Quantitative analysis of intermolecular interactions in orthorhombic rubrene
Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconduct...
Uloženo v:
| Vydáno v: | IUCrJ Ročník 2; číslo 5; s. 563 - 574 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
International Union of Crystallography
01.09.2015
|
| Témata: | |
| ISSN: | 2052-2525, 2052-2525 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of C
π
...C
π
interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. |
|---|---|
| AbstractList | Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ⋯Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H-H interactions. The electron density features of H-H bonding, and the interaction energy of molecular dimers connected by H-H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ...Cπinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. Finally, the quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of C π ...C π interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ [MIDLINE HORIZONTAL ELLIPSIS]Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H--H interactions. The electron density features of H--H bonding, and the interaction energy of molecular dimers connected by H--H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ...Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. A combination of single-crystal X-ray and neutron diffraction experiments are used to determine the electron density distribution in orthorhombic rubrene. The topology of electron density, NCI analysis and energetics of intermolecular interactions clearly demonstrate the presence of π⋯π stacking interactions in the crystalline state. Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ⋯Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of [C.sub.π] ... [C.sub.π] interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H-H interactions. The electron density features of H-H bonding, and the interaction energy of molecular dimers connected by H-H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations. Keywords: electron density; rubrene; organic semiconductor; interaction energy. |
| Audience | Academic |
| Author | Sist, Mattia Hathwar, Venkatesha R. Overgaard, Jacob Jørgensen, Mads R. V. Sugimoto, Kunihisa Hoffmann, Christina M. Iversen, Bo Brummerstedt Mamakhel, Aref H. Wang, Xiaoping |
| Author_xml | – sequence: 1 givenname: Venkatesha R. surname: Hathwar fullname: Hathwar, Venkatesha R. – sequence: 2 givenname: Mattia surname: Sist fullname: Sist, Mattia – sequence: 3 givenname: Mads R. V. surname: Jørgensen fullname: Jørgensen, Mads R. V. – sequence: 4 givenname: Aref H. surname: Mamakhel fullname: Mamakhel, Aref H. – sequence: 5 givenname: Xiaoping surname: Wang fullname: Wang, Xiaoping – sequence: 6 givenname: Christina M. surname: Hoffmann fullname: Hoffmann, Christina M. – sequence: 7 givenname: Kunihisa surname: Sugimoto fullname: Sugimoto, Kunihisa – sequence: 8 givenname: Jacob surname: Overgaard fullname: Overgaard, Jacob – sequence: 9 givenname: Bo Brummerstedt surname: Iversen fullname: Iversen, Bo Brummerstedt |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26306198$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1294057$$D View this record in Osti.gov |
| BookMark | eNp1Uk1rFTEUHaRia-0PcCMP3bh5NTeTj5mNUIrawgMRdR3uZJL38phJapIp9N-b6bTSDySL5J6ce24OOa-rAx-8qaq3QE4BiPz0kxJOKaccOAEKNXlRHc3QesYOHpwPq5OU9oQQAMolg1fVIRU1EdA2R9Xmx4Q-u4zZXZsVehxukkurYFfOZxPHMBg9DRiXEnV2wadSrELMuxB3YeycXsWpi8abN9VLi0MyJ3f7cfX765df5xfrzfdvl-dnm7UWlOc17YjhgrGuq1lNu4LVQupWgiSm74UFDdIw2vctoOYS0VomO7SS6AYYJ_Vxdbno9gH36iq6EeONCujULRDiVmHMTg9GdX2jRYNYQy1Y00BDrNTUUOyspQSwaH1etK6mbjS9Nj5HHB6JPr7xbqe24VoxzmRDWRF4vwiElJ1K2mWjdzp4b3RWQFtGuCykj3dTYvgzmZTV6JI2w4DehCmpYl1yLonghfrhCXUfplg-ZmaxVjQcRF1Ypwtri8Wl8zaUx-myejO6Mt1YV_AzRltZcwHzM9899PnP4H0UCkEuBB1DStFYpW9jEWbbblBA1Jw79Sx3pROedN6L_7_nLxa21_s |
| CitedBy_id | crossref_primary_10_1002_poc_3968 crossref_primary_10_1016_j_molstruc_2022_133866 crossref_primary_10_1002_anie_201701972 crossref_primary_10_1002_chem_202001643 crossref_primary_10_1016_j_cej_2022_138333 crossref_primary_10_1039_D5NJ01321F crossref_primary_10_1016_j_molstruc_2020_128154 crossref_primary_10_1186_s13065_023_00985_4 crossref_primary_10_1021_jacs_8b11231 crossref_primary_10_1016_j_molstruc_2024_138477 crossref_primary_10_1140_epjp_s13360_025_06723_0 crossref_primary_10_1016_j_molstruc_2021_131396 crossref_primary_10_1039_C9RA05991A crossref_primary_10_1016_j_molstruc_2021_130189 crossref_primary_10_1107_S2052520616009227 crossref_primary_10_1016_j_molstruc_2024_137954 crossref_primary_10_1016_j_molstruc_2023_136689 crossref_primary_10_1016_j_molstruc_2017_07_046 crossref_primary_10_1107_S2056989025006929 crossref_primary_10_3390_ijms232113164 crossref_primary_10_1007_s10870_022_00945_1 crossref_primary_10_1016_j_molstruc_2024_140673 crossref_primary_10_1016_j_arabjc_2022_103851 crossref_primary_10_1016_j_molstruc_2020_127996 crossref_primary_10_1016_j_molstruc_2025_142511 crossref_primary_10_1007_s11696_023_02865_6 crossref_primary_10_1002_chem_201700536 crossref_primary_10_1002_chem_202101490 crossref_primary_10_1016_j_molstruc_2022_133350 crossref_primary_10_1016_j_molstruc_2024_138122 crossref_primary_10_1134_S0036024425701250 crossref_primary_10_1002_aoc_6150 crossref_primary_10_1016_j_molstruc_2021_131271 crossref_primary_10_1016_j_inoche_2025_115544 crossref_primary_10_1016_j_molstruc_2022_133721 crossref_primary_10_1007_s11224_023_02166_4 crossref_primary_10_1016_j_molstruc_2025_141396 crossref_primary_10_1107_S2052520617009520 crossref_primary_10_1107_S2053229624008283 crossref_primary_10_1007_s41745_017_0027_3 crossref_primary_10_1016_j_ijhydene_2021_05_091 crossref_primary_10_1080_07391102_2020_1819424 crossref_primary_10_1016_j_molstruc_2025_143614 crossref_primary_10_1080_00958972_2025_2493712 crossref_primary_10_1021_acsomega_5c05184 crossref_primary_10_1002_adfm_201503169 crossref_primary_10_1016_j_molstruc_2024_139228 crossref_primary_10_3390_cryst14010077 crossref_primary_10_1016_j_molstruc_2023_136752 crossref_primary_10_1016_j_molstruc_2024_137686 crossref_primary_10_1016_j_molstruc_2024_137840 crossref_primary_10_1016_j_molstruc_2024_137685 crossref_primary_10_1002_aoc_70006 crossref_primary_10_1016_j_molstruc_2024_139461 crossref_primary_10_1002_slct_202104352 crossref_primary_10_1007_s10870_020_00851_4 crossref_primary_10_1016_j_molstruc_2022_133453 crossref_primary_10_1016_j_saa_2024_124403 crossref_primary_10_3390_ma14164413 crossref_primary_10_1016_j_molstruc_2020_128982 crossref_primary_10_1016_j_molstruc_2022_133339 crossref_primary_10_1016_j_molstruc_2021_130719 crossref_primary_10_1063_5_0176219 crossref_primary_10_3390_cryst14020133 crossref_primary_10_1016_j_molstruc_2021_129975 crossref_primary_10_1007_s11030_021_10231_5 crossref_primary_10_1016_j_poly_2020_114845 crossref_primary_10_1016_j_molstruc_2023_136187 crossref_primary_10_1016_j_molstruc_2019_04_025 crossref_primary_10_1107_S1600576720003775 crossref_primary_10_1002_slct_202003127 crossref_primary_10_1016_j_molstruc_2025_144043 crossref_primary_10_3390_cryst9070336 crossref_primary_10_3390_molecules25061436 crossref_primary_10_1007_s11696_019_01040_0 crossref_primary_10_1007_s13738_025_03177_0 crossref_primary_10_1016_j_molstruc_2024_138399 crossref_primary_10_1007_s11164_021_04505_8 crossref_primary_10_1107_S2056989024005954 crossref_primary_10_1134_S1063774521060109 crossref_primary_10_1007_s00894_021_04910_1 crossref_primary_10_1016_j_molstruc_2023_134900 crossref_primary_10_1080_07391102_2021_2006084 crossref_primary_10_1002_ange_201701972 crossref_primary_10_1007_s11224_023_02171_7 crossref_primary_10_1002_chem_201903087 crossref_primary_10_1007_s11164_025_05603_7 crossref_primary_10_1016_j_molstruc_2022_134523 crossref_primary_10_1016_j_molstruc_2023_136128 crossref_primary_10_1016_j_molstruc_2025_142273 crossref_primary_10_1002_jcc_25073 crossref_primary_10_1515_zkri_2019_0030 crossref_primary_10_1016_j_molstruc_2024_139818 crossref_primary_10_1016_j_saa_2025_126186 crossref_primary_10_1002_jccs_202100475 crossref_primary_10_1016_j_ica_2022_121035 crossref_primary_10_1016_j_molstruc_2024_139014 crossref_primary_10_1016_j_molstruc_2020_128886 crossref_primary_10_1107_S2056989025004943 crossref_primary_10_1016_j_molstruc_2023_137451 crossref_primary_10_1016_j_ejps_2021_105883 crossref_primary_10_1016_j_molstruc_2023_135108 crossref_primary_10_1016_j_molstruc_2023_135625 crossref_primary_10_1016_j_molstruc_2023_136834 crossref_primary_10_1016_j_molstruc_2019_126973 crossref_primary_10_1016_j_molstruc_2021_131981 crossref_primary_10_1002_slct_202400741 crossref_primary_10_1016_j_molstruc_2023_135743 crossref_primary_10_1016_j_est_2025_118403 crossref_primary_10_1007_s11164_024_05464_6 crossref_primary_10_1016_j_ica_2022_121001 crossref_primary_10_1107_S2056989025005547 crossref_primary_10_1016_j_susc_2022_122108 crossref_primary_10_1039_D0RA02501A crossref_primary_10_1016_j_nanoen_2023_108655 crossref_primary_10_1007_s12010_019_03008_y crossref_primary_10_1107_S2056989025004451 crossref_primary_10_1016_j_cdc_2023_101052 crossref_primary_10_1107_S2053229616018581 crossref_primary_10_1016_j_molstruc_2024_138747 crossref_primary_10_1016_j_molstruc_2019_127496 crossref_primary_10_1107_S2056989025003913 crossref_primary_10_1002_slct_202304861 crossref_primary_10_1016_j_molstruc_2024_140099 crossref_primary_10_1002_poc_4296 crossref_primary_10_1016_j_chphi_2024_100559 crossref_primary_10_1016_j_molstruc_2025_141926 crossref_primary_10_1016_j_bioorg_2021_104967 |
| Cites_doi | 10.1016/j.cplett.2004.04.097 10.1021/jp071002+ 10.1107/S0108768193002812 10.1107/S0108768106003053 10.1557/mrs.2012.311 10.1109/TCAPT.2005.859672 10.1002/adma.200600929 10.1021/cg401757z 10.1021/jp061205i 10.1107/S0108767301010182 10.1002/adma.200401866 10.1107/S0021889813020098 10.1016/S1369-7021(07)70017-2 10.1021/ja025896h 10.1021/cg3015223 10.1063/1.1501133 10.1021/jp900512s 10.1126/science.158.3808.1577 10.1002/qua.24658 10.1103/RevModPhys.85.1245 10.1107/S0108767307043930 10.1021/ja807528w 10.1557/mrs.2012.308 10.1107/S010876818400238X 10.1002/anie.201102326 10.1002/adma.201201749 10.1038/44359 10.1039/b515171f 10.1107/S0021889808024643 10.1107/S0108768111022683 10.1021/ja061080v 10.1093/oso/9780198551683.001.0001 10.1038/nchem.1004 10.1107/S0021889806041859 10.1107/S0108767398003390 10.1021/ja210430b 10.1021/cm400736s 10.1073/pnas.0500002102 10.1002/anie.200390319 10.1080/00268970802060674 10.1016/j.chemphys.2007.06.042 10.1063/1.1733166 10.1107/S0567739476000533 10.1038/nmat2834 10.1016/S1369-7021(07)70016-0 10.1039/c0nj00982b 10.1107/S1600576714006372 10.1021/ja972558l 10.1002/chem.200204626 10.1038/nmat1774 10.1021/cr0501386 10.1107/S0567739478001886 10.1039/a701978e 10.1134/S1811238214010111 10.1021/cg301293r 10.1002/1521-3765(20010903)7:17<3756::AID-CHEM3756>3.0.CO;2-Q 10.1557/mrs.2012.306 10.1107/S0021889806026379 10.1021/jp203132k 10.1107/S0108767394005726 10.1002/jcc.540030306 10.1038/srep04753 10.1107/S2053273314015599 10.1021/cg4009015 10.1021/ja100936w 10.1016/j.chemphys.2006.12.011 10.1063/1.467882 10.1021/ja00170a016 10.1021/ct400420r 10.1038/nnano.2008.237 10.1021/jp2108076 10.1021/cr050140x 10.1107/S0021889812029111 10.1088/1468-6996/10/2/024313 10.1063/1.464913 10.1021/cm201230j 10.1039/c0cc00947d 10.1107/S0021889801002242 10.1021/cg301130n 10.1002/chem.201201290 10.1021/ja00316a031 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2015 International Union of Crystallography Copyright International Union of Crystallography Sep 2015 Venkatesha R. Hathwar et al. 2015 2015 |
| Copyright_xml | – notice: COPYRIGHT 2015 International Union of Crystallography – notice: Copyright International Union of Crystallography Sep 2015 – notice: Venkatesha R. Hathwar et al. 2015 2015 |
| CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO EHMNL HCIFZ JG9 KB. L7M PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 OIOZB OTOTI 5PM DOA |
| DOI | 10.1107/S2052252515012130 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central UK & Ireland Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX UK & Ireland Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Analysis of intermolecular interactions in rubrene |
| EISSN | 2052-2525 |
| EndPage | 574 |
| ExternalDocumentID | oai_doaj_org_article_bd8c68aa3136488180f7c2e2abff201a PMC4547824 1294057 3897776231 A429735614 26306198 10_1107_S2052252515012130 |
| Genre | Journal Article |
| GroupedDBID | 5VS 8FE 8FG AAFWJ AAYXX ABJCF ABUWG ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION D1I EBS EHMNL EJD GROUPED_DOAJ H13 HCIFZ HYE IAO IPNFZ ITC KB. KQ8 M48 M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RCJ RIG RPM ZBA NPM 7SR 7U5 8BQ 8FD AZQEC DWQXO JG9 L7M PKEHL PQEST PQUKI PRINS 7X8 PUEGO 3V. OIOZB OTOTI 5PM |
| ID | FETCH-LOGICAL-c625t-2b0e5644bb3432b625367c97170edd6f1c17e42dd91ac57aaff47baf70c814503 |
| IEDL.DBID | KB. |
| ISICitedReferencesCount | 259 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360067300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2052-2525 |
| IngestDate | Mon Nov 10 04:24:33 EST 2025 Tue Nov 04 01:54:22 EST 2025 Thu May 18 22:39:03 EDT 2023 Fri Sep 05 07:56:27 EDT 2025 Fri Jul 25 11:39:57 EDT 2025 Tue Nov 04 17:29:13 EST 2025 Thu Apr 03 06:54:07 EDT 2025 Tue Nov 18 22:40:05 EST 2025 Sat Nov 29 03:53:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | interaction energy electron density organic semiconductor rubrene |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c625t-2b0e5644bb3432b625367c97170edd6f1c17e42dd91ac57aaff47baf70c814503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) DNRF93; 2014A0078 |
| OpenAccessLink | https://www.proquest.com/docview/1749685163?pq-origsite=%requestingapplication% |
| PMID | 26306198 |
| PQID | 1749685163 |
| PQPubID | 2035043 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bd8c68aa3136488180f7c2e2abff201a pubmedcentral_primary_oai_pubmedcentral_nih_gov_4547824 osti_scitechconnect_1294057 proquest_miscellaneous_1707557065 proquest_journals_1749685163 gale_infotracacademiconefile_A429735614 pubmed_primary_26306198 crossref_citationtrail_10_1107_S2052252515012130 crossref_primary_10_1107_S2052252515012130 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-01 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Chester – name: United States |
| PublicationTitle | IUCrJ |
| PublicationTitleAlternate | IUCrJ |
| PublicationYear | 2015 |
| Publisher | International Union of Crystallography |
| Publisher_xml | – name: International Union of Crystallography |
| References | Coropceanu (lc5064_bb7) 2007; 107 Jurchescu (lc5064_bb32) 2006; 62 Sinnokrot (lc5064_bb69) 2002; 124 Toby (lc5064_bb78) 2001; 34 lc5064_bb36 lc5064_bb34 Hulea (lc5064_bb26) 2006; 5 Fumagalli (lc5064_bb17) 2011; 23 Jørgensen (lc5064_bb31) 2014; 70 Strickler (lc5064_bb73) 1962; 37 lc5064_bb72 Lu (lc5064_bb39) 2007; 334 Iversen (lc5064_bb92) 1997; 13 lc5064_bb76 lc5064_bb77 Braun (lc5064_bb6) 2013; 13 Seferos (lc5064_bb65) 2005; 102 Reineke (lc5064_bb57) 2013; 85 Yassar (lc5064_bb87) 2014; 56 Gavezzotti (lc5064_bb20) 2011; 35 Podzorov (lc5064_bb54) 2013; 38 Overgaard (lc5064_bb93) 2001 Figgis (lc5064_bb91) 1993; 49 Reese (lc5064_bb56) 2007; 10 lc5064_bb1 McGarry (lc5064_bb47) 2013; 25 lc5064_bb23 Johnson (lc5064_bb30) 2010; 132 Matta (lc5064_bb46) 2003; 9 Volkov (lc5064_bb79) 2004; 391 Blessing (lc5064_bb5) 1995; 51 Dovesi (lc5064_bb10) 2014; 114 lc5064_bb27 Macchi (lc5064_bb41) 1998; 120 Sheldrick (lc5064_bb66) 2008; 64 Morgenroth (lc5064_bb50) 2008; 41 Sovago (lc5064_bb71) 2014; 14 Nguyen (lc5064_bb52) 2012; 116 Meyer (lc5064_bb48) 2003; 42 Shishkina (lc5064_bb67) 2013; 13 Lane (lc5064_bb35) 2013; 9 Espinosa (lc5064_bb13) 2002; 117 Bergantin (lc5064_bb3) 2012; 12 Hirshfeld (lc5064_bb24) 1976; 32 Scherer (lc5064_bb62) 2006; 30 Wu (lc5064_bb85) 2008; 3 Biegler-könig (lc5064_bb4) 1982; 3 Macchi (lc5064_bb40) 2001; 57 Sirringhaus (lc5064_bb70) 1999; 401 Wolstenholme (lc5064_bb84) 2007; 111 Dunitz (lc5064_bb11) 2012; 12 lc5064_bb59 Schultz (lc5064_bb63) 2014; 47 Jurchescu (lc5064_bb33) 2007; 19 Su (lc5064_bb74) 1998; 54 Saleh (lc5064_bb60) 2012; 18 Wen (lc5064_bb81) 2009; 113 lc5064_bb16 Li (lc5064_bb38) 2012; 134 Delgado (lc5064_bb8) 2009; 131 Mastrogiovanni (lc5064_bb45) 2014; 4 Subramanian (lc5064_bb75) 2005; 28 Paul (lc5064_bb53) 2011; 67 Hunter (lc5064_bb28) 1990; 112 lc5064_bb55 Silva Filho (lc5064_bb68) 2005; 17 Hübschle (lc5064_bb25) 2006; 39 Gatti (lc5064_bb18) 1994; 101 Echeverría (lc5064_bb12) 2011; 3 Saleh (lc5064_bb61) 2013; 46 Grabowski (lc5064_bb21) 2007; 337 Dong (lc5064_bb9) 2010; 46 Hansen (lc5064_bb22) 1978; 34 Madsen (lc5064_bb42) 2006; 39 Lezama (lc5064_bb37) 2013; 38 Coppens (lc5064_bb90) 1967; 158 Mishra (lc5064_bb49) 2012; 51 Wolstenholme (lc5064_bb83) 2006; 110 Zhurova (lc5064_bb89) 2006; 128 Facchetti (lc5064_bb14) 2007; 10 Farrugia (lc5064_bb15) 2012; 45 Gavezzotti (lc5064_bb19) 2008; 106 Yamashita (lc5064_bb86) 2009; 10 Becke (lc5064_bb2) 1993; 98 Maschio (lc5064_bb44) 2011; 115 Murphy (lc5064_bb51) 2007; 107 Schultz (lc5064_bb64) 1984; 106 Reyes-Martinez (lc5064_bb58) 2012; 24 Mannsfeld (lc5064_bb43) 2010; 9 lc5064_bb80 Jiang (lc5064_bb29) 2013; 38 Williams (lc5064_bb82) 1984; 40 |
| References_xml | – volume: 391 start-page: 170 year: 2004 ident: lc5064_bb79 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.04.097 – volume: 111 start-page: 8803 year: 2007 ident: lc5064_bb84 publication-title: J. Phys. Chem. A doi: 10.1021/jp071002+ – volume: 49 start-page: 794 year: 1993 ident: lc5064_bb91 publication-title: Acta Cryst. B doi: 10.1107/S0108768193002812 – volume: 62 start-page: 330 year: 2006 ident: lc5064_bb32 publication-title: Acta Cryst. B doi: 10.1107/S0108768106003053 – volume: 38 start-page: 51 year: 2013 ident: lc5064_bb37 publication-title: MRS Bull. doi: 10.1557/mrs.2012.311 – volume: 28 start-page: 742 year: 2005 ident: lc5064_bb75 publication-title: IEEE T Compon Pack T doi: 10.1109/TCAPT.2005.859672 – volume: 19 start-page: 688 year: 2007 ident: lc5064_bb33 publication-title: Adv. Mater. doi: 10.1002/adma.200600929 – volume: 14 start-page: 1227 year: 2014 ident: lc5064_bb71 publication-title: Cryst. Growth Des. doi: 10.1021/cg401757z – volume: 110 start-page: 8970 year: 2006 ident: lc5064_bb83 publication-title: J. Phys. Chem. A doi: 10.1021/jp061205i – ident: lc5064_bb27 – volume: 57 start-page: 656 year: 2001 ident: lc5064_bb40 publication-title: Acta Cryst. A doi: 10.1107/S0108767301010182 – ident: lc5064_bb23 – volume: 17 start-page: 1072 year: 2005 ident: lc5064_bb68 publication-title: Adv. Mater. doi: 10.1002/adma.200401866 – volume: 46 start-page: 1513 year: 2013 ident: lc5064_bb61 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889813020098 – volume: 10 start-page: 28 year: 2007 ident: lc5064_bb14 publication-title: Mater. Today doi: 10.1016/S1369-7021(07)70017-2 – volume: 124 start-page: 10887 year: 2002 ident: lc5064_bb69 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja025896h – volume: 13 start-page: 816 year: 2013 ident: lc5064_bb67 publication-title: Cryst. Growth Des. doi: 10.1021/cg3015223 – volume: 117 start-page: 5529 year: 2002 ident: lc5064_bb13 publication-title: J. Chem. Phys. doi: 10.1063/1.1501133 – volume: 113 start-page: 8813 year: 2009 ident: lc5064_bb81 publication-title: J. Phys. Chem. B doi: 10.1021/jp900512s – volume: 158 start-page: 1577 year: 1967 ident: lc5064_bb90 publication-title: Science doi: 10.1126/science.158.3808.1577 – volume: 114 start-page: 1287 year: 2014 ident: lc5064_bb10 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24658 – volume: 85 start-page: 1245 year: 2013 ident: lc5064_bb57 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1245 – volume: 64 start-page: 112 year: 2008 ident: lc5064_bb66 publication-title: Acta Cryst. A doi: 10.1107/S0108767307043930 – volume: 131 start-page: 1502 year: 2009 ident: lc5064_bb8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807528w – volume: 38 start-page: 28 year: 2013 ident: lc5064_bb29 publication-title: MRS Bull. doi: 10.1557/mrs.2012.308 – volume: 40 start-page: 404 year: 1984 ident: lc5064_bb82 publication-title: Acta Cryst. B doi: 10.1107/S010876818400238X – volume: 51 start-page: 2020 year: 2012 ident: lc5064_bb49 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201102326 – volume: 24 start-page: 5548 year: 2012 ident: lc5064_bb58 publication-title: Adv. Mater. doi: 10.1002/adma.201201749 – volume: 401 start-page: 685 year: 1999 ident: lc5064_bb70 publication-title: Nature doi: 10.1038/44359 – volume: 30 start-page: 309 year: 2006 ident: lc5064_bb62 publication-title: New J. Chem. doi: 10.1039/b515171f – volume: 41 start-page: 846 year: 2008 ident: lc5064_bb50 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889808024643 – volume: 67 start-page: 365 year: 2011 ident: lc5064_bb53 publication-title: Acta Cryst. B doi: 10.1107/S0108768111022683 – volume: 128 start-page: 8849 year: 2006 ident: lc5064_bb89 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061080v – ident: lc5064_bb1 doi: 10.1093/oso/9780198551683.001.0001 – ident: lc5064_bb55 – ident: lc5064_bb59 – ident: lc5064_bb76 – volume: 3 start-page: 323 year: 2011 ident: lc5064_bb12 publication-title: Nat. Chem. doi: 10.1038/nchem.1004 – volume: 39 start-page: 901 year: 2006 ident: lc5064_bb25 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889806041859 – volume: 54 start-page: 646 year: 1998 ident: lc5064_bb74 publication-title: Acta Cryst. A doi: 10.1107/S0108767398003390 – ident: lc5064_bb72 – ident: lc5064_bb34 – volume: 134 start-page: 2760 year: 2012 ident: lc5064_bb38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210430b – volume: 25 start-page: 2254 year: 2013 ident: lc5064_bb47 publication-title: Chem. Mater. doi: 10.1021/cm400736s – volume: 102 start-page: 8821 year: 2005 ident: lc5064_bb65 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0500002102 – volume: 42 start-page: 1210 year: 2003 ident: lc5064_bb48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200390319 – volume: 106 start-page: 1473 year: 2008 ident: lc5064_bb19 publication-title: Mol. Phys. doi: 10.1080/00268970802060674 – volume: 337 start-page: 68 year: 2007 ident: lc5064_bb21 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2007.06.042 – volume: 37 start-page: 814 year: 1962 ident: lc5064_bb73 publication-title: J. Chem. Phys. doi: 10.1063/1.1733166 – volume: 32 start-page: 239 year: 1976 ident: lc5064_bb24 publication-title: Acta Cryst. A doi: 10.1107/S0567739476000533 – volume: 9 start-page: 859 year: 2010 ident: lc5064_bb43 publication-title: Nat. Mater. doi: 10.1038/nmat2834 – volume: 10 start-page: 20 year: 2007 ident: lc5064_bb56 publication-title: Mater. Today doi: 10.1016/S1369-7021(07)70016-0 – volume: 35 start-page: 1360 year: 2011 ident: lc5064_bb20 publication-title: New J. Chem. doi: 10.1039/c0nj00982b – volume: 47 start-page: 915 year: 2014 ident: lc5064_bb63 publication-title: J. Appl. Cryst. doi: 10.1107/S1600576714006372 – volume: 120 start-page: 1447 year: 1998 ident: lc5064_bb41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja972558l – ident: lc5064_bb77 – volume: 9 start-page: 1940 year: 2003 ident: lc5064_bb46 publication-title: Chem. Eur. J. doi: 10.1002/chem.200204626 – volume: 5 start-page: 982 year: 2006 ident: lc5064_bb26 publication-title: Nat. Mater. doi: 10.1038/nmat1774 – volume: 107 start-page: 1066 year: 2007 ident: lc5064_bb51 publication-title: Chem. Rev. doi: 10.1021/cr0501386 – volume: 34 start-page: 909 year: 1978 ident: lc5064_bb22 publication-title: Acta Cryst. A doi: 10.1107/S0567739478001886 – volume: 13 start-page: 2227 year: 1997 ident: lc5064_bb92 publication-title: Dalton Trans. doi: 10.1039/a701978e – volume: 56 start-page: 4 year: 2014 ident: lc5064_bb87 publication-title: Polym. Sci. Ser. C. doi: 10.1134/S1811238214010111 – volume: 12 start-page: 5873 year: 2012 ident: lc5064_bb11 publication-title: Cryst. Growth Des. doi: 10.1021/cg301293r – start-page: 3756 year: 2001 ident: lc5064_bb93 publication-title: Chem. Eur. J. doi: 10.1002/1521-3765(20010903)7:17<3756::AID-CHEM3756>3.0.CO;2-Q – ident: lc5064_bb16 – volume: 38 start-page: 15 year: 2013 ident: lc5064_bb54 publication-title: MRS Bull. doi: 10.1557/mrs.2012.306 – volume: 39 start-page: 757 year: 2006 ident: lc5064_bb42 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889806026379 – volume: 115 start-page: 11179 year: 2011 ident: lc5064_bb44 publication-title: J. Phys. Chem. A doi: 10.1021/jp203132k – volume: 51 start-page: 33 year: 1995 ident: lc5064_bb5 publication-title: Acta Cryst. A doi: 10.1107/S0108767394005726 – volume: 3 start-page: 317 year: 1982 ident: lc5064_bb4 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540030306 – volume: 4 start-page: 4753 year: 2014 ident: lc5064_bb45 publication-title: Sci. Rep. doi: 10.1038/srep04753 – volume: 70 start-page: 679 year: 2014 ident: lc5064_bb31 publication-title: Acta Cryst. A doi: 10.1107/S2053273314015599 – volume: 13 start-page: 4071 year: 2013 ident: lc5064_bb6 publication-title: Cryst. Growth Des. doi: 10.1021/cg4009015 – volume: 132 start-page: 6498 year: 2010 ident: lc5064_bb30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja100936w – volume: 334 start-page: 1 year: 2007 ident: lc5064_bb39 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2006.12.011 – volume: 101 start-page: 10686 year: 1994 ident: lc5064_bb18 publication-title: J. Chem. Phys. doi: 10.1063/1.467882 – volume: 112 start-page: 5525 year: 1990 ident: lc5064_bb28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00170a016 – volume: 9 start-page: 3263 year: 2013 ident: lc5064_bb35 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400420r – volume: 3 start-page: 569 year: 2008 ident: lc5064_bb85 publication-title: Nature Nanotech doi: 10.1038/nnano.2008.237 – volume: 116 start-page: 3420 year: 2012 ident: lc5064_bb52 publication-title: J. Phys. Chem. A doi: 10.1021/jp2108076 – ident: lc5064_bb80 – volume: 107 start-page: 926 year: 2007 ident: lc5064_bb7 publication-title: Chem. Rev. doi: 10.1021/cr050140x – volume: 45 start-page: 849 year: 2012 ident: lc5064_bb15 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889812029111 – volume: 10 start-page: 024313 year: 2009 ident: lc5064_bb86 publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/10/2/024313 – volume: 98 start-page: 5648 year: 1993 ident: lc5064_bb2 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 23 start-page: 3246 year: 2011 ident: lc5064_bb17 publication-title: Chem. Mater. doi: 10.1021/cm201230j – volume: 46 start-page: 5211 year: 2010 ident: lc5064_bb9 publication-title: Chem. Commun. doi: 10.1039/c0cc00947d – ident: lc5064_bb36 – volume: 34 start-page: 210 year: 2001 ident: lc5064_bb78 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889801002242 – volume: 12 start-page: 6035 year: 2012 ident: lc5064_bb3 publication-title: Cryst. Growth Des. doi: 10.1021/cg301130n – volume: 18 start-page: 15523 year: 2012 ident: lc5064_bb60 publication-title: Chem. Eur. J. doi: 10.1002/chem.201201290 – volume: 106 start-page: 999 year: 1984 ident: lc5064_bb64 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00316a031 |
| SSID | ssj0001125741 |
| Score | 2.4906614 |
| Snippet | Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in... A combination of single-crystal X-ray and neutron diffraction experiments are used to determine the electron density distribution in orthorhombic rubrene. The... |
| SourceID | doaj pubmedcentral osti proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 563 |
| SubjectTerms | Crystals Electric properties Electron configuration electron density INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY interaction energy Observations organic semiconductor Research Papers rubrene Semiconductors Structure |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB9k8UEf5O786t15VBAEoVySNk36eIqHD3IoKtxbSNKEW_Ba6e76999M2i27KvriU8lXaTIzyW-a5DcAryK3MnAWCm25KyptRWEZMdCWro6N0L5RLgWbUFdX-vq6-bQT6ovOhI30wOPAnbtW-1pbW_KyRmXjmkXlRRDWxYiLV4JGiHp2nKn0dwXXbZXCVgomRSGkkNOWJro7518ok_IQDRGlGdtblBJ3_zxDL3o0tT_Bz19PUe4sS5cH8GjCk_nF2I9DuBe6I3i4wzL4GD5-3tgu3SXDmS23EwtJ3secuCKG222A3DE5XnRYYSKnLZ1-uOlv3dLnw8YR--UT-Hb5_uu7D8UURKHw6NqsC-FYkAh6nKMrpA7zylqhBLhioW3ryD1XoRJt23DrpbI2xko5GxXzmleSlU9h0fVdeA559NEqzaPGV6JfJVEElcc2Tawa60OdAduOovETwzgFuvhukqfBlPlt4DN4Mzf5MdJr_K3yWxLNXJGYsVMG6ouZ9MX8S18yeE2CNWS_-HHeTtcQsIvEhGUuKormRfyoGZyQ7A1CEeLT9XTwyK8NAiQCuRmcblXCTGa_MujeNTVi2LrM4OVcjAZLuzC2C_2G6iBKk7S7nMGzUYPmHokaPTje6AzUnm7tdXm_pFveJFLwRMwmquP_MUYn8AAfcjxKdwqL9bAJL-C-_7leroazZGl3eVoqBA priority: 102 providerName: Directory of Open Access Journals |
| Title | Quantitative analysis of intermolecular interactions in orthorhombic rubrene |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26306198 https://www.proquest.com/docview/1749685163 https://www.proquest.com/docview/1707557065 https://www.osti.gov/servlets/purl/1294057 https://pubmed.ncbi.nlm.nih.gov/PMC4547824 https://doaj.org/article/bd8c68aa3136488180f7c2e2abff201a |
| Volume | 2 |
| WOSCitedRecordID | wos000360067300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: KB. dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: PIMPY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: UK & Ireland Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: EHMNL dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/ukireland providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iHQ_wwH0QNqogISEhhdm52XlCK9oEAqpyk8pTZDs2q8SSkbb8fs5x0mwFtBce4ziVXZ_Ld3zs7wA8c1xlljMbScV1lEoVR4oRA22ic1fE0hRC-2ITYjqV83kx6zfclv2xyo1N9Ia6agztkR8ici5yhAd58ur8Z0RVoyi72pfQ2IFdYkmg0g3vJi8v9ljQe6PH7JOZGOgcfo4ZAo4MnXrmyczYljvyrP2DbR41qGT_Ap5_np-85JBObv_vVO7ArR6Khked7NyFa7a-BzcvERTeh_cf16r219DQKIaqJzAJGxcSzUR7tqmt2z12dySW-BBSNqhpT5szvTBhu9ZEnPkAvp4cf3n9JurrL0QGo6JVFGtmM8RLWtPtU41tSS5w8bhgtqpyxw0XNo2rquDKZEIp51KhlRPMSJ5mLNmDUd3U9hGEzjglJHcSfxJDskxplxr8pnBpoYzNA2CbZShNT05ONTJ-lD5IYaL8a-UCeDF8ct4xc1zVeUJrO3QkUm3f0LTfy15HS11Jk0ulEp7kaNe4ZE6Y2MY4WIc4SQXwnCSjJNXHwRnV32DAKRKJVnmUUiEwolYNYJ-Ep0QUQ1S8hs4smVWJ2IrwcQAHG7koe4uxLC-EIoCnw2vUdUrgqNo2a-qDAC-jxHQADzsRHGYU5xj88UIGILaEc2vK22_qxannE_ecbnH6-Oph7cMN_BOy7nzdAYxW7do-gevm12qxbMewI-ZyDLuT4-ns09jvbIy9MmLb7O2H2bffbEI69A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4P0ILRAkEBJS1DgvOweEyqPqqttVEUVqT8Z2bLoSTUp2F8Sf4jcyk8e2C6i3HjgmcSLbmRl_4_F8A_DMMZVaFtpAKKaDRKgoUCEx0MY6c3kkTM51U2yCj8fi4CDfW4FffS4MHavsbWJjqIvK0B75BiLnPEN4kMWvT74FVDWKoqt9CY1WLHbszx_osk1fDd_h_30eRVvv999uB11VgcAg1p8FkQ5tiihAa8qp1Hgvzjh2ifHQFkXmmGHcJlFR5EyZlCvlXMK1cjw0giVpGON3L8FqgsIuBrC6N9zdOzzd1UG8gGt0Fz5F12rjYxQixEkRRqQNfVq4tAA2dQIWq8GgQrX-F9T988TmmSVw68b_Nnk34XoHtv3NVjtuwYotb8O1MxSMd2D0Ya7KJtEOzb6vOooWv3I-EWnUx3314PayzQKZ4oVP8a6qPqqO9cT49VwTNehd-HQhw7kHg7Iq7QPwnXGKC-YEfhKdzlRplxh8J3dJrozNPAj73y5NR79OVUC-ysYNC7n8S1I8eLl45aTlHjmv8RuSpUVDog1vblT1F9lZIakLYTKhVMziDC03E6HjJrIRdtYhElQevCBJlGTcsHNGdTkaOESiCZObCZU6I_JYD9ZIWCXiNCIbNnQqy8wkokfyADxY7-VQdjZxKk-F0IOni8dozShEpUpbzakNQtiUQu8e3G9FfjGiKEP3luXCA76kDEtDXn5STo4axvSGtS5KHp7frSdwZXt_dyRHw_HOGlzFCUnb04TrMJjVc_sILpvvs8m0ftypvQ-fL1pZfgP7DJP0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+analysis+of+intermolecular+interactions+in+orthorhombic+rubrene&rft.jtitle=IUCrJ&rft.au=Hathwar%2C+Venkatesha+R&rft.au=Sist%2C+Mattia&rft.au=J%C3%B8rgensen%2C+Mads+R+V&rft.au=Mamakhel%2C+Aref+H&rft.date=2015-09-01&rft.pub=International+Union+of+Crystallography&rft.eissn=2052-2525&rft.volume=2&rft.issue=5&rft.spage=563&rft_id=info:doi/10.1107%2FS2052252515012130&rft.externalDocID=3897776231 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-2525&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-2525&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-2525&client=summon |