Scalable detection of statistically significant communities and hierarchies, using message passing for modularity

Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ''communities'' in random graphs where none...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the National Academy of Sciences - PNAS Ročník 111; číslo 51; s. 18144
Hlavní autori: Zhang, Pan, Moore, Cristopher
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 23.12.2014
Predmet:
ISSN:1091-6490, 1091-6490
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ''communities'' in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods.
AbstractList Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ''communities'' in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods.Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ''communities'' in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods.
Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ''communities'' in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods.
Author Zhang, Pan
Moore, Cristopher
Author_xml – sequence: 1
  givenname: Pan
  surname: Zhang
  fullname: Zhang, Pan
  organization: Santa Fe Institute, Santa Fe, NM 87501
– sequence: 2
  givenname: Cristopher
  surname: Moore
  fullname: Moore, Cristopher
  email: moore@santafe.edu
  organization: Santa Fe Institute, Santa Fe, NM 87501 moore@santafe.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25489096$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC0Eoh8wsyGPDKTYju3YI6r4kioxAHP01rGLUWKnsTP03xNBkZjuOd3phlug0xCDReiKkhUlVXnXB0gryomuKkIpPUFzSjQtJNfk9B_P0CKlL0KIFoqcoxkTXGmi5Rzt3wy0sG0tbmy2JvsYcHQ4Zcg-ZT-F7QEnvwveTSZkbGLXjcFnbxOG0OBPbwcYzCTpFo_Jhx3ubEqws7iH9ONdHHAXm7GFwefDBTpz0CZ7edQl-nh8eF8_F5vXp5f1_aYwkvFcGABWNoIK3ghWOcGZEGCVLEtoVGXAgBZSM-cqM-GWSstLJThxyklWUsaW6OZ3tx_ifrQp151PxrYtBBvHVFPJCVdEKD1Vr4_VcdvZpu4H38FwqP9uYt96I25u
CitedBy_id crossref_primary_10_1088_1367_2630_ab73ca
crossref_primary_10_1109_TKDE_2019_2911585
crossref_primary_10_1038_s41467_021_22559_5
crossref_primary_10_1162_NETN_a_00002
crossref_primary_10_1080_23307706_2022_2146010
crossref_primary_10_1007_s11467_017_0657_y
crossref_primary_10_1038_s41598_019_44892_y
crossref_primary_10_1145_3596605
crossref_primary_10_1016_j_ins_2025_122421
crossref_primary_10_1038_s42005_022_00816_3
crossref_primary_10_1109_TNNLS_2022_3201906
crossref_primary_10_1088_1742_5468_2016_05_053301
crossref_primary_10_1145_3512962
crossref_primary_10_1371_journal_pone_0215296
crossref_primary_10_1103_PhysRevResearch_2_043271
crossref_primary_10_1088_1742_6596_699_1_012015
crossref_primary_10_1016_j_physa_2022_127722
crossref_primary_10_1007_s12293_022_00370_z
crossref_primary_10_1007_s41109_022_00466_y
crossref_primary_10_1088_1742_5468_aaa8f5
crossref_primary_10_1186_s40537_022_00627_x
crossref_primary_10_1371_journal_pone_0191604
crossref_primary_10_1109_TKDE_2021_3104155
crossref_primary_10_1111_gean_12278
crossref_primary_10_1063_5_0268930
crossref_primary_10_1016_j_eswa_2022_117794
crossref_primary_10_1109_TNSE_2020_3008538
crossref_primary_10_1109_TCBB_2019_2912602
crossref_primary_10_1016_j_neucom_2024_128169
crossref_primary_10_1137_17M1138972
crossref_primary_10_1103_PhysRevX_11_021003
crossref_primary_10_1109_TKDE_2021_3125330
crossref_primary_10_1109_TKDE_2016_2563425
crossref_primary_10_1137_19M1270446
crossref_primary_10_1007_s13369_022_06747_z
crossref_primary_10_1016_j_jep_2016_07_014
crossref_primary_10_1016_j_patcog_2024_110487
crossref_primary_10_1038_s41598_018_21352_7
crossref_primary_10_1038_s41598_018_29725_8
crossref_primary_10_1016_j_ipm_2024_104053
crossref_primary_10_1016_j_physa_2024_130274
crossref_primary_10_1007_s40484_018_0153_6
crossref_primary_10_1155_2018_8098325
crossref_primary_10_1088_1367_2630_aab547
crossref_primary_10_1109_TKDE_2019_2914200
crossref_primary_10_1186_s13059_023_03062_0
crossref_primary_10_1007_s10618_020_00681_0
crossref_primary_10_1371_journal_pcsy_0000062
crossref_primary_10_1016_j_chaos_2025_117249
crossref_primary_10_1109_TBDATA_2022_3223644
crossref_primary_10_1080_00018732_2016_1211393
crossref_primary_10_1038_s41598_021_99175_2
crossref_primary_10_1038_s41467_024_52355_w
crossref_primary_10_1038_s41598_019_46380_9
crossref_primary_10_1007_s11579_020_00273_y
crossref_primary_10_1038_s41598_017_03623_x
crossref_primary_10_1016_j_cmpb_2025_108681
crossref_primary_10_1073_pnas_2321112121
crossref_primary_10_1038_s41540_018_0052_5
crossref_primary_10_1371_journal_pone_0254057
crossref_primary_10_1038_s41598_024_55190_7
crossref_primary_10_1146_annurev_psych_122414_033634
crossref_primary_10_1073_pnas_1611275114
crossref_primary_10_1109_TKDE_2022_3197612
crossref_primary_10_1038_s41598_024_54594_9
crossref_primary_10_4018_IJSWIS_341232
crossref_primary_10_1088_1742_5468_2016_09_093403
crossref_primary_10_1038_s41467_022_34341_2
crossref_primary_10_1088_2399_6528_aa9b6b
crossref_primary_10_1038_s41598_017_05585_6
crossref_primary_10_1016_j_physrep_2016_09_002
crossref_primary_10_1016_j_asoc_2019_106010
crossref_primary_10_1103_PhysRevResearch_2_033325
crossref_primary_10_1109_TKDE_2019_2911943
crossref_primary_10_1007_s10115_024_02097_4
crossref_primary_10_1038_s41467_021_24884_1
crossref_primary_10_1088_1674_1056_26_3_038902
crossref_primary_10_1111_rssb_12505
crossref_primary_10_1109_TVCG_2024_3456167
crossref_primary_10_1016_j_jocs_2024_102283
crossref_primary_10_1109_TBDATA_2021_3104005
crossref_primary_10_1093_comnet_cnx004
crossref_primary_10_1016_j_neucom_2024_127703
crossref_primary_10_1109_TKDE_2019_2958806
crossref_primary_10_1109_TNNLS_2024_3367873
crossref_primary_10_1016_j_scs_2021_103508
crossref_primary_10_1007_s41060_024_00631_9
crossref_primary_10_1109_TKDE_2020_3015667
crossref_primary_10_1016_j_chaos_2016_02_004
crossref_primary_10_1103_PhysRevResearch_7_013065
crossref_primary_10_1038_s41598_019_54708_8
crossref_primary_10_1109_TBDATA_2020_2964544
crossref_primary_10_1038_s41598_018_25560_z
crossref_primary_10_1016_j_neucom_2020_04_067
crossref_primary_10_1080_19420889_2017_1296614
crossref_primary_10_3233_IFS_151974
crossref_primary_10_1088_1742_5468_2015_11_P11006
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1409770111
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 25489096
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c624t-caa23d5154d527f54255ae8633ad87caca95692ff7cca9b16e438540f8f623122
IEDL.DBID 7X8
ISICitedReferencesCount 131
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346767200032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Sep 04 18:01:06 EDT 2025
Thu Apr 03 07:00:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords phase transitions
statistical significance
networks
community detection
message-passing algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-caa23d5154d527f54255ae8633ad87caca95692ff7cca9b16e438540f8f623122
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/111/51/18144.full.pdf
PMID 25489096
PQID 1640480589
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1640480589
pubmed_primary_25489096
PublicationCentury 2000
PublicationDate 2014-12-23
PublicationDateYYYYMMDD 2014-12-23
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
References 20481789 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046110
24277835 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20935-40
18999496 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110
26167197 - J Stat Mech. 2014 May;2014(5):null
22304154 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066106
21405744 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107
17025705 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104
18216267 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23
16196754 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):027104
15244693 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066133
15447530 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 2):025101
20481785 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046106
17025687 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):035102
22468223 - Sci Rep. 2012;2:336
14995526 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113
15697438 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066111
18451861 - Nature. 2008 May 1;453(7191):98-101
16907154 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 2):016110
21559480 - PLoS One. 2011;6(4):e18961
21902340 - Phys Rev Lett. 2011 Aug 5;107(6):065701
17190818 - Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):36-41
17881571 - Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15224-9
References_xml – reference: 18216267 - Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23
– reference: 21559480 - PLoS One. 2011;6(4):e18961
– reference: 15244693 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066133
– reference: 24277835 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20935-40
– reference: 17190818 - Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):36-41
– reference: 16196754 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):027104
– reference: 17025705 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104
– reference: 20481789 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046110
– reference: 15697438 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066111
– reference: 22304154 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066106
– reference: 26167197 - J Stat Mech. 2014 May;2014(5):null
– reference: 15447530 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 2):025101
– reference: 22468223 - Sci Rep. 2012;2:336
– reference: 17881571 - Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15224-9
– reference: 21902340 - Phys Rev Lett. 2011 Aug 5;107(6):065701
– reference: 17025687 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):035102
– reference: 18999496 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110
– reference: 16907154 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 2):016110
– reference: 21405744 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107
– reference: 20481785 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046106
– reference: 14995526 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113
– reference: 18451861 - Nature. 2008 May 1;453(7191):98-101
SSID ssj0009580
Score 2.566612
Snippet Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 18144
SubjectTerms Algorithms
Cluster Analysis
Models, Theoretical
Stochastic Processes
Title Scalable detection of statistically significant communities and hierarchies, using message passing for modularity
URI https://www.ncbi.nlm.nih.gov/pubmed/25489096
https://www.proquest.com/docview/1640480589
Volume 111
WOSCitedRecordID wos000346767200032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UevCi1md9sYIHBdcmu2myexIRixdLQYXeynYfvbRJa6rgv3dmk6IXQZBAIIdA2Hnkm92Z7yPkwkfh8sxJa1jihWOAQiLGVcRHACGMiU0Qm8h6PTkYqH694VbWbZXLnBgStS0M7pG3Adbj-HNHqtvZnKFqFJ6u1hIaq6QhAMqgV2cD-YN0V1ZsBCpmaaKiJbVPJtqzXJc3gewpQ7X13_Fl-M90t_77hdtks0aY9K5yiSZZcfkOadYxXNLLmmj6apfMn8FAODpFrVuElqycFp7ijFGgb9aTySfFBg9sJwILUFNNkyAHK9W5paijHU4iXHlNsYN-TKcoqTJ2dAagHJ8BE9NpYbHZFfD-HnntPrzcP7JagoGZlCcLZrTmwgLmSWyHZ74DEd7RTqZCaCszo42G-kpx7zPwBDWKU5cICSDQSw-4KuZ8n6zlRe4OCY0h70YG8Mco9YnLIHGMoDo1UlnhFFiiRc6XyzoEF8dzC5274r0cfi9sixxUthnOKi6OIdS3UkEZdvSHt4_JBsCdQNPIxQlpeAhwd0rWzQes6ttZ8B249_pPX5aZ0H0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+detection+of+statistically+significant+communities+and+hierarchies%2C+using+message+passing+for+modularity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Pan&rft.au=Moore%2C+Cristopher&rft.date=2014-12-23&rft.eissn=1091-6490&rft.volume=111&rft.issue=51&rft.spage=18144&rft_id=info:doi/10.1073%2Fpnas.1409770111&rft_id=info%3Apmid%2F25489096&rft_id=info%3Apmid%2F25489096&rft.externalDocID=25489096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon