Quantitative analysis of intermolecular interactions in orthorhombic rubrene

Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconduct...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IUCrJ Ročník 2; číslo 5; s. 563 - 574
Hlavní autoři: Hathwar, Venkatesha R., Sist, Mattia, Jørgensen, Mads R. V., Mamakhel, Aref H., Wang, Xiaoping, Hoffmann, Christina M., Sugimoto, Kunihisa, Overgaard, Jacob, Iversen, Bo Brummerstedt
Médium: Journal Article
Jazyk:angličtina
Vydáno: England International Union of Crystallography 01.09.2015
Témata:
ISSN:2052-2525, 2052-2525
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of C π ...C π interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.
AbstractList Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ⋯Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H-H interactions. The electron density features of H-H bonding, and the interaction energy of molecular dimers connected by H-H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.
Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ...Cπinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. Finally, the quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.
Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of C π ...C π interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.
Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ [MIDLINE HORIZONTAL ELLIPSIS]Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H--H interactions. The electron density features of H--H bonding, and the interaction energy of molecular dimers connected by H--H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.
Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ...Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.
A combination of single-crystal X-ray and neutron diffraction experiments are used to determine the electron density distribution in orthorhombic rubrene. The topology of electron density, NCI analysis and energetics of intermolecular interactions clearly demonstrate the presence of π⋯π stacking interactions in the crystalline state. Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ⋯Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.
Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of [C.sub.π] ... [C.sub.π] interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H-H interactions. The electron density features of H-H bonding, and the interaction energy of molecular dimers connected by H-H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. Keywords: electron density; rubrene; organic semiconductor; interaction energy.
Audience Academic
Author Sist, Mattia
Hathwar, Venkatesha R.
Overgaard, Jacob
Jørgensen, Mads R. V.
Sugimoto, Kunihisa
Hoffmann, Christina M.
Iversen, Bo Brummerstedt
Mamakhel, Aref H.
Wang, Xiaoping
Author_xml – sequence: 1
  givenname: Venkatesha R.
  surname: Hathwar
  fullname: Hathwar, Venkatesha R.
– sequence: 2
  givenname: Mattia
  surname: Sist
  fullname: Sist, Mattia
– sequence: 3
  givenname: Mads R. V.
  surname: Jørgensen
  fullname: Jørgensen, Mads R. V.
– sequence: 4
  givenname: Aref H.
  surname: Mamakhel
  fullname: Mamakhel, Aref H.
– sequence: 5
  givenname: Xiaoping
  surname: Wang
  fullname: Wang, Xiaoping
– sequence: 6
  givenname: Christina M.
  surname: Hoffmann
  fullname: Hoffmann, Christina M.
– sequence: 7
  givenname: Kunihisa
  surname: Sugimoto
  fullname: Sugimoto, Kunihisa
– sequence: 8
  givenname: Jacob
  surname: Overgaard
  fullname: Overgaard, Jacob
– sequence: 9
  givenname: Bo Brummerstedt
  surname: Iversen
  fullname: Iversen, Bo Brummerstedt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26306198$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1294057$$D View this record in Osti.gov
BookMark eNp1Uk1rFTEUHaRia-0PcCMP3bh5NTeTj5mNUIrawgMRdR3uZJL38phJapIp9N-b6bTSDySL5J6ce24OOa-rAx-8qaq3QE4BiPz0kxJOKaccOAEKNXlRHc3QesYOHpwPq5OU9oQQAMolg1fVIRU1EdA2R9Xmx4Q-u4zZXZsVehxukkurYFfOZxPHMBg9DRiXEnV2wadSrELMuxB3YeycXsWpi8abN9VLi0MyJ3f7cfX765df5xfrzfdvl-dnm7UWlOc17YjhgrGuq1lNu4LVQupWgiSm74UFDdIw2vctoOYS0VomO7SS6AYYJ_Vxdbno9gH36iq6EeONCujULRDiVmHMTg9GdX2jRYNYQy1Y00BDrNTUUOyspQSwaH1etK6mbjS9Nj5HHB6JPr7xbqe24VoxzmRDWRF4vwiElJ1K2mWjdzp4b3RWQFtGuCykj3dTYvgzmZTV6JI2w4DehCmpYl1yLonghfrhCXUfplg-ZmaxVjQcRF1Ypwtri8Wl8zaUx-myejO6Mt1YV_AzRltZcwHzM9899PnP4H0UCkEuBB1DStFYpW9jEWbbblBA1Jw79Sx3pROedN6L_7_nLxa21_s
CitedBy_id crossref_primary_10_1002_poc_3968
crossref_primary_10_1016_j_molstruc_2022_133866
crossref_primary_10_1002_anie_201701972
crossref_primary_10_1002_chem_202001643
crossref_primary_10_1016_j_cej_2022_138333
crossref_primary_10_1039_D5NJ01321F
crossref_primary_10_1016_j_molstruc_2020_128154
crossref_primary_10_1186_s13065_023_00985_4
crossref_primary_10_1021_jacs_8b11231
crossref_primary_10_1016_j_molstruc_2024_138477
crossref_primary_10_1140_epjp_s13360_025_06723_0
crossref_primary_10_1016_j_molstruc_2021_131396
crossref_primary_10_1039_C9RA05991A
crossref_primary_10_1016_j_molstruc_2021_130189
crossref_primary_10_1107_S2052520616009227
crossref_primary_10_1016_j_molstruc_2024_137954
crossref_primary_10_1016_j_molstruc_2023_136689
crossref_primary_10_1016_j_molstruc_2017_07_046
crossref_primary_10_1107_S2056989025006929
crossref_primary_10_3390_ijms232113164
crossref_primary_10_1007_s10870_022_00945_1
crossref_primary_10_1016_j_molstruc_2024_140673
crossref_primary_10_1016_j_arabjc_2022_103851
crossref_primary_10_1016_j_molstruc_2020_127996
crossref_primary_10_1016_j_molstruc_2025_142511
crossref_primary_10_1007_s11696_023_02865_6
crossref_primary_10_1002_chem_201700536
crossref_primary_10_1002_chem_202101490
crossref_primary_10_1016_j_molstruc_2022_133350
crossref_primary_10_1016_j_molstruc_2024_138122
crossref_primary_10_1134_S0036024425701250
crossref_primary_10_1002_aoc_6150
crossref_primary_10_1016_j_molstruc_2021_131271
crossref_primary_10_1016_j_inoche_2025_115544
crossref_primary_10_1016_j_molstruc_2022_133721
crossref_primary_10_1007_s11224_023_02166_4
crossref_primary_10_1016_j_molstruc_2025_141396
crossref_primary_10_1107_S2052520617009520
crossref_primary_10_1107_S2053229624008283
crossref_primary_10_1007_s41745_017_0027_3
crossref_primary_10_1016_j_ijhydene_2021_05_091
crossref_primary_10_1080_07391102_2020_1819424
crossref_primary_10_1016_j_molstruc_2025_143614
crossref_primary_10_1080_00958972_2025_2493712
crossref_primary_10_1021_acsomega_5c05184
crossref_primary_10_1002_adfm_201503169
crossref_primary_10_1016_j_molstruc_2024_139228
crossref_primary_10_3390_cryst14010077
crossref_primary_10_1016_j_molstruc_2023_136752
crossref_primary_10_1016_j_molstruc_2024_137686
crossref_primary_10_1016_j_molstruc_2024_137840
crossref_primary_10_1016_j_molstruc_2024_137685
crossref_primary_10_1002_aoc_70006
crossref_primary_10_1016_j_molstruc_2024_139461
crossref_primary_10_1002_slct_202104352
crossref_primary_10_1007_s10870_020_00851_4
crossref_primary_10_1016_j_molstruc_2022_133453
crossref_primary_10_1016_j_saa_2024_124403
crossref_primary_10_3390_ma14164413
crossref_primary_10_1016_j_molstruc_2020_128982
crossref_primary_10_1016_j_molstruc_2022_133339
crossref_primary_10_1016_j_molstruc_2021_130719
crossref_primary_10_1063_5_0176219
crossref_primary_10_3390_cryst14020133
crossref_primary_10_1016_j_molstruc_2021_129975
crossref_primary_10_1007_s11030_021_10231_5
crossref_primary_10_1016_j_poly_2020_114845
crossref_primary_10_1016_j_molstruc_2023_136187
crossref_primary_10_1016_j_molstruc_2019_04_025
crossref_primary_10_1107_S1600576720003775
crossref_primary_10_1002_slct_202003127
crossref_primary_10_1016_j_molstruc_2025_144043
crossref_primary_10_3390_cryst9070336
crossref_primary_10_3390_molecules25061436
crossref_primary_10_1007_s11696_019_01040_0
crossref_primary_10_1007_s13738_025_03177_0
crossref_primary_10_1016_j_molstruc_2024_138399
crossref_primary_10_1007_s11164_021_04505_8
crossref_primary_10_1107_S2056989024005954
crossref_primary_10_1134_S1063774521060109
crossref_primary_10_1007_s00894_021_04910_1
crossref_primary_10_1016_j_molstruc_2023_134900
crossref_primary_10_1080_07391102_2021_2006084
crossref_primary_10_1002_ange_201701972
crossref_primary_10_1007_s11224_023_02171_7
crossref_primary_10_1002_chem_201903087
crossref_primary_10_1007_s11164_025_05603_7
crossref_primary_10_1016_j_molstruc_2022_134523
crossref_primary_10_1016_j_molstruc_2023_136128
crossref_primary_10_1016_j_molstruc_2025_142273
crossref_primary_10_1002_jcc_25073
crossref_primary_10_1515_zkri_2019_0030
crossref_primary_10_1016_j_molstruc_2024_139818
crossref_primary_10_1016_j_saa_2025_126186
crossref_primary_10_1002_jccs_202100475
crossref_primary_10_1016_j_ica_2022_121035
crossref_primary_10_1016_j_molstruc_2024_139014
crossref_primary_10_1016_j_molstruc_2020_128886
crossref_primary_10_1107_S2056989025004943
crossref_primary_10_1016_j_molstruc_2023_137451
crossref_primary_10_1016_j_ejps_2021_105883
crossref_primary_10_1016_j_molstruc_2023_135108
crossref_primary_10_1016_j_molstruc_2023_135625
crossref_primary_10_1016_j_molstruc_2023_136834
crossref_primary_10_1016_j_molstruc_2019_126973
crossref_primary_10_1016_j_molstruc_2021_131981
crossref_primary_10_1002_slct_202400741
crossref_primary_10_1016_j_molstruc_2023_135743
crossref_primary_10_1016_j_est_2025_118403
crossref_primary_10_1007_s11164_024_05464_6
crossref_primary_10_1016_j_ica_2022_121001
crossref_primary_10_1107_S2056989025005547
crossref_primary_10_1016_j_susc_2022_122108
crossref_primary_10_1039_D0RA02501A
crossref_primary_10_1016_j_nanoen_2023_108655
crossref_primary_10_1007_s12010_019_03008_y
crossref_primary_10_1107_S2056989025004451
crossref_primary_10_1016_j_cdc_2023_101052
crossref_primary_10_1107_S2053229616018581
crossref_primary_10_1016_j_molstruc_2024_138747
crossref_primary_10_1016_j_molstruc_2019_127496
crossref_primary_10_1107_S2056989025003913
crossref_primary_10_1002_slct_202304861
crossref_primary_10_1016_j_molstruc_2024_140099
crossref_primary_10_1002_poc_4296
crossref_primary_10_1016_j_chphi_2024_100559
crossref_primary_10_1016_j_molstruc_2025_141926
crossref_primary_10_1016_j_bioorg_2021_104967
Cites_doi 10.1016/j.cplett.2004.04.097
10.1021/jp071002+
10.1107/S0108768193002812
10.1107/S0108768106003053
10.1557/mrs.2012.311
10.1109/TCAPT.2005.859672
10.1002/adma.200600929
10.1021/cg401757z
10.1021/jp061205i
10.1107/S0108767301010182
10.1002/adma.200401866
10.1107/S0021889813020098
10.1016/S1369-7021(07)70017-2
10.1021/ja025896h
10.1021/cg3015223
10.1063/1.1501133
10.1021/jp900512s
10.1126/science.158.3808.1577
10.1002/qua.24658
10.1103/RevModPhys.85.1245
10.1107/S0108767307043930
10.1021/ja807528w
10.1557/mrs.2012.308
10.1107/S010876818400238X
10.1002/anie.201102326
10.1002/adma.201201749
10.1038/44359
10.1039/b515171f
10.1107/S0021889808024643
10.1107/S0108768111022683
10.1021/ja061080v
10.1093/oso/9780198551683.001.0001
10.1038/nchem.1004
10.1107/S0021889806041859
10.1107/S0108767398003390
10.1021/ja210430b
10.1021/cm400736s
10.1073/pnas.0500002102
10.1002/anie.200390319
10.1080/00268970802060674
10.1016/j.chemphys.2007.06.042
10.1063/1.1733166
10.1107/S0567739476000533
10.1038/nmat2834
10.1016/S1369-7021(07)70016-0
10.1039/c0nj00982b
10.1107/S1600576714006372
10.1021/ja972558l
10.1002/chem.200204626
10.1038/nmat1774
10.1021/cr0501386
10.1107/S0567739478001886
10.1039/a701978e
10.1134/S1811238214010111
10.1021/cg301293r
10.1002/1521-3765(20010903)7:17<3756::AID-CHEM3756>3.0.CO;2-Q
10.1557/mrs.2012.306
10.1107/S0021889806026379
10.1021/jp203132k
10.1107/S0108767394005726
10.1002/jcc.540030306
10.1038/srep04753
10.1107/S2053273314015599
10.1021/cg4009015
10.1021/ja100936w
10.1016/j.chemphys.2006.12.011
10.1063/1.467882
10.1021/ja00170a016
10.1021/ct400420r
10.1038/nnano.2008.237
10.1021/jp2108076
10.1021/cr050140x
10.1107/S0021889812029111
10.1088/1468-6996/10/2/024313
10.1063/1.464913
10.1021/cm201230j
10.1039/c0cc00947d
10.1107/S0021889801002242
10.1021/cg301130n
10.1002/chem.201201290
10.1021/ja00316a031
ContentType Journal Article
Copyright COPYRIGHT 2015 International Union of Crystallography
Copyright International Union of Crystallography Sep 2015
Venkatesha R. Hathwar et al. 2015 2015
Copyright_xml – notice: COPYRIGHT 2015 International Union of Crystallography
– notice: Copyright International Union of Crystallography Sep 2015
– notice: Venkatesha R. Hathwar et al. 2015 2015
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
EHMNL
HCIFZ
JG9
KB.
L7M
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1107/S2052252515012130
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
UK & Ireland Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
UK & Ireland Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Analysis of intermolecular interactions in rubrene
EISSN 2052-2525
EndPage 574
ExternalDocumentID oai_doaj_org_article_bd8c68aa3136488180f7c2e2abff201a
PMC4547824
1294057
3897776231
A429735614
26306198
10_1107_S2052252515012130
Genre Journal Article
GroupedDBID 5VS
8FE
8FG
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
D1I
EBS
EHMNL
EJD
GROUPED_DOAJ
H13
HCIFZ
HYE
IAO
IPNFZ
ITC
KB.
KQ8
M48
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RCJ
RIG
RPM
ZBA
NPM
7SR
7U5
8BQ
8FD
AZQEC
DWQXO
JG9
L7M
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
3V.
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c625t-2b0e5644bb3432b625367c97170edd6f1c17e42dd91ac57aaff47baf70c814503
IEDL.DBID KB.
ISICitedReferencesCount 259
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360067300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2052-2525
IngestDate Mon Nov 10 04:24:33 EST 2025
Tue Nov 04 01:54:22 EST 2025
Thu May 18 22:39:03 EDT 2023
Fri Sep 05 07:56:27 EDT 2025
Fri Jul 25 11:39:57 EDT 2025
Tue Nov 04 17:29:13 EST 2025
Thu Apr 03 06:54:07 EDT 2025
Tue Nov 18 22:40:05 EST 2025
Sat Nov 29 03:53:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords interaction energy
electron density
organic semiconductor
rubrene
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c625t-2b0e5644bb3432b625367c97170edd6f1c17e42dd91ac57aaff47baf70c814503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DNRF93; 2014A0078
OpenAccessLink https://www.proquest.com/docview/1749685163?pq-origsite=%requestingapplication%
PMID 26306198
PQID 1749685163
PQPubID 2035043
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_bd8c68aa3136488180f7c2e2abff201a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4547824
osti_scitechconnect_1294057
proquest_miscellaneous_1707557065
proquest_journals_1749685163
gale_infotracacademiconefile_A429735614
pubmed_primary_26306198
crossref_citationtrail_10_1107_S2052252515012130
crossref_primary_10_1107_S2052252515012130
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chester
– name: United States
PublicationTitle IUCrJ
PublicationTitleAlternate IUCrJ
PublicationYear 2015
Publisher International Union of Crystallography
Publisher_xml – name: International Union of Crystallography
References Coropceanu (lc5064_bb7) 2007; 107
Jurchescu (lc5064_bb32) 2006; 62
Sinnokrot (lc5064_bb69) 2002; 124
Toby (lc5064_bb78) 2001; 34
lc5064_bb36
lc5064_bb34
Hulea (lc5064_bb26) 2006; 5
Fumagalli (lc5064_bb17) 2011; 23
Jørgensen (lc5064_bb31) 2014; 70
Strickler (lc5064_bb73) 1962; 37
lc5064_bb72
Lu (lc5064_bb39) 2007; 334
Iversen (lc5064_bb92) 1997; 13
lc5064_bb76
lc5064_bb77
Braun (lc5064_bb6) 2013; 13
Seferos (lc5064_bb65) 2005; 102
Reineke (lc5064_bb57) 2013; 85
Yassar (lc5064_bb87) 2014; 56
Gavezzotti (lc5064_bb20) 2011; 35
Podzorov (lc5064_bb54) 2013; 38
Overgaard (lc5064_bb93) 2001
Figgis (lc5064_bb91) 1993; 49
Reese (lc5064_bb56) 2007; 10
lc5064_bb1
McGarry (lc5064_bb47) 2013; 25
lc5064_bb23
Johnson (lc5064_bb30) 2010; 132
Matta (lc5064_bb46) 2003; 9
Volkov (lc5064_bb79) 2004; 391
Blessing (lc5064_bb5) 1995; 51
Dovesi (lc5064_bb10) 2014; 114
lc5064_bb27
Macchi (lc5064_bb41) 1998; 120
Sheldrick (lc5064_bb66) 2008; 64
Morgenroth (lc5064_bb50) 2008; 41
Sovago (lc5064_bb71) 2014; 14
Nguyen (lc5064_bb52) 2012; 116
Meyer (lc5064_bb48) 2003; 42
Shishkina (lc5064_bb67) 2013; 13
Lane (lc5064_bb35) 2013; 9
Espinosa (lc5064_bb13) 2002; 117
Bergantin (lc5064_bb3) 2012; 12
Hirshfeld (lc5064_bb24) 1976; 32
Scherer (lc5064_bb62) 2006; 30
Wu (lc5064_bb85) 2008; 3
Biegler-könig (lc5064_bb4) 1982; 3
Macchi (lc5064_bb40) 2001; 57
Sirringhaus (lc5064_bb70) 1999; 401
Wolstenholme (lc5064_bb84) 2007; 111
Dunitz (lc5064_bb11) 2012; 12
lc5064_bb59
Schultz (lc5064_bb63) 2014; 47
Jurchescu (lc5064_bb33) 2007; 19
Su (lc5064_bb74) 1998; 54
Saleh (lc5064_bb60) 2012; 18
Wen (lc5064_bb81) 2009; 113
lc5064_bb16
Li (lc5064_bb38) 2012; 134
Delgado (lc5064_bb8) 2009; 131
Mastrogiovanni (lc5064_bb45) 2014; 4
Subramanian (lc5064_bb75) 2005; 28
Paul (lc5064_bb53) 2011; 67
Hunter (lc5064_bb28) 1990; 112
lc5064_bb55
Silva Filho (lc5064_bb68) 2005; 17
Hübschle (lc5064_bb25) 2006; 39
Gatti (lc5064_bb18) 1994; 101
Echeverría (lc5064_bb12) 2011; 3
Saleh (lc5064_bb61) 2013; 46
Grabowski (lc5064_bb21) 2007; 337
Dong (lc5064_bb9) 2010; 46
Hansen (lc5064_bb22) 1978; 34
Madsen (lc5064_bb42) 2006; 39
Lezama (lc5064_bb37) 2013; 38
Coppens (lc5064_bb90) 1967; 158
Mishra (lc5064_bb49) 2012; 51
Wolstenholme (lc5064_bb83) 2006; 110
Zhurova (lc5064_bb89) 2006; 128
Facchetti (lc5064_bb14) 2007; 10
Farrugia (lc5064_bb15) 2012; 45
Gavezzotti (lc5064_bb19) 2008; 106
Yamashita (lc5064_bb86) 2009; 10
Becke (lc5064_bb2) 1993; 98
Maschio (lc5064_bb44) 2011; 115
Murphy (lc5064_bb51) 2007; 107
Schultz (lc5064_bb64) 1984; 106
Reyes-Martinez (lc5064_bb58) 2012; 24
Mannsfeld (lc5064_bb43) 2010; 9
lc5064_bb80
Jiang (lc5064_bb29) 2013; 38
Williams (lc5064_bb82) 1984; 40
References_xml – volume: 391
  start-page: 170
  year: 2004
  ident: lc5064_bb79
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.04.097
– volume: 111
  start-page: 8803
  year: 2007
  ident: lc5064_bb84
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp071002+
– volume: 49
  start-page: 794
  year: 1993
  ident: lc5064_bb91
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768193002812
– volume: 62
  start-page: 330
  year: 2006
  ident: lc5064_bb32
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768106003053
– volume: 38
  start-page: 51
  year: 2013
  ident: lc5064_bb37
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.311
– volume: 28
  start-page: 742
  year: 2005
  ident: lc5064_bb75
  publication-title: IEEE T Compon Pack T
  doi: 10.1109/TCAPT.2005.859672
– volume: 19
  start-page: 688
  year: 2007
  ident: lc5064_bb33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600929
– volume: 14
  start-page: 1227
  year: 2014
  ident: lc5064_bb71
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg401757z
– volume: 110
  start-page: 8970
  year: 2006
  ident: lc5064_bb83
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp061205i
– ident: lc5064_bb27
– volume: 57
  start-page: 656
  year: 2001
  ident: lc5064_bb40
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767301010182
– ident: lc5064_bb23
– volume: 17
  start-page: 1072
  year: 2005
  ident: lc5064_bb68
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200401866
– volume: 46
  start-page: 1513
  year: 2013
  ident: lc5064_bb61
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889813020098
– volume: 10
  start-page: 28
  year: 2007
  ident: lc5064_bb14
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(07)70017-2
– volume: 124
  start-page: 10887
  year: 2002
  ident: lc5064_bb69
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja025896h
– volume: 13
  start-page: 816
  year: 2013
  ident: lc5064_bb67
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg3015223
– volume: 117
  start-page: 5529
  year: 2002
  ident: lc5064_bb13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1501133
– volume: 113
  start-page: 8813
  year: 2009
  ident: lc5064_bb81
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp900512s
– volume: 158
  start-page: 1577
  year: 1967
  ident: lc5064_bb90
  publication-title: Science
  doi: 10.1126/science.158.3808.1577
– volume: 114
  start-page: 1287
  year: 2014
  ident: lc5064_bb10
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24658
– volume: 85
  start-page: 1245
  year: 2013
  ident: lc5064_bb57
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.1245
– volume: 64
  start-page: 112
  year: 2008
  ident: lc5064_bb66
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767307043930
– volume: 131
  start-page: 1502
  year: 2009
  ident: lc5064_bb8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807528w
– volume: 38
  start-page: 28
  year: 2013
  ident: lc5064_bb29
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.308
– volume: 40
  start-page: 404
  year: 1984
  ident: lc5064_bb82
  publication-title: Acta Cryst. B
  doi: 10.1107/S010876818400238X
– volume: 51
  start-page: 2020
  year: 2012
  ident: lc5064_bb49
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201102326
– volume: 24
  start-page: 5548
  year: 2012
  ident: lc5064_bb58
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201749
– volume: 401
  start-page: 685
  year: 1999
  ident: lc5064_bb70
  publication-title: Nature
  doi: 10.1038/44359
– volume: 30
  start-page: 309
  year: 2006
  ident: lc5064_bb62
  publication-title: New J. Chem.
  doi: 10.1039/b515171f
– volume: 41
  start-page: 846
  year: 2008
  ident: lc5064_bb50
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889808024643
– volume: 67
  start-page: 365
  year: 2011
  ident: lc5064_bb53
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768111022683
– volume: 128
  start-page: 8849
  year: 2006
  ident: lc5064_bb89
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja061080v
– ident: lc5064_bb1
  doi: 10.1093/oso/9780198551683.001.0001
– ident: lc5064_bb55
– ident: lc5064_bb59
– ident: lc5064_bb76
– volume: 3
  start-page: 323
  year: 2011
  ident: lc5064_bb12
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1004
– volume: 39
  start-page: 901
  year: 2006
  ident: lc5064_bb25
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889806041859
– volume: 54
  start-page: 646
  year: 1998
  ident: lc5064_bb74
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767398003390
– ident: lc5064_bb72
– ident: lc5064_bb34
– volume: 134
  start-page: 2760
  year: 2012
  ident: lc5064_bb38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210430b
– volume: 25
  start-page: 2254
  year: 2013
  ident: lc5064_bb47
  publication-title: Chem. Mater.
  doi: 10.1021/cm400736s
– volume: 102
  start-page: 8821
  year: 2005
  ident: lc5064_bb65
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0500002102
– volume: 42
  start-page: 1210
  year: 2003
  ident: lc5064_bb48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200390319
– volume: 106
  start-page: 1473
  year: 2008
  ident: lc5064_bb19
  publication-title: Mol. Phys.
  doi: 10.1080/00268970802060674
– volume: 337
  start-page: 68
  year: 2007
  ident: lc5064_bb21
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2007.06.042
– volume: 37
  start-page: 814
  year: 1962
  ident: lc5064_bb73
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1733166
– volume: 32
  start-page: 239
  year: 1976
  ident: lc5064_bb24
  publication-title: Acta Cryst. A
  doi: 10.1107/S0567739476000533
– volume: 9
  start-page: 859
  year: 2010
  ident: lc5064_bb43
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2834
– volume: 10
  start-page: 20
  year: 2007
  ident: lc5064_bb56
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(07)70016-0
– volume: 35
  start-page: 1360
  year: 2011
  ident: lc5064_bb20
  publication-title: New J. Chem.
  doi: 10.1039/c0nj00982b
– volume: 47
  start-page: 915
  year: 2014
  ident: lc5064_bb63
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576714006372
– volume: 120
  start-page: 1447
  year: 1998
  ident: lc5064_bb41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja972558l
– ident: lc5064_bb77
– volume: 9
  start-page: 1940
  year: 2003
  ident: lc5064_bb46
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200204626
– volume: 5
  start-page: 982
  year: 2006
  ident: lc5064_bb26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1774
– volume: 107
  start-page: 1066
  year: 2007
  ident: lc5064_bb51
  publication-title: Chem. Rev.
  doi: 10.1021/cr0501386
– volume: 34
  start-page: 909
  year: 1978
  ident: lc5064_bb22
  publication-title: Acta Cryst. A
  doi: 10.1107/S0567739478001886
– volume: 13
  start-page: 2227
  year: 1997
  ident: lc5064_bb92
  publication-title: Dalton Trans.
  doi: 10.1039/a701978e
– volume: 56
  start-page: 4
  year: 2014
  ident: lc5064_bb87
  publication-title: Polym. Sci. Ser. C.
  doi: 10.1134/S1811238214010111
– volume: 12
  start-page: 5873
  year: 2012
  ident: lc5064_bb11
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg301293r
– start-page: 3756
  year: 2001
  ident: lc5064_bb93
  publication-title: Chem. Eur. J.
  doi: 10.1002/1521-3765(20010903)7:17<3756::AID-CHEM3756>3.0.CO;2-Q
– ident: lc5064_bb16
– volume: 38
  start-page: 15
  year: 2013
  ident: lc5064_bb54
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.306
– volume: 39
  start-page: 757
  year: 2006
  ident: lc5064_bb42
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889806026379
– volume: 115
  start-page: 11179
  year: 2011
  ident: lc5064_bb44
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp203132k
– volume: 51
  start-page: 33
  year: 1995
  ident: lc5064_bb5
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767394005726
– volume: 3
  start-page: 317
  year: 1982
  ident: lc5064_bb4
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540030306
– volume: 4
  start-page: 4753
  year: 2014
  ident: lc5064_bb45
  publication-title: Sci. Rep.
  doi: 10.1038/srep04753
– volume: 70
  start-page: 679
  year: 2014
  ident: lc5064_bb31
  publication-title: Acta Cryst. A
  doi: 10.1107/S2053273314015599
– volume: 13
  start-page: 4071
  year: 2013
  ident: lc5064_bb6
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg4009015
– volume: 132
  start-page: 6498
  year: 2010
  ident: lc5064_bb30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100936w
– volume: 334
  start-page: 1
  year: 2007
  ident: lc5064_bb39
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2006.12.011
– volume: 101
  start-page: 10686
  year: 1994
  ident: lc5064_bb18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467882
– volume: 112
  start-page: 5525
  year: 1990
  ident: lc5064_bb28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00170a016
– volume: 9
  start-page: 3263
  year: 2013
  ident: lc5064_bb35
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400420r
– volume: 3
  start-page: 569
  year: 2008
  ident: lc5064_bb85
  publication-title: Nature Nanotech
  doi: 10.1038/nnano.2008.237
– volume: 116
  start-page: 3420
  year: 2012
  ident: lc5064_bb52
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp2108076
– ident: lc5064_bb80
– volume: 107
  start-page: 926
  year: 2007
  ident: lc5064_bb7
  publication-title: Chem. Rev.
  doi: 10.1021/cr050140x
– volume: 45
  start-page: 849
  year: 2012
  ident: lc5064_bb15
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889812029111
– volume: 10
  start-page: 024313
  year: 2009
  ident: lc5064_bb86
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/10/2/024313
– volume: 98
  start-page: 5648
  year: 1993
  ident: lc5064_bb2
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 23
  start-page: 3246
  year: 2011
  ident: lc5064_bb17
  publication-title: Chem. Mater.
  doi: 10.1021/cm201230j
– volume: 46
  start-page: 5211
  year: 2010
  ident: lc5064_bb9
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00947d
– ident: lc5064_bb36
– volume: 34
  start-page: 210
  year: 2001
  ident: lc5064_bb78
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889801002242
– volume: 12
  start-page: 6035
  year: 2012
  ident: lc5064_bb3
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg301130n
– volume: 18
  start-page: 15523
  year: 2012
  ident: lc5064_bb60
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201201290
– volume: 106
  start-page: 999
  year: 1984
  ident: lc5064_bb64
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00316a031
SSID ssj0001125741
Score 2.4906614
Snippet Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in...
A combination of single-crystal X-ray and neutron diffraction experiments are used to determine the electron density distribution in orthorhombic rubrene. The...
SourceID doaj
pubmedcentral
osti
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 563
SubjectTerms Crystals
Electric properties
Electron configuration
electron density
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
interaction energy
Observations
organic semiconductor
Research Papers
rubrene
Semiconductors
Structure
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB9k8UEf5O786t15VBAEoVySNk36eIqHD3IoKtxbSNKEW_Ba6e76999M2i27KvriU8lXaTIzyW-a5DcAryK3MnAWCm25KyptRWEZMdCWro6N0L5RLgWbUFdX-vq6-bQT6ovOhI30wOPAnbtW-1pbW_KyRmXjmkXlRRDWxYiLV4JGiHp2nKn0dwXXbZXCVgomRSGkkNOWJro7518ok_IQDRGlGdtblBJ3_zxDL3o0tT_Bz19PUe4sS5cH8GjCk_nF2I9DuBe6I3i4wzL4GD5-3tgu3SXDmS23EwtJ3secuCKG222A3DE5XnRYYSKnLZ1-uOlv3dLnw8YR--UT-Hb5_uu7D8UURKHw6NqsC-FYkAh6nKMrpA7zylqhBLhioW3ryD1XoRJt23DrpbI2xko5GxXzmleSlU9h0fVdeA559NEqzaPGV6JfJVEElcc2Tawa60OdAduOovETwzgFuvhukqfBlPlt4DN4Mzf5MdJr_K3yWxLNXJGYsVMG6ouZ9MX8S18yeE2CNWS_-HHeTtcQsIvEhGUuKormRfyoGZyQ7A1CEeLT9XTwyK8NAiQCuRmcblXCTGa_MujeNTVi2LrM4OVcjAZLuzC2C_2G6iBKk7S7nMGzUYPmHokaPTje6AzUnm7tdXm_pFveJFLwRMwmquP_MUYn8AAfcjxKdwqL9bAJL-C-_7leroazZGl3eVoqBA
  priority: 102
  providerName: Directory of Open Access Journals
Title Quantitative analysis of intermolecular interactions in orthorhombic rubrene
URI https://www.ncbi.nlm.nih.gov/pubmed/26306198
https://www.proquest.com/docview/1749685163
https://www.proquest.com/docview/1707557065
https://www.osti.gov/servlets/purl/1294057
https://pubmed.ncbi.nlm.nih.gov/PMC4547824
https://doaj.org/article/bd8c68aa3136488180f7c2e2abff201a
Volume 2
WOSCitedRecordID wos000360067300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: KB.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: UK & Ireland Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: EHMNL
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/ukireland
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iHQ_wwH0QNqogISEhhdm52XlCK9oEAqpyk8pTZDs2q8SSkbb8fs5x0mwFtBce4ziVXZ_Ld3zs7wA8c1xlljMbScV1lEoVR4oRA22ic1fE0hRC-2ITYjqV83kx6zfclv2xyo1N9Ia6agztkR8ici5yhAd58ur8Z0RVoyi72pfQ2IFdYkmg0g3vJi8v9ljQe6PH7JOZGOgcfo4ZAo4MnXrmyczYljvyrP2DbR41qGT_Ap5_np-85JBObv_vVO7ArR6Khked7NyFa7a-BzcvERTeh_cf16r219DQKIaqJzAJGxcSzUR7tqmt2z12dySW-BBSNqhpT5szvTBhu9ZEnPkAvp4cf3n9JurrL0QGo6JVFGtmM8RLWtPtU41tSS5w8bhgtqpyxw0XNo2rquDKZEIp51KhlRPMSJ5mLNmDUd3U9hGEzjglJHcSfxJDskxplxr8pnBpoYzNA2CbZShNT05ONTJ-lD5IYaL8a-UCeDF8ct4xc1zVeUJrO3QkUm3f0LTfy15HS11Jk0ulEp7kaNe4ZE6Y2MY4WIc4SQXwnCSjJNXHwRnV32DAKRKJVnmUUiEwolYNYJ-Ep0QUQ1S8hs4smVWJ2IrwcQAHG7koe4uxLC-EIoCnw2vUdUrgqNo2a-qDAC-jxHQADzsRHGYU5xj88UIGILaEc2vK22_qxannE_ecbnH6-Oph7cMN_BOy7nzdAYxW7do-gevm12qxbMewI-ZyDLuT4-ns09jvbIy9MmLb7O2H2bffbEI69A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4P0ILRAkEBJS1DgvOweEyqPqqttVEUVqT8Z2bLoSTUp2F8Sf4jcyk8e2C6i3HjgmcSLbmRl_4_F8A_DMMZVaFtpAKKaDRKgoUCEx0MY6c3kkTM51U2yCj8fi4CDfW4FffS4MHavsbWJjqIvK0B75BiLnPEN4kMWvT74FVDWKoqt9CY1WLHbszx_osk1fDd_h_30eRVvv999uB11VgcAg1p8FkQ5tiihAa8qp1Hgvzjh2ifHQFkXmmGHcJlFR5EyZlCvlXMK1cjw0giVpGON3L8FqgsIuBrC6N9zdOzzd1UG8gGt0Fz5F12rjYxQixEkRRqQNfVq4tAA2dQIWq8GgQrX-F9T988TmmSVw68b_Nnk34XoHtv3NVjtuwYotb8O1MxSMd2D0Ya7KJtEOzb6vOooWv3I-EWnUx3314PayzQKZ4oVP8a6qPqqO9cT49VwTNehd-HQhw7kHg7Iq7QPwnXGKC-YEfhKdzlRplxh8J3dJrozNPAj73y5NR79OVUC-ysYNC7n8S1I8eLl45aTlHjmv8RuSpUVDog1vblT1F9lZIakLYTKhVMziDC03E6HjJrIRdtYhElQevCBJlGTcsHNGdTkaOESiCZObCZU6I_JYD9ZIWCXiNCIbNnQqy8wkokfyADxY7-VQdjZxKk-F0IOni8dozShEpUpbzakNQtiUQu8e3G9FfjGiKEP3luXCA76kDEtDXn5STo4axvSGtS5KHp7frSdwZXt_dyRHw_HOGlzFCUnb04TrMJjVc_sILpvvs8m0ftypvQ-fL1pZfgP7DJP0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+analysis+of+intermolecular+interactions+in+orthorhombic+rubrene&rft.jtitle=IUCrJ&rft.au=Hathwar%2C+Venkatesha+R&rft.au=Sist%2C+Mattia&rft.au=J%C3%B8rgensen%2C+Mads+R+V&rft.au=Mamakhel%2C+Aref+H&rft.date=2015-09-01&rft.pub=International+Union+of+Crystallography&rft.eissn=2052-2525&rft.volume=2&rft.issue=5&rft.spage=563&rft_id=info:doi/10.1107%2FS2052252515012130&rft.externalDocID=3897776231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-2525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-2525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-2525&client=summon