Identifying personal microbiomes using metagenomic codes

Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding alg...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 22; p. E2930
Main Authors: Franzosa, Eric A, Huang, Katherine, Meadow, James F, Gevers, Dirk, Lemon, Katherine P, Bohannan, Brendan J M, Huttenhower, Curtis
Format: Journal Article
Language:English
Published: United States 02.06.2015
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30-300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability-a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability.
AbstractList Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30-300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability-a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability.Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30-300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability-a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability.
Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30-300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability-a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability.
Author Huang, Katherine
Lemon, Katherine P
Meadow, James F
Gevers, Dirk
Bohannan, Brendan J M
Franzosa, Eric A
Huttenhower, Curtis
Author_xml – sequence: 1
  givenname: Eric A
  surname: Franzosa
  fullname: Franzosa, Eric A
  organization: Biostatistics Department, Harvard School of Public Health, Boston, MA 02115; Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA 02142
– sequence: 2
  givenname: Katherine
  surname: Huang
  fullname: Huang, Katherine
  organization: Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA 02142
– sequence: 3
  givenname: James F
  surname: Meadow
  fullname: Meadow, James F
  organization: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
– sequence: 4
  givenname: Dirk
  surname: Gevers
  fullname: Gevers, Dirk
  organization: Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA 02142
– sequence: 5
  givenname: Katherine P
  surname: Lemon
  fullname: Lemon, Katherine P
  organization: Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142; and Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
– sequence: 6
  givenname: Brendan J M
  surname: Bohannan
  fullname: Bohannan, Brendan J M
  organization: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
– sequence: 7
  givenname: Curtis
  surname: Huttenhower
  fullname: Huttenhower, Curtis
  email: chuttenh@hsph.harvard.edu
  organization: Biostatistics Department, Harvard School of Public Health, Boston, MA 02115; Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA 02142; chuttenh@hsph.harvard.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25964341$$D View this record in MEDLINE/PubMed
BookMark eNpNjztrwzAUhUVJaR7t3K147OJUV5JlaSyhj0CgSzIbPa6Diy25lj3k3zelKXQ6B76PA2dJZiEGJOQe6BpoyZ_6YNIaBOOqEADsiiyAasil0HT2r8_JMqVPSqkuFL0hc1ZoKbiABVFbj2Fs6lMTjlmPQ4rBtFnXuCHaJnaYsin9oA5Hc8QQzyRz0WO6Jde1aRPeXXJFDq8v-817vvt4226ed7mTTIw5Us1Kb4QRXtSqtFxa6SigLDxVztS6FJZ74LVFa52gqgBbKmlBS6uVZGxFHn93-yF-TZjGqmuSw7Y1AeOUKpBKUikVL87qw0WdbIe-6oemM8Op-nvLvgF8-ljz
CitedBy_id crossref_primary_10_1016_j_fsigen_2021_102566
crossref_primary_10_1093_femsec_fiz127
crossref_primary_10_1038_nature23889
crossref_primary_10_2217_pgs_2019_0027
crossref_primary_10_1177_0963662519832200
crossref_primary_10_3390_ijms241612583
crossref_primary_10_7717_peerj_3184
crossref_primary_10_1186_s13059_017_1359_z
crossref_primary_10_1371_journal_pone_0199947
crossref_primary_10_3389_fmicb_2022_825338
crossref_primary_10_1111_1462_2920_13318
crossref_primary_10_1016_j_tips_2016_10_001
crossref_primary_10_1016_j_arcmed_2019_09_004
crossref_primary_10_1186_s40168_016_0165_2
crossref_primary_10_1080_19490976_2021_1872323
crossref_primary_10_1016_j_tim_2017_11_002
crossref_primary_10_3390_nu12061827
crossref_primary_10_1016_j_cell_2021_03_024
crossref_primary_10_2174_1381612826666201207111209
crossref_primary_10_1073_pnas_1507731112
crossref_primary_10_1128_mSystems_00033_16
crossref_primary_10_1038_s41564_023_01395_x
crossref_primary_10_3390_metabo12010050
crossref_primary_10_1080_13576275_2024_2411610
crossref_primary_10_1016_j_cels_2022_12_010
crossref_primary_10_1002_ntls_70002
crossref_primary_10_1016_j_jflm_2024_102757
crossref_primary_10_1016_j_csbj_2025_07_031
crossref_primary_10_4103_ijmm_IJMM_17_250
crossref_primary_10_1038_s41579_021_00534_7
crossref_primary_10_7554_eLife_83152
crossref_primary_10_1111_joim_12959
crossref_primary_10_1371_journal_pone_0236082
crossref_primary_10_1007_s40484_016_0078_x
crossref_primary_10_1038_s41564_023_01470_3
crossref_primary_10_1186_s40168_016_0209_7
crossref_primary_10_1016_j_ijfoodmicro_2017_11_008
crossref_primary_10_1038_s41467_018_07148_3
crossref_primary_10_1093_icb_icx046
crossref_primary_10_1186_s40168_017_0352_9
crossref_primary_10_1093_nutrit_nuaa128
crossref_primary_10_1002_jbio_202200040
crossref_primary_10_3389_fmicb_2020_01139
crossref_primary_10_1007_s12088_017_0697_6
crossref_primary_10_1111_1751_7915_13970
crossref_primary_10_1002_mnfr_202100389
crossref_primary_10_1097_MCO_0000000000000282
crossref_primary_10_1186_s40168_017_0231_4
crossref_primary_10_1016_j_fsigen_2017_10_004
crossref_primary_10_1016_j_jaip_2019_08_036
crossref_primary_10_1038_cti_2017_6
crossref_primary_10_3390_nu11112714
crossref_primary_10_1186_s12866_023_03012_7
crossref_primary_10_1186_s13073_017_0490_5
crossref_primary_10_1016_j_freeradbiomed_2025_02_006
crossref_primary_10_1093_bib_bbx102
crossref_primary_10_2478_ahem_2021_0009
crossref_primary_10_3389_fcimb_2022_887907
crossref_primary_10_1016_j_it_2019_08_007
crossref_primary_10_1371_journal_pone_0249528
crossref_primary_10_3389_fmicb_2020_01266
crossref_primary_10_1186_s12866_021_02312_0
crossref_primary_10_1093_femsre_fuaa053
crossref_primary_10_1016_j_fsigen_2017_06_008
crossref_primary_10_1186_s40168_016_0192_z
crossref_primary_10_1146_annurev_genom_083115_022438
crossref_primary_10_1128_AEM_01672_17
crossref_primary_10_1186_s40168_017_0349_4
crossref_primary_10_1016_j_forsciint_2022_111462
crossref_primary_10_1038_sj_bdj_2016_865
crossref_primary_10_1007_s00253_018_9414_6
crossref_primary_10_1134_S036211971908005X
crossref_primary_10_1007_s40610_019_00122_y
crossref_primary_10_1016_j_jdermsci_2015_07_006
crossref_primary_10_1016_j_jshs_2022_09_002
crossref_primary_10_1016_j_tim_2018_08_004
crossref_primary_10_1371_journal_pone_0198773
crossref_primary_10_1128_jmbe_00074_23
crossref_primary_10_1038_s41591_021_01258_0
crossref_primary_10_1080_17474124_2020_1780912
crossref_primary_10_3389_fbioe_2019_00106
crossref_primary_10_3389_fmicb_2024_1431785
crossref_primary_10_1016_j_addr_2025_115661
crossref_primary_10_1038_nmicrobiol_2016_180
crossref_primary_10_1016_j_forsciint_2023_111766
crossref_primary_10_1016_j_micinf_2019_07_004
crossref_primary_10_1080_15265161_2017_1299240
crossref_primary_10_1007_s13238_018_0537_4
crossref_primary_10_3390_genes6030841
crossref_primary_10_1038_s41564_023_01471_2
crossref_primary_10_3389_fimmu_2024_1401800
crossref_primary_10_3389_fped_2020_00528
crossref_primary_10_3389_fmicb_2022_777882
crossref_primary_10_3390_cancers15204984
crossref_primary_10_1016_j_jacc_2023_02_045
crossref_primary_10_1186_s40168_021_01076_z
crossref_primary_10_1186_s40168_018_0603_4
crossref_primary_10_1016_j_scijus_2021_01_001
crossref_primary_10_1097_YPG_0000000000000255
crossref_primary_10_3389_fmicb_2024_1343572
crossref_primary_10_1111_prd_12121
crossref_primary_10_1038_s41370_019_0157_y
crossref_primary_10_1371_journal_ppat_1005633
crossref_primary_10_1128_mSystems_00190_17
crossref_primary_10_1093_femsle_fnw266
crossref_primary_10_1016_j_addr_2016_04_032
crossref_primary_10_1016_j_cels_2016_10_004
crossref_primary_10_1002_geo2_66
crossref_primary_10_1128_aem_01871_24
crossref_primary_10_1016_j_legalmed_2018_09_014
crossref_primary_10_3389_fmicb_2023_1186372
crossref_primary_10_3390_ijms22168896
crossref_primary_10_1038_s41467_021_25315_x
crossref_primary_10_1080_08820139_2017_1373828
crossref_primary_10_1007_s00398_023_00590_6
crossref_primary_10_1128_aem_00052_22
crossref_primary_10_1111_1751_7915_13047
crossref_primary_10_3390_diagnostics12112641
crossref_primary_10_1111_prd_12373
crossref_primary_10_3390_genes14081647
crossref_primary_10_3390_ijms23168999
crossref_primary_10_1007_s10669_024_09965_y
crossref_primary_10_1038_521136a
crossref_primary_10_1128_aem_01325_22
crossref_primary_10_1186_s12866_020_01801_y
crossref_primary_10_1177_1535370218755659
crossref_primary_10_1136_gutjnl_2016_313678
crossref_primary_10_3389_fmed_2022_911861
crossref_primary_10_3390_nu11040829
crossref_primary_10_1007_s43538_021_00031_8
crossref_primary_10_1128_mSystems_01255_20
crossref_primary_10_1136_gutjnl_2017_313872
crossref_primary_10_1038_s41467_020_19701_0
crossref_primary_10_3389_fmicb_2020_589164
crossref_primary_10_1186_s13073_020_00765_y
crossref_primary_10_1016_j_niox_2025_04_001
crossref_primary_10_1111_1556_4029_13949
crossref_primary_10_3917_rindu1_223_0041
crossref_primary_10_1111_nmo_13172
crossref_primary_10_1186_s12916_016_0622_6
crossref_primary_10_1038_s41579_022_00768_z
crossref_primary_10_1016_j_ecoenv_2023_115637
crossref_primary_10_1186_s13059_022_02841_5
crossref_primary_10_1007_s40475_016_0079_x
crossref_primary_10_1038_nrmicro_2016_17
crossref_primary_10_1038_s41467_024_46766_y
crossref_primary_10_1038_nature18850
crossref_primary_10_1016_j_biocon_2016_03_035
crossref_primary_10_1038_nbt_3960
crossref_primary_10_1016_j_fsigen_2020_102393
crossref_primary_10_1038_nm_3914
crossref_primary_10_1101_gr_216242_116
crossref_primary_10_1186_s40168_015_0127_0
crossref_primary_10_1038_s41467_019_12476_z
crossref_primary_10_1371_journal_pone_0242021
crossref_primary_10_1080_1040841X_2022_2035313
crossref_primary_10_3390_nu14030553
crossref_primary_10_1007_s11673_020_10047_2
crossref_primary_10_3389_fmicb_2023_1163741
crossref_primary_10_1080_19490976_2024_2427878
crossref_primary_10_1086_703582
crossref_primary_10_3390_app11094050
crossref_primary_10_1016_j_jocn_2020_11_011
crossref_primary_10_1038_s41579_025_01166_x
crossref_primary_10_1007_s41649_017_0033_9
crossref_primary_10_1016_j_jfp_2023_100169
crossref_primary_10_1084_jem_20180448
crossref_primary_10_1038_nrgastro_2017_110
crossref_primary_10_1038_s41586_019_1238_8
crossref_primary_10_3389_fmicb_2021_694447
crossref_primary_10_1177_15598276231216393
crossref_primary_10_1016_j_parkreldis_2017_02_002
crossref_primary_10_3389_fnins_2021_613120
crossref_primary_10_1186_s40168_017_0346_7
crossref_primary_10_3390_genes13101914
crossref_primary_10_1016_S1473_3099_19_30045_3
crossref_primary_10_1016_j_tim_2019_08_001
crossref_primary_10_15252_embr_201642572
crossref_primary_10_3389_fcimb_2021_695191
crossref_primary_10_7759_cureus_50318
crossref_primary_10_1111_1751_7915_12831
crossref_primary_10_1128_msystems_00594_19
crossref_primary_10_3390_antibiotics10020152
crossref_primary_10_1038_s41559_022_01773_4
crossref_primary_10_1186_s40168_018_0535_z
crossref_primary_10_1073_pnas_1610019113
crossref_primary_10_3390_metabo13121184
crossref_primary_10_1016_j_scijus_2021_06_006
crossref_primary_10_3389_fneur_2019_01155
crossref_primary_10_3389_fimmu_2016_00627
crossref_primary_10_1038_d41586_021_00642_7
crossref_primary_10_1084_jem_20200606
crossref_primary_10_1111_omi_12381
crossref_primary_10_3389_fmicb_2017_00563
crossref_primary_10_1089_omi_2019_0073
crossref_primary_10_3390_microorganisms11092127
crossref_primary_10_1186_s12866_023_03042_1
crossref_primary_10_1093_nar_gkaa902
crossref_primary_10_18261_ntfe_20_4_3
crossref_primary_10_1016_j_toxlet_2021_12_003
crossref_primary_10_1007_s00018_015_2061_5
crossref_primary_10_1038_ismej_2015_148
crossref_primary_10_1016_j_fsigen_2016_10_005
crossref_primary_10_15252_embr_201541677
crossref_primary_10_1038_nature18301
crossref_primary_10_1016_j_gpb_2022_07_007
crossref_primary_10_1002_eahr_500132
crossref_primary_10_1038_s41591_024_02803_3
crossref_primary_10_1016_j_talanta_2017_01_087
crossref_primary_10_1007_s00253_021_11622_2
crossref_primary_10_3390_microorganisms9040727
crossref_primary_10_3390_nu16172891
crossref_primary_10_1016_j_cell_2016_04_008
crossref_primary_10_1093_bib_bbad168
crossref_primary_10_3390_nu16071079
crossref_primary_10_1038_s41598_018_21541_4
crossref_primary_10_1111_1755_0998_12946
crossref_primary_10_1371_journal_pcbi_1005364
crossref_primary_10_3389_fmicb_2016_00712
crossref_primary_10_1177_09710973251316379
crossref_primary_10_1038_s41559_023_02250_2
crossref_primary_10_3389_fmicb_2022_1046733
crossref_primary_10_1111_odi_12472
crossref_primary_10_7717_peerj_1258
crossref_primary_10_1002_brb3_3130
crossref_primary_10_3390_jcm14062040
crossref_primary_10_1186_s12866_025_04193_z
crossref_primary_10_1038_s41598_023_41128_y
crossref_primary_10_1111_nyas_13039
crossref_primary_10_1038_s41522_018_0065_2
crossref_primary_10_1093_bioadv_vbae203
crossref_primary_10_1097_MCG_0000000000001064
crossref_primary_10_3389_fimmu_2020_02101
crossref_primary_10_1097_MOL_0000000000000308
crossref_primary_10_1038_s41598_022_10472_w
crossref_primary_10_3390_biology10070651
crossref_primary_10_1111_1365_2656_13229
crossref_primary_10_1371_journal_pone_0153746
crossref_primary_10_1038_s41380_020_0652_5
crossref_primary_10_3389_fmicb_2020_608101
crossref_primary_10_56373_2017_5_4
crossref_primary_10_1016_S1473_3099_20_30199_7
crossref_primary_10_1007_s00248_020_01636_0
crossref_primary_10_1038_s41564_019_0409_6
crossref_primary_10_1186_s40168_021_01082_1
crossref_primary_10_1186_s40168_022_01251_w
crossref_primary_10_3390_biomedicines11092374
crossref_primary_10_1128_msphere_00917_21
crossref_primary_10_1016_j_ejps_2021_105812
crossref_primary_10_1093_nar_gkw837
crossref_primary_10_1016_j_cose_2023_103538
crossref_primary_10_3390_ijms241914912
crossref_primary_10_1016_j_crmeth_2021_100139
crossref_primary_10_3389_fendo_2023_1096050
crossref_primary_10_1080_14737159_2016_1184574
crossref_primary_10_1038_s41576_021_00428_7
crossref_primary_10_1016_j_forsciint_2025_112475
crossref_primary_10_1016_j_ijmm_2016_03_006
crossref_primary_10_1093_g3journal_jkad104
crossref_primary_10_3389_fbioe_2020_571672
crossref_primary_10_1186_s13073_016_0307_y
crossref_primary_10_1016_j_fsigen_2019_102212
crossref_primary_10_1093_bib_bbx154
crossref_primary_10_1038_s41559_020_1235_1
crossref_primary_10_1186_s40168_020_00959_x
crossref_primary_10_1093_exposome_osad004
crossref_primary_10_1007_s11121_017_0746_8
crossref_primary_10_1016_j_nbd_2024_106627
crossref_primary_10_1155_2019_6361320
crossref_primary_10_1007_s12223_023_01085_5
crossref_primary_10_1007_s12024_024_00830_7
crossref_primary_10_1089_hs_2023_0099
crossref_primary_10_1371_journal_pone_0274633
crossref_primary_10_1177_1757913916650225
crossref_primary_10_1186_s40168_019_0686_6
crossref_primary_10_1016_j_fsigen_2021_102627
crossref_primary_10_1128_msphere_00672_24
crossref_primary_10_1016_j_scijus_2024_08_001
crossref_primary_10_1136_archdischild_2021_322757
crossref_primary_10_1016_j_fsigen_2018_10_003
crossref_primary_10_1186_s40168_020_00831_y
crossref_primary_10_3390_microorganisms8060873
crossref_primary_10_3390_healthcare9101371
crossref_primary_10_1016_j_fsigen_2020_102432
crossref_primary_10_1038_s41564_017_0096_0
crossref_primary_10_1002_mco2_70168
crossref_primary_10_1111_1556_4029_15173
crossref_primary_10_15252_msb_202010116
crossref_primary_10_1093_ibd_izx111
crossref_primary_10_1016_j_cell_2022_08_003
crossref_primary_10_1038_s41390_020_01125_7
crossref_primary_10_1038_s41564_023_01381_3
crossref_primary_10_1371_journal_pone_0226111
crossref_primary_10_1038_s41467_020_19940_1
crossref_primary_10_1124_dmd_115_065714
crossref_primary_10_1080_15265161_2020_1863516
crossref_primary_10_1007_s10708_016_9763_6
crossref_primary_10_1016_j_chom_2018_06_005
crossref_primary_10_3390_pharmaceutics13071026
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1423854112
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 25964341
Genre Research Support, U.S. Gov't, Non-P.H.S
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: U54HG004969
– fundername: NHGRI NIH HHS
  grantid: R01 HG005969
– fundername: NIAID NIH HHS
  grantid: HHSN272200900018C
– fundername: NIAID NIH HHS
  grantid: R01 AI101018
– fundername: NHGRI NIH HHS
  grantid: R01HG005969
– fundername: NIGMS NIH HHS
  grantid: P50GM098911
– fundername: NIGMS NIH HHS
  grantid: P50 GM098911
– fundername: NHGRI NIH HHS
  grantid: U54 HG004969
– fundername: PHS HHS
  grantid: HHSN272200900018C
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c624t-e0927da4a4d4f87b36b6c01e65d08caf974b3d13fbebbc40851b786b196b98622
IEDL.DBID 7X8
ISICitedReferencesCount 340
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000355832200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Sun Nov 09 12:20:37 EST 2025
Thu Apr 03 07:10:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords strain variation
human microbiome
microbial ecology
metagenomics
forensic genetics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-e0927da4a4d4f87b36b6c01e65d08caf974b3d13fbebbc40851b786b196b98622
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/112/22/E2930.full.pdf
PMID 25964341
PQID 1686066835
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1686066835
pubmed_primary_25964341
PublicationCentury 2000
PublicationDate 2015-06-02
PublicationDateYYYYMMDD 2015-06-02
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
References 15247459 - Science. 2004 Jul 9;305(5681):183
11924822 - J Investig Dermatol Symp Proc. 2001 Dec;6(3):167-9
21885731 - Science. 2011 Oct 7;334(6052):105-8
22455878 - Genome Biol. 2012;13(3):R23
23222524 - Nature. 2013 Jan 3;493(7430):45-50
20534435 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7
10940600 - Forensic Sci Int. 2000 Aug 14;112(2-3):151-61
22132229 - PLoS One. 2011;6(11):e28132
18379574 - Nat Rev Genet. 2008 May;9(5):406-11
17673640 - Science. 2007 Aug 3;317(5838):600-2
19478181 - Science. 2009 May 29;324(5931):1190-2
22688413 - Nat Methods. 2012 Aug;9(8):811-4
16584484 - Environ Microbiol. 2006 Apr;8(4):732-40
12570198 - J Forensic Sci. 2003 Jan;48(1):47-54
19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
23828941 - Science. 2013 Jul 5;341(6141):1237439
22699609 - Nature. 2012 Jun 14;486(7402):207-14
25170151 - Science. 2014 Aug 29;345(6200):1048-52
22699611 - Nature. 2012 Jun 14;486(7402):222-7
20231444 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6477-81
26015565 - Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6778-9
11181139 - Clin Infect Dis. 2001 Feb 15;32(4):e69-77
6762655 - Scand J Infect Dis Suppl. 1982;35:9-15
21508958 - Nature. 2011 May 12;473(7346):174-80
20203603 - Nature. 2010 Mar 4;464(7285):59-65
22699610 - Nature. 2012 Jun 14;486(7402):215-21
18256654 - Nature. 2008 Feb 7;451(7179):639-40
20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95
15510165 - Nat Rev Genet. 2004 Oct;5(10):739-51
22144881 - PLoS Comput Biol. 2011 Dec;7(12):e1002278
23638391 - PeerJ. 2013 Mar 12;1:e53
22037308 - Nature. 2011 Dec 8;480(7376):241-4
22184244 - Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):594-9
References_xml – reference: 20534435 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7
– reference: 18379574 - Nat Rev Genet. 2008 May;9(5):406-11
– reference: 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95
– reference: 15510165 - Nat Rev Genet. 2004 Oct;5(10):739-51
– reference: 22184244 - Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):594-9
– reference: 6762655 - Scand J Infect Dis Suppl. 1982;35:9-15
– reference: 22688413 - Nat Methods. 2012 Aug;9(8):811-4
– reference: 22037308 - Nature. 2011 Dec 8;480(7376):241-4
– reference: 17673640 - Science. 2007 Aug 3;317(5838):600-2
– reference: 11924822 - J Investig Dermatol Symp Proc. 2001 Dec;6(3):167-9
– reference: 21885731 - Science. 2011 Oct 7;334(6052):105-8
– reference: 22455878 - Genome Biol. 2012;13(3):R23
– reference: 22132229 - PLoS One. 2011;6(11):e28132
– reference: 23638391 - PeerJ. 2013 Mar 12;1:e53
– reference: 23222524 - Nature. 2013 Jan 3;493(7430):45-50
– reference: 16584484 - Environ Microbiol. 2006 Apr;8(4):732-40
– reference: 23828941 - Science. 2013 Jul 5;341(6141):1237439
– reference: 19478181 - Science. 2009 May 29;324(5931):1190-2
– reference: 26015565 - Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6778-9
– reference: 22699611 - Nature. 2012 Jun 14;486(7402):222-7
– reference: 20231444 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6477-81
– reference: 22699610 - Nature. 2012 Jun 14;486(7402):215-21
– reference: 25170151 - Science. 2014 Aug 29;345(6200):1048-52
– reference: 12570198 - J Forensic Sci. 2003 Jan;48(1):47-54
– reference: 21508958 - Nature. 2011 May 12;473(7346):174-80
– reference: 10940600 - Forensic Sci Int. 2000 Aug 14;112(2-3):151-61
– reference: 15247459 - Science. 2004 Jul 9;305(5681):183
– reference: 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
– reference: 22699609 - Nature. 2012 Jun 14;486(7402):207-14
– reference: 18256654 - Nature. 2008 Feb 7;451(7179):639-40
– reference: 20203603 - Nature. 2010 Mar 4;464(7285):59-65
– reference: 22144881 - PLoS Comput Biol. 2011 Dec;7(12):e1002278
– reference: 11181139 - Clin Infect Dis. 2001 Feb 15;32(4):e69-77
SSID ssj0009580
Score 2.6123283
Snippet Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E2930
SubjectTerms Confidentiality - standards
Confidentiality - trends
Genetic Markers - genetics
Genetic Variation
Humans
Metagenomics - methods
Microbiota - genetics
Models, Genetic
Precision Medicine - methods
Title Identifying personal microbiomes using metagenomic codes
URI https://www.ncbi.nlm.nih.gov/pubmed/25964341
https://www.proquest.com/docview/1686066835
Volume 112
WOSCitedRecordID wos000355832200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPegjbpGmankTExYvLHhT2VvKUPWy32tXf76TNohdB8FICbSEM8_gmmfkGoSsudaYSzQmgjZRACHCkSBSDlRfMCuqZVe2wiXw8ltNpMYkHbk0sq1z5xNZR24UJZ-RDKmTA2gAYbus3EqZGhdvVOEJjHfVSgDKhpCufyh-ku7JjIygoEbxIVtQ-eTqsK9WAl4CAlXEaxlH-hi_bODPa-e8Od9F2RJj4rlOJPlpz1R7qRxtu8HUkmr7ZR7Lr0m07nXAdUTmezzpupjl8HKriX_HcLVXgcoU3OLTANwfoZfTwfP9I4iQFYgTjS-KSguVWccUt9zLXqdDCJNSJzCbSKA9JhU4tTb12WptAekZ1LoUG89QF5DzsEG1Ui8odIyyNt1xRkzFjuJZaFson3sjcZCHgqwG6XEmnBE0N1w-qcouPpvyWzwAddSIu645So4QkDKARpyd_-PsUbQFqydp6LXaGeh7s1J2jTfO5nDXvF60KwHM8efoCX9K7rw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+personal+microbiomes+using+metagenomic+codes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Franzosa%2C+Eric+A&rft.au=Huang%2C+Katherine&rft.au=Meadow%2C+James+F&rft.au=Gevers%2C+Dirk&rft.date=2015-06-02&rft.eissn=1091-6490&rft.volume=112&rft.issue=22&rft.spage=E2930&rft_id=info:doi/10.1073%2Fpnas.1423854112&rft_id=info%3Apmid%2F25964341&rft_id=info%3Apmid%2F25964341&rft.externalDocID=25964341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon