
  publication-title: Proc Natl Acad Sci U S A
– volume: 7
  start-page: 1
  year: 1979
  end-page: 2
  ident: bb0110
  article-title: Bootstrap methods: another look at the jackknife
  publication-title: Ann Stat
– volume: 2
  start-page: 56
  year: 1994
  end-page: 78
  ident: bb0030
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum Brain Mapp
– volume: 13
  start-page: 74
  year: 2001
  end-page: 93
  ident: bb0045
  article-title: Analysis and use fMRI response delays
  publication-title: Hum Brain Mapp
– volume: 23
  start-page: 3963
  year: 2003
  end-page: 3971
  ident: bb0015
  article-title: The underpinnings of the BOLD functional magnetic resonance imaging signal
  publication-title: J Neurosci
– volume: 39
  start-page: 855
  year: 1998
  end-page: 864
  ident: bb0025
  article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
  publication-title: Magn Reson Med
– volume: 95
  start-page: 803
  year: 1998
  end-page: 810
  ident: bb0120
  article-title: Spatially independent activity patterns in functional MRI data during the Stroop color-naming task
  publication-title: Proc Natl Acad Sci
– volume: 10
  start-page: 186
  year: 2009
  end-page: 198
  ident: bb0130
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat Rev
– volume: 6
  start-page: 239
  year: 1998
  end-page: 249
  ident: bb0035
  article-title: Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI
  publication-title: Hum Brain Mapp
– volume: 54
  start-page: 875
  year: 2011
  end-page: 891
  ident: bb0065
  article-title: Network modelling methods for fMRI
  publication-title: Neuroimage
– volume: 32
  start-page: 721
  year: 2014
  end-page: 735
  ident: bb0165
  article-title: Deconvolution filtering: temporal smoothing revisited
  publication-title: Mag Reson Imaging
– volume: 23
  start-page: 434
  year: 2008
  end-page: 464
  ident: bb0040
  article-title: The statistical analysis of fMRI data
  publication-title: Stat Sci
– volume: 6
  start-page: 2683
  year: 2008
  end-page: 2697
  ident: bb0070
  article-title: Identifying neural drivers with functional MRI: an electrophysiological validation
  publication-title: PLoS Biol
– volume: 33
  start-page: 745
  year: 1995
  end-page: 754
  ident: bb0060
  article-title: Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic resonance functional neuroimaging
  publication-title: Magn Reson Med
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bb0185
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci U S A
– volume: 23
  start-page: 3963
  issue: 10
  year: 2003
  ident: 10.1016/j.mri.2015.07.007_bb0015
  article-title: The underpinnings of the BOLD functional magnetic resonance imaging signal
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-10-03963.2003
– volume: 98
  start-page: 676
  issue: 2
  year: 2001
  ident: 10.1016/j.mri.2015.07.007_bb0190
  article-title: A default mode of brain function
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.98.2.676
– year: 2013
  ident: 10.1016/j.mri.2015.07.007_bb0175
– volume: 29
  start-page: 353
  issue: 3
  year: 2011
  ident: 10.1016/j.mri.2015.07.007_bb0080
  article-title: Neuronal event detection in fMRI time series using iterative deconvolution techniques
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2010.10.012
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.mri.2015.07.007_bb0105
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 56
  year: 1994
  ident: 10.1016/j.mri.2015.07.007_bb0030
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.460020107
– volume: 39
  start-page: 855
  issue: 6
  year: 1998
  ident: 10.1016/j.mri.2015.07.007_bb0025
  article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910390602
– volume: 56
  start-page: 2109
  issue: 4
  year: 2011
  ident: 10.1016/j.mri.2015.07.007_bb0095
  article-title: Dynamic modeling of neuronal responses in fmri using cubature Kalman filtering
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.005
– volume: 33
  start-page: 745
  year: 1995
  ident: 10.1016/j.mri.2015.07.007_bb0060
  article-title: Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic resonance functional neuroimaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910330602
– volume: 23
  start-page: 434
  issue: 4
  year: 2008
  ident: 10.1016/j.mri.2015.07.007_bb0040
  article-title: The statistical analysis of fMRI data
  publication-title: Stat Sci
  doi: 10.1214/09-STS282
– year: 1997
  ident: 10.1016/j.mri.2015.07.007_bb0150
  article-title: Bootstrap methods and their application
– volume: 32
  start-page: 1400
  issue: 9
  year: 2011
  ident: 10.1016/j.mri.2015.07.007_bb0085
  article-title: Detection and characterization of single-trial fMRI bold responses: paradigm free mapping
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21116
– volume: 29
  start-page: 353
  issue: 3
  year: 2013
  ident: 10.1016/j.mri.2015.07.007_bb0090
  article-title: Decoding neural events from fMRI BOLD signal: a comparison of existing approaches and development of a new algorithm
  publication-title: Magn Reson Imaging
– volume: 7
  start-page: 1
  year: 1979
  ident: 10.1016/j.mri.2015.07.007_bb0110
  article-title: Bootstrap methods: another look at the jackknife
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344552
– volume: 90
  start-page: 414
  year: 2008
  ident: 10.1016/j.mri.2015.07.007_bb0160
  article-title: Bootstrap-based improvements for inference with clustered errors
  publication-title: Rev Econ Stat
  doi: 10.1162/rest.90.3.414
– volume: 6
  start-page: 239
  year: 1998
  ident: 10.1016/j.mri.2015.07.007_bb0035
  article-title: Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI
  publication-title: Hum Brain Mapp
  doi: 10.1002/(SICI)1097-0193(1998)6:4<239::AID-HBM4>3.0.CO;2-4
– volume: 87
  start-page: 9868
  issue: 24
  year: 1990
  ident: 10.1016/j.mri.2015.07.007_bb0005
  article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.87.24.9868
– year: 2010
  ident: 10.1016/j.mri.2015.07.007_bb0180
– volume: 13
  start-page: 74
  issue: 2
  year: 2001
  ident: 10.1016/j.mri.2015.07.007_bb0045
  article-title: Analysis and use fMRI response delays
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1026
– volume: 95
  start-page: 803
  issue: 3
  year: 1998
  ident: 10.1016/j.mri.2015.07.007_bb0120
  article-title: Spatially independent activity patterns in functional MRI data during the Stroop color-naming task
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.95.3.803
– volume: 6
  start-page: 2683
  issue: 12
  year: 2008
  ident: 10.1016/j.mri.2015.07.007_bb0070
  article-title: Identifying neural drivers with functional MRI: an electrophysiological validation
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060315
– volume: 27
  start-page: 386
  year: 1999
  ident: 10.1016/j.mri.2015.07.007_bb0155
  article-title: Theoretical comparisons of block bootstrap methods
  publication-title: Ann Stat
  doi: 10.1214/aos/1018031117
– volume: 23
  start-page: S208
  issue: S1
  year: 2004
  ident: 10.1016/j.mri.2015.07.007_bb0170
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 54
  start-page: 875
  issue: 2
  year: 2011
  ident: 10.1016/j.mri.2015.07.007_bb0065
  article-title: Network modelling methods for fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
– volume: 412
  start-page: 150
  issue: 6843
  year: 2001
  ident: 10.1016/j.mri.2015.07.007_bb0010
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
  doi: 10.1038/35084005
– volume: 453
  start-page: 869
  issue: 7197
  year: 2008
  ident: 10.1016/j.mri.2015.07.007_bb0020
  article-title: What we can do and what we cannot do with fMRI
  publication-title: Nature
  doi: 10.1038/nature06976
– volume: 32
  start-page: 721
  issue: 6
  year: 2014
  ident: 10.1016/j.mri.2015.07.007_bb0165
  article-title: Deconvolution filtering: temporal smoothing revisited
  publication-title: Mag Reson Imaging
  doi: 10.1016/j.mri.2014.03.002
– volume: 11
  start-page: 735
  year: 2000
  ident: 10.1016/j.mri.2015.07.007_bb0055
  article-title: Characterizing the hemodynamic response: effect of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0568
– volume: 3
  start-page: 477
  year: 2000
  ident: 10.1016/j.mri.2015.07.007_bb0100
  article-title: Taxonomy of neural transfer functions
  publication-title: Neural Netw
– volume: 14
  start-page: 1261
  issue: 4
  year: 1986
  ident: 10.1016/j.mri.2015.07.007_bb0140
  article-title: Jackknife, bootstrap and other resampling methods in regression analysis
  publication-title: Ann Stat
– volume: 10
  start-page: 186
  year: 2009
  ident: 10.1016/j.mri.2015.07.007_bb0130
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat Rev
  doi: 10.1038/nrn2575
– volume: 33
  start-page: 1914
  issue: 8
  year: 2012
  ident: 10.1016/j.mri.2015.07.007_bb0125
  article-title: A whole brain fMRI Atlas generated via spatially constrained clustering
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21333
– volume: 62
  start-page: 856
  year: 2012
  ident: 10.1016/j.mri.2015.07.007_bb0075
  article-title: A short history of causal modeling of fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.034
– volume: 14
  start-page: 967
  issue: 5
  year: 2001
  ident: 10.1016/j.mri.2015.07.007_bb0050
  article-title: Regional differences in the refractory period of the hemodynamic response: an event-related fMRI study
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0900
– volume: 102
  start-page: 9673
  issue: 27
  year: 2005
  ident: 10.1016/j.mri.2015.07.007_bb0185
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0504136102
– year: 2001
  ident: 10.1016/j.mri.2015.07.007_bb0135
– volume: 21
  start-page: 255
  year: 1993
  ident: 10.1016/j.mri.2015.07.007_bb0145
  article-title: Bootstrap and wild bootstrap for high dimensional linear models
  publication-title: Ann Stat
  doi: 10.1214/aos/1176349025
– year: 2006
  ident: 10.1016/j.mri.2015.07.007_bb0115
SSID ssj0005235
Score 2.218499
Snippet An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying fMRI BOLD...
Abstract An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1314
SubjectTerms Adult
Algorithms
BOLD
Bootstrapping
Brain - physiology
Brain Mapping - methods
Deconvolution
Female
fMRI
Functional connectivity
Humans
Image Processing, Computer-Assisted - methods
Imaging analysis
Magnetic Resonance Imaging - methods
Male
Radiology
Reproducibility of Results
Title Improving the precision of fMRI BOLD signal deconvolution with implications for connectivity analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X15001745
https://www.clinicalkey.es/playcontent/1-s2.0-S0730725X15001745
https://dx.doi.org/10.1016/j.mri.2015.07.007
https://www.ncbi.nlm.nih.gov/pubmed/26226647
https://www.proquest.com/docview/1735905992
https://pubmed.ncbi.nlm.nih.gov/PMC4658302
Volume 33
WOSCitedRecordID wos000365934800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLa4TNNepl1Zd0GeNO1hKCgXu0kegYEGKjBtZcqblThOCSsJa1qE9hf2p3dO7IQUGGMPe0krN67dni_n5nMh5J3MshjMEt9yPKksFrO-lUjmWp7tShYyECG1K_vbwD84CKIo_Lyw8KvJhTkf-0URXFyEZ_-V1DAGxMbU2X8gd_ulMADvgehwBbLD9U6Ev3QT6Cwo00QHtcJs_8vu2ubh4OMahm3g8Qyaw-dmO9onm3dDzDEGUWIojDRNJmJTw6Sr0-7Ho0LpUtCo1yOnyE_r5ketrT-rjnUSUD5t3c9beWWyEPfKqh3dzLVHdg9eR5fs8Wc8KUfjWe3FL78bNBpnhcM7gR-avwa-Z_FA9zVeVzeMGaasq2M04LM7LNbxdNbpNd6v3RAn66eTHEP2eF2UVbfUna-zfXAodo4GAzHcjobvz35Y2IIMj-pNP5ZFsuz6PAyWyPLG7na014kYqvu1tvttDsnrcMErq_5JzbluxlyNxu2oN8NH5KGxS-iGxtNjsqCKJ-T-vom8eEpUCysKsKItrGiZUYQVRVhRDSs6ByuKsKJdWFGAFe3CijawekaOdraHW58s06LDkmAJTy3pqjiMQevjDCvtJ1xlacDtWNpOnLGMJ4GjXBnwLEO9kqWuk0pbJn3muNKxVew9J0tFWagXhIIoANsAZERiB8xTTsIDX9lp6CT9NJVe1iN2848KaerXYxuVsWgCFU8EEEEgEYSNURV-j3xop5zp4i233ew2ZBJNVjLIUQHwum2Sf9MkVRmGUAlHVK6wxVcUpb7LIzDAQAgy3iOsnWmUXa3E_m3Btw2CBAgCPN2LC1XOYCHf4yFWW3J7ZEUjqv3Rbh-srD7D7c5hrb0Bi8zPf1Lkx3WxeQYmCjDul3dY9xV5cPnMvyZL08lMvSH35Pk0ryarZNGPglXzTP0Gu4j1fA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+precision+of+fMRI+BOLD+signal+deconvolution+with+implications+for+connectivity+analysis&rft.jtitle=Magnetic+resonance+imaging&rft.au=Bush%2C+Keith&rft.au=Cisler%2C+Josh&rft.au=Bian%2C+Jiang&rft.au=Hazaroglu%2C+Gokce&rft.date=2015-12-01&rft.issn=1873-5894&rft.eissn=1873-5894&rft.volume=33&rft.issue=10&rft.spage=1314&rft_id=info:doi/10.1016%2Fj.mri.2015.07.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F0730725X%2FS0730725X15X00099%2Fcov150h.gif