Identifying personal microbiomes using metagenomic codes
Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding alg...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 22; p. E2930 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
02.06.2015
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30-300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability-a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability. |
|---|---|
| AbstractList | Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30-300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability-a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability.Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30-300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability-a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability. Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30-300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability-a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability. |
| Author | Huang, Katherine Lemon, Katherine P Meadow, James F Gevers, Dirk Bohannan, Brendan J M Franzosa, Eric A Huttenhower, Curtis |
| Author_xml | – sequence: 1 givenname: Eric A surname: Franzosa fullname: Franzosa, Eric A organization: Biostatistics Department, Harvard School of Public Health, Boston, MA 02115; Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA 02142 – sequence: 2 givenname: Katherine surname: Huang fullname: Huang, Katherine organization: Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA 02142 – sequence: 3 givenname: James F surname: Meadow fullname: Meadow, James F organization: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 – sequence: 4 givenname: Dirk surname: Gevers fullname: Gevers, Dirk organization: Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA 02142 – sequence: 5 givenname: Katherine P surname: Lemon fullname: Lemon, Katherine P organization: Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142; and Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 – sequence: 6 givenname: Brendan J M surname: Bohannan fullname: Bohannan, Brendan J M organization: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 – sequence: 7 givenname: Curtis surname: Huttenhower fullname: Huttenhower, Curtis email: chuttenh@hsph.harvard.edu organization: Biostatistics Department, Harvard School of Public Health, Boston, MA 02115; Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA 02142; chuttenh@hsph.harvard.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25964341$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNjztrwzAUhUVJaR7t3K147OJUV5JlaSyhj0CgSzIbPa6Diy25lj3k3zelKXQ6B76PA2dJZiEGJOQe6BpoyZ_6YNIaBOOqEADsiiyAasil0HT2r8_JMqVPSqkuFL0hc1ZoKbiABVFbj2Fs6lMTjlmPQ4rBtFnXuCHaJnaYsin9oA5Hc8QQzyRz0WO6Jde1aRPeXXJFDq8v-817vvt4226ed7mTTIw5Us1Kb4QRXtSqtFxa6SigLDxVztS6FJZ74LVFa52gqgBbKmlBS6uVZGxFHn93-yF-TZjGqmuSw7Y1AeOUKpBKUikVL87qw0WdbIe-6oemM8Op-nvLvgF8-ljz |
| CitedBy_id | crossref_primary_10_1016_j_fsigen_2021_102566 crossref_primary_10_1093_femsec_fiz127 crossref_primary_10_1038_nature23889 crossref_primary_10_2217_pgs_2019_0027 crossref_primary_10_1177_0963662519832200 crossref_primary_10_3390_ijms241612583 crossref_primary_10_7717_peerj_3184 crossref_primary_10_1186_s13059_017_1359_z crossref_primary_10_1371_journal_pone_0199947 crossref_primary_10_3389_fmicb_2022_825338 crossref_primary_10_1111_1462_2920_13318 crossref_primary_10_1016_j_tips_2016_10_001 crossref_primary_10_1016_j_arcmed_2019_09_004 crossref_primary_10_1186_s40168_016_0165_2 crossref_primary_10_1080_19490976_2021_1872323 crossref_primary_10_1016_j_tim_2017_11_002 crossref_primary_10_3390_nu12061827 crossref_primary_10_1016_j_cell_2021_03_024 crossref_primary_10_2174_1381612826666201207111209 crossref_primary_10_1073_pnas_1507731112 crossref_primary_10_1128_mSystems_00033_16 crossref_primary_10_1038_s41564_023_01395_x crossref_primary_10_3390_metabo12010050 crossref_primary_10_1080_13576275_2024_2411610 crossref_primary_10_1016_j_cels_2022_12_010 crossref_primary_10_1002_ntls_70002 crossref_primary_10_1016_j_jflm_2024_102757 crossref_primary_10_1016_j_csbj_2025_07_031 crossref_primary_10_4103_ijmm_IJMM_17_250 crossref_primary_10_1038_s41579_021_00534_7 crossref_primary_10_7554_eLife_83152 crossref_primary_10_1111_joim_12959 crossref_primary_10_1371_journal_pone_0236082 crossref_primary_10_1007_s40484_016_0078_x crossref_primary_10_1038_s41564_023_01470_3 crossref_primary_10_1186_s40168_016_0209_7 crossref_primary_10_1016_j_ijfoodmicro_2017_11_008 crossref_primary_10_1038_s41467_018_07148_3 crossref_primary_10_1093_icb_icx046 crossref_primary_10_1186_s40168_017_0352_9 crossref_primary_10_1093_nutrit_nuaa128 crossref_primary_10_1002_jbio_202200040 crossref_primary_10_3389_fmicb_2020_01139 crossref_primary_10_1007_s12088_017_0697_6 crossref_primary_10_1111_1751_7915_13970 crossref_primary_10_1002_mnfr_202100389 crossref_primary_10_1097_MCO_0000000000000282 crossref_primary_10_1186_s40168_017_0231_4 crossref_primary_10_1016_j_fsigen_2017_10_004 crossref_primary_10_1016_j_jaip_2019_08_036 crossref_primary_10_1038_cti_2017_6 crossref_primary_10_3390_nu11112714 crossref_primary_10_1186_s12866_023_03012_7 crossref_primary_10_1186_s13073_017_0490_5 crossref_primary_10_1016_j_freeradbiomed_2025_02_006 crossref_primary_10_1093_bib_bbx102 crossref_primary_10_2478_ahem_2021_0009 crossref_primary_10_3389_fcimb_2022_887907 crossref_primary_10_1016_j_it_2019_08_007 crossref_primary_10_1371_journal_pone_0249528 crossref_primary_10_3389_fmicb_2020_01266 crossref_primary_10_1186_s12866_021_02312_0 crossref_primary_10_1093_femsre_fuaa053 crossref_primary_10_1016_j_fsigen_2017_06_008 crossref_primary_10_1186_s40168_016_0192_z crossref_primary_10_1146_annurev_genom_083115_022438 crossref_primary_10_1128_AEM_01672_17 crossref_primary_10_1186_s40168_017_0349_4 crossref_primary_10_1016_j_forsciint_2022_111462 crossref_primary_10_1038_sj_bdj_2016_865 crossref_primary_10_1007_s00253_018_9414_6 crossref_primary_10_1134_S036211971908005X crossref_primary_10_1007_s40610_019_00122_y crossref_primary_10_1016_j_jdermsci_2015_07_006 crossref_primary_10_1016_j_jshs_2022_09_002 crossref_primary_10_1016_j_tim_2018_08_004 crossref_primary_10_1371_journal_pone_0198773 crossref_primary_10_1128_jmbe_00074_23 crossref_primary_10_1038_s41591_021_01258_0 crossref_primary_10_1080_17474124_2020_1780912 crossref_primary_10_3389_fbioe_2019_00106 crossref_primary_10_3389_fmicb_2024_1431785 crossref_primary_10_1016_j_addr_2025_115661 crossref_primary_10_1038_nmicrobiol_2016_180 crossref_primary_10_1016_j_forsciint_2023_111766 crossref_primary_10_1016_j_micinf_2019_07_004 crossref_primary_10_1080_15265161_2017_1299240 crossref_primary_10_1007_s13238_018_0537_4 crossref_primary_10_3390_genes6030841 crossref_primary_10_1038_s41564_023_01471_2 crossref_primary_10_3389_fimmu_2024_1401800 crossref_primary_10_3389_fped_2020_00528 crossref_primary_10_3389_fmicb_2022_777882 crossref_primary_10_3390_cancers15204984 crossref_primary_10_1016_j_jacc_2023_02_045 crossref_primary_10_1186_s40168_021_01076_z crossref_primary_10_1186_s40168_018_0603_4 crossref_primary_10_1016_j_scijus_2021_01_001 crossref_primary_10_1097_YPG_0000000000000255 crossref_primary_10_3389_fmicb_2024_1343572 crossref_primary_10_1111_prd_12121 crossref_primary_10_1038_s41370_019_0157_y crossref_primary_10_1371_journal_ppat_1005633 crossref_primary_10_1128_mSystems_00190_17 crossref_primary_10_1093_femsle_fnw266 crossref_primary_10_1016_j_addr_2016_04_032 crossref_primary_10_1016_j_cels_2016_10_004 crossref_primary_10_1002_geo2_66 crossref_primary_10_1128_aem_01871_24 crossref_primary_10_1016_j_legalmed_2018_09_014 crossref_primary_10_3389_fmicb_2023_1186372 crossref_primary_10_3390_ijms22168896 crossref_primary_10_1038_s41467_021_25315_x crossref_primary_10_1080_08820139_2017_1373828 crossref_primary_10_1007_s00398_023_00590_6 crossref_primary_10_1128_aem_00052_22 crossref_primary_10_1111_1751_7915_13047 crossref_primary_10_3390_diagnostics12112641 crossref_primary_10_1111_prd_12373 crossref_primary_10_3390_genes14081647 crossref_primary_10_3390_ijms23168999 crossref_primary_10_1007_s10669_024_09965_y crossref_primary_10_1038_521136a crossref_primary_10_1128_aem_01325_22 crossref_primary_10_1186_s12866_020_01801_y crossref_primary_10_1177_1535370218755659 crossref_primary_10_1136_gutjnl_2016_313678 crossref_primary_10_3389_fmed_2022_911861 crossref_primary_10_3390_nu11040829 crossref_primary_10_1007_s43538_021_00031_8 crossref_primary_10_1128_mSystems_01255_20 crossref_primary_10_1136_gutjnl_2017_313872 crossref_primary_10_1038_s41467_020_19701_0 crossref_primary_10_3389_fmicb_2020_589164 crossref_primary_10_1186_s13073_020_00765_y crossref_primary_10_1016_j_niox_2025_04_001 crossref_primary_10_1111_1556_4029_13949 crossref_primary_10_3917_rindu1_223_0041 crossref_primary_10_1111_nmo_13172 crossref_primary_10_1186_s12916_016_0622_6 crossref_primary_10_1038_s41579_022_00768_z crossref_primary_10_1016_j_ecoenv_2023_115637 crossref_primary_10_1186_s13059_022_02841_5 crossref_primary_10_1007_s40475_016_0079_x crossref_primary_10_1038_nrmicro_2016_17 crossref_primary_10_1038_s41467_024_46766_y crossref_primary_10_1038_nature18850 crossref_primary_10_1016_j_biocon_2016_03_035 crossref_primary_10_1038_nbt_3960 crossref_primary_10_1016_j_fsigen_2020_102393 crossref_primary_10_1038_nm_3914 crossref_primary_10_1101_gr_216242_116 crossref_primary_10_1186_s40168_015_0127_0 crossref_primary_10_1038_s41467_019_12476_z crossref_primary_10_1371_journal_pone_0242021 crossref_primary_10_1080_1040841X_2022_2035313 crossref_primary_10_3390_nu14030553 crossref_primary_10_1007_s11673_020_10047_2 crossref_primary_10_3389_fmicb_2023_1163741 crossref_primary_10_1080_19490976_2024_2427878 crossref_primary_10_1086_703582 crossref_primary_10_3390_app11094050 crossref_primary_10_1016_j_jocn_2020_11_011 crossref_primary_10_1038_s41579_025_01166_x crossref_primary_10_1007_s41649_017_0033_9 crossref_primary_10_1016_j_jfp_2023_100169 crossref_primary_10_1084_jem_20180448 crossref_primary_10_1038_nrgastro_2017_110 crossref_primary_10_1038_s41586_019_1238_8 crossref_primary_10_3389_fmicb_2021_694447 crossref_primary_10_1177_15598276231216393 crossref_primary_10_1016_j_parkreldis_2017_02_002 crossref_primary_10_3389_fnins_2021_613120 crossref_primary_10_1186_s40168_017_0346_7 crossref_primary_10_3390_genes13101914 crossref_primary_10_1016_S1473_3099_19_30045_3 crossref_primary_10_1016_j_tim_2019_08_001 crossref_primary_10_15252_embr_201642572 crossref_primary_10_3389_fcimb_2021_695191 crossref_primary_10_7759_cureus_50318 crossref_primary_10_1111_1751_7915_12831 crossref_primary_10_1128_msystems_00594_19 crossref_primary_10_3390_antibiotics10020152 crossref_primary_10_1038_s41559_022_01773_4 crossref_primary_10_1186_s40168_018_0535_z crossref_primary_10_1073_pnas_1610019113 crossref_primary_10_3390_metabo13121184 crossref_primary_10_1016_j_scijus_2021_06_006 crossref_primary_10_3389_fneur_2019_01155 crossref_primary_10_3389_fimmu_2016_00627 crossref_primary_10_1038_d41586_021_00642_7 crossref_primary_10_1084_jem_20200606 crossref_primary_10_1111_omi_12381 crossref_primary_10_3389_fmicb_2017_00563 crossref_primary_10_1089_omi_2019_0073 crossref_primary_10_3390_microorganisms11092127 crossref_primary_10_1186_s12866_023_03042_1 crossref_primary_10_1093_nar_gkaa902 crossref_primary_10_18261_ntfe_20_4_3 crossref_primary_10_1016_j_toxlet_2021_12_003 crossref_primary_10_1007_s00018_015_2061_5 crossref_primary_10_1038_ismej_2015_148 crossref_primary_10_1016_j_fsigen_2016_10_005 crossref_primary_10_15252_embr_201541677 crossref_primary_10_1038_nature18301 crossref_primary_10_1016_j_gpb_2022_07_007 crossref_primary_10_1002_eahr_500132 crossref_primary_10_1038_s41591_024_02803_3 crossref_primary_10_1016_j_talanta_2017_01_087 crossref_primary_10_1007_s00253_021_11622_2 crossref_primary_10_3390_microorganisms9040727 crossref_primary_10_3390_nu16172891 crossref_primary_10_1016_j_cell_2016_04_008 crossref_primary_10_1093_bib_bbad168 crossref_primary_10_3390_nu16071079 crossref_primary_10_1038_s41598_018_21541_4 crossref_primary_10_1111_1755_0998_12946 crossref_primary_10_1371_journal_pcbi_1005364 crossref_primary_10_3389_fmicb_2016_00712 crossref_primary_10_1177_09710973251316379 crossref_primary_10_1038_s41559_023_02250_2 crossref_primary_10_3389_fmicb_2022_1046733 crossref_primary_10_1111_odi_12472 crossref_primary_10_7717_peerj_1258 crossref_primary_10_1002_brb3_3130 crossref_primary_10_3390_jcm14062040 crossref_primary_10_1186_s12866_025_04193_z crossref_primary_10_1038_s41598_023_41128_y crossref_primary_10_1111_nyas_13039 crossref_primary_10_1038_s41522_018_0065_2 crossref_primary_10_1093_bioadv_vbae203 crossref_primary_10_1097_MCG_0000000000001064 crossref_primary_10_3389_fimmu_2020_02101 crossref_primary_10_1097_MOL_0000000000000308 crossref_primary_10_1038_s41598_022_10472_w crossref_primary_10_3390_biology10070651 crossref_primary_10_1111_1365_2656_13229 crossref_primary_10_1371_journal_pone_0153746 crossref_primary_10_1038_s41380_020_0652_5 crossref_primary_10_3389_fmicb_2020_608101 crossref_primary_10_56373_2017_5_4 crossref_primary_10_1016_S1473_3099_20_30199_7 crossref_primary_10_1007_s00248_020_01636_0 crossref_primary_10_1038_s41564_019_0409_6 crossref_primary_10_1186_s40168_021_01082_1 crossref_primary_10_1186_s40168_022_01251_w crossref_primary_10_3390_biomedicines11092374 crossref_primary_10_1128_msphere_00917_21 crossref_primary_10_1016_j_ejps_2021_105812 crossref_primary_10_1093_nar_gkw837 crossref_primary_10_1016_j_cose_2023_103538 crossref_primary_10_3390_ijms241914912 crossref_primary_10_1016_j_crmeth_2021_100139 crossref_primary_10_3389_fendo_2023_1096050 crossref_primary_10_1080_14737159_2016_1184574 crossref_primary_10_1038_s41576_021_00428_7 crossref_primary_10_1016_j_forsciint_2025_112475 crossref_primary_10_1016_j_ijmm_2016_03_006 crossref_primary_10_1093_g3journal_jkad104 crossref_primary_10_3389_fbioe_2020_571672 crossref_primary_10_1186_s13073_016_0307_y crossref_primary_10_1016_j_fsigen_2019_102212 crossref_primary_10_1093_bib_bbx154 crossref_primary_10_1038_s41559_020_1235_1 crossref_primary_10_1186_s40168_020_00959_x crossref_primary_10_1093_exposome_osad004 crossref_primary_10_1007_s11121_017_0746_8 crossref_primary_10_1016_j_nbd_2024_106627 crossref_primary_10_1155_2019_6361320 crossref_primary_10_1007_s12223_023_01085_5 crossref_primary_10_1007_s12024_024_00830_7 crossref_primary_10_1089_hs_2023_0099 crossref_primary_10_1371_journal_pone_0274633 crossref_primary_10_1177_1757913916650225 crossref_primary_10_1186_s40168_019_0686_6 crossref_primary_10_1016_j_fsigen_2021_102627 crossref_primary_10_1128_msphere_00672_24 crossref_primary_10_1016_j_scijus_2024_08_001 crossref_primary_10_1136_archdischild_2021_322757 crossref_primary_10_1016_j_fsigen_2018_10_003 crossref_primary_10_1186_s40168_020_00831_y crossref_primary_10_3390_microorganisms8060873 crossref_primary_10_3390_healthcare9101371 crossref_primary_10_1016_j_fsigen_2020_102432 crossref_primary_10_1038_s41564_017_0096_0 crossref_primary_10_1002_mco2_70168 crossref_primary_10_1111_1556_4029_15173 crossref_primary_10_15252_msb_202010116 crossref_primary_10_1093_ibd_izx111 crossref_primary_10_1016_j_cell_2022_08_003 crossref_primary_10_1038_s41390_020_01125_7 crossref_primary_10_1038_s41564_023_01381_3 crossref_primary_10_1371_journal_pone_0226111 crossref_primary_10_1038_s41467_020_19940_1 crossref_primary_10_1124_dmd_115_065714 crossref_primary_10_1080_15265161_2020_1863516 crossref_primary_10_1007_s10708_016_9763_6 crossref_primary_10_1016_j_chom_2018_06_005 crossref_primary_10_3390_pharmaceutics13071026 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1423854112 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 25964341 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: U54HG004969 – fundername: NHGRI NIH HHS grantid: R01 HG005969 – fundername: NIAID NIH HHS grantid: HHSN272200900018C – fundername: NIAID NIH HHS grantid: R01 AI101018 – fundername: NHGRI NIH HHS grantid: R01HG005969 – fundername: NIGMS NIH HHS grantid: P50GM098911 – fundername: NIGMS NIH HHS grantid: P50 GM098911 – fundername: NHGRI NIH HHS grantid: U54 HG004969 – fundername: PHS HHS grantid: HHSN272200900018C |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c624t-e0927da4a4d4f87b36b6c01e65d08caf974b3d13fbebbc40851b786b196b98622 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 340 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000355832200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Sun Nov 09 12:20:37 EST 2025 Thu Apr 03 07:10:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | strain variation human microbiome microbial ecology metagenomics forensic genetics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c624t-e0927da4a4d4f87b36b6c01e65d08caf974b3d13fbebbc40851b786b196b98622 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/112/22/E2930.full.pdf |
| PMID | 25964341 |
| PQID | 1686066835 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1686066835 pubmed_primary_25964341 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-06-02 |
| PublicationDateYYYYMMDD | 2015-06-02 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2015 |
| References | 15247459 - Science. 2004 Jul 9;305(5681):183 11924822 - J Investig Dermatol Symp Proc. 2001 Dec;6(3):167-9 21885731 - Science. 2011 Oct 7;334(6052):105-8 22455878 - Genome Biol. 2012;13(3):R23 23222524 - Nature. 2013 Jan 3;493(7430):45-50 20534435 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 10940600 - Forensic Sci Int. 2000 Aug 14;112(2-3):151-61 22132229 - PLoS One. 2011;6(11):e28132 18379574 - Nat Rev Genet. 2008 May;9(5):406-11 17673640 - Science. 2007 Aug 3;317(5838):600-2 19478181 - Science. 2009 May 29;324(5931):1190-2 22688413 - Nat Methods. 2012 Aug;9(8):811-4 16584484 - Environ Microbiol. 2006 Apr;8(4):732-40 12570198 - J Forensic Sci. 2003 Jan;48(1):47-54 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41 23828941 - Science. 2013 Jul 5;341(6141):1237439 22699609 - Nature. 2012 Jun 14;486(7402):207-14 25170151 - Science. 2014 Aug 29;345(6200):1048-52 22699611 - Nature. 2012 Jun 14;486(7402):222-7 20231444 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6477-81 26015565 - Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6778-9 11181139 - Clin Infect Dis. 2001 Feb 15;32(4):e69-77 6762655 - Scand J Infect Dis Suppl. 1982;35:9-15 21508958 - Nature. 2011 May 12;473(7346):174-80 20203603 - Nature. 2010 Mar 4;464(7285):59-65 22699610 - Nature. 2012 Jun 14;486(7402):215-21 18256654 - Nature. 2008 Feb 7;451(7179):639-40 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95 15510165 - Nat Rev Genet. 2004 Oct;5(10):739-51 22144881 - PLoS Comput Biol. 2011 Dec;7(12):e1002278 23638391 - PeerJ. 2013 Mar 12;1:e53 22037308 - Nature. 2011 Dec 8;480(7376):241-4 22184244 - Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):594-9 |
| References_xml | – reference: 20534435 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 – reference: 18379574 - Nat Rev Genet. 2008 May;9(5):406-11 – reference: 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95 – reference: 15510165 - Nat Rev Genet. 2004 Oct;5(10):739-51 – reference: 22184244 - Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):594-9 – reference: 6762655 - Scand J Infect Dis Suppl. 1982;35:9-15 – reference: 22688413 - Nat Methods. 2012 Aug;9(8):811-4 – reference: 22037308 - Nature. 2011 Dec 8;480(7376):241-4 – reference: 17673640 - Science. 2007 Aug 3;317(5838):600-2 – reference: 11924822 - J Investig Dermatol Symp Proc. 2001 Dec;6(3):167-9 – reference: 21885731 - Science. 2011 Oct 7;334(6052):105-8 – reference: 22455878 - Genome Biol. 2012;13(3):R23 – reference: 22132229 - PLoS One. 2011;6(11):e28132 – reference: 23638391 - PeerJ. 2013 Mar 12;1:e53 – reference: 23222524 - Nature. 2013 Jan 3;493(7430):45-50 – reference: 16584484 - Environ Microbiol. 2006 Apr;8(4):732-40 – reference: 23828941 - Science. 2013 Jul 5;341(6141):1237439 – reference: 19478181 - Science. 2009 May 29;324(5931):1190-2 – reference: 26015565 - Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6778-9 – reference: 22699611 - Nature. 2012 Jun 14;486(7402):222-7 – reference: 20231444 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6477-81 – reference: 22699610 - Nature. 2012 Jun 14;486(7402):215-21 – reference: 25170151 - Science. 2014 Aug 29;345(6200):1048-52 – reference: 12570198 - J Forensic Sci. 2003 Jan;48(1):47-54 – reference: 21508958 - Nature. 2011 May 12;473(7346):174-80 – reference: 10940600 - Forensic Sci Int. 2000 Aug 14;112(2-3):151-61 – reference: 15247459 - Science. 2004 Jul 9;305(5681):183 – reference: 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41 – reference: 22699609 - Nature. 2012 Jun 14;486(7402):207-14 – reference: 18256654 - Nature. 2008 Feb 7;451(7179):639-40 – reference: 20203603 - Nature. 2010 Mar 4;464(7285):59-65 – reference: 22144881 - PLoS Comput Biol. 2011 Dec;7(12):e1002278 – reference: 11181139 - Clin Infect Dis. 2001 Feb 15;32(4):e69-77 |
| SSID | ssj0009580 |
| Score | 2.6123283 |
| Snippet | Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | E2930 |
| SubjectTerms | Confidentiality - standards Confidentiality - trends Genetic Markers - genetics Genetic Variation Humans Metagenomics - methods Microbiota - genetics Models, Genetic Precision Medicine - methods |
| Title | Identifying personal microbiomes using metagenomic codes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25964341 https://www.proquest.com/docview/1686066835 |
| Volume | 112 |
| WOSCitedRecordID | wos000355832200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPegjbpGmankTExYvLHhT2VvKUPWy32tXf76TNohdB8FICbSEM8_gmmfkGoSsudaYSzQmgjZRACHCkSBSDlRfMCuqZVe2wiXw8ltNpMYkHbk0sq1z5xNZR24UJZ-RDKmTA2gAYbus3EqZGhdvVOEJjHfVSgDKhpCufyh-ku7JjIygoEbxIVtQ-eTqsK9WAl4CAlXEaxlH-hi_bODPa-e8Od9F2RJj4rlOJPlpz1R7qRxtu8HUkmr7ZR7Lr0m07nXAdUTmezzpupjl8HKriX_HcLVXgcoU3OLTANwfoZfTwfP9I4iQFYgTjS-KSguVWccUt9zLXqdDCJNSJzCbSKA9JhU4tTb12WptAekZ1LoUG89QF5DzsEG1Ui8odIyyNt1xRkzFjuJZaFson3sjcZCHgqwG6XEmnBE0N1w-qcouPpvyWzwAddSIu645So4QkDKARpyd_-PsUbQFqydp6LXaGeh7s1J2jTfO5nDXvF60KwHM8efoCX9K7rw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+personal+microbiomes+using+metagenomic+codes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Franzosa%2C+Eric+A&rft.au=Huang%2C+Katherine&rft.au=Meadow%2C+James+F&rft.au=Gevers%2C+Dirk&rft.date=2015-06-02&rft.eissn=1091-6490&rft.volume=112&rft.issue=22&rft.spage=E2930&rft_id=info:doi/10.1073%2Fpnas.1423854112&rft_id=info%3Apmid%2F25964341&rft_id=info%3Apmid%2F25964341&rft.externalDocID=25964341 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |