Improving the precision of fMRI BOLD signal deconvolution with implications for connectivity analysis

An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying fMRI BOLD signal despite the known presence of confounds. Here, we develop and test a new meta-algorithm for conducting semi-blind (i.e., no knowledge...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance imaging Ročník 33; číslo 10; s. 1314 - 1323
Hlavní autoři: Bush, Keith, Cisler, Josh, Bian, Jiang, Hazaroglu, Gokce, Hazaroglu, Onder, Kilts, Clint
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier Inc 01.12.2015
Témata:
ISSN:0730-725X, 1873-5894, 1873-5894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying fMRI BOLD signal despite the known presence of confounds. Here, we develop and test a new meta-algorithm for conducting semi-blind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that estimates, via bootstrapping, both the underlying neural events driving BOLD as well as the confidence of these estimates. Our approach includes two improvements over the current best performing deconvolution approach; 1) we optimize the parametric form of the deconvolution feature space; and, 2) we pre-classify neural event estimates into two subgroups, either known or unknown, based on the confidence of the estimates prior to conducting neural event classification. This knows-what-it-knows approach significantly improves neural event classification over the current best performing algorithm, as tested in a detailed computer simulation of highly-confounded fMRI BOLD signal. We then implemented a massively parallelized version of the bootstrapping-based deconvolution algorithm and executed it on a high-performance computer to conduct large scale (i.e., voxelwise) estimation of the neural events for a group of 17 human subjects. We show that by restricting the computation of inter-regional correlation to include only those neural events estimated with high-confidence the method appeared to have higher sensitivity for identifying the default mode network compared to a standard BOLD signal correlation analysis when compared across subjects.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0730-725X
1873-5894
1873-5894
DOI:10.1016/j.mri.2015.07.007