A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis

Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Royal Society interface Ročník 15; číslo 138
Hlavní autoři: Liang, Liang, Liu, Minliang, Martin, Caitlin, Sun, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.01.2018
Témata:
ISSN:1742-5662, 1742-5662
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to obtain final simulation results, preventing prompt feedback to clinicians in time-sensitive clinical applications. In this study, by using machine learning techniques, we developed a deep learning (DL) model to directly estimate the stress distributions of the aorta. The DL model was designed and trained to take the input of FEA and directly output the aortic wall stress distributions, bypassing the FEA calculation process. The trained DL model is capable of predicting the stress distributions with average errors of 0.492% and 0.891% in the Von Mises stress distribution and peak Von Mises stress, respectively. This study marks, to our knowledge, the first study that demonstrates the feasibility and great potential of using the DL technique as a fast and accurate surrogate of FEA for stress analysis.
AbstractList Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to obtain final simulation results, preventing prompt feedback to clinicians in time-sensitive clinical applications. In this study, by using machine learning techniques, we developed a deep learning (DL) model to directly estimate the stress distributions of the aorta. The DL model was designed and trained to take the input of FEA and directly output the aortic wall stress distributions, bypassing the FEA calculation process. The trained DL model is capable of predicting the stress distributions with average errors of 0.492% and 0.891% in the Von Mises stress distribution and peak Von Mises stress, respectively. This study marks, to our knowledge, the first study that demonstrates the feasibility and great potential of using the DL technique as a fast and accurate surrogate of FEA for stress analysis.
Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to obtain final simulation results, preventing prompt feedback to clinicians in time-sensitive clinical applications. In this study, by using machine learning techniques, we developed a deep learning (DL) model to directly estimate the stress distributions of the aorta. The DL model was designed and trained to take the input of FEA and directly output the aortic wall stress distributions, bypassing the FEA calculation process. The trained DL model is capable of predicting the stress distributions with average errors of 0.492% and 0.891% in the Von Mises stress distribution and peak Von Mises stress, respectively. This study marks, to our knowledge, the first study that demonstrates the feasibility and great potential of using the DL technique as a fast and accurate surrogate of FEA for stress analysis.Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to obtain final simulation results, preventing prompt feedback to clinicians in time-sensitive clinical applications. In this study, by using machine learning techniques, we developed a deep learning (DL) model to directly estimate the stress distributions of the aorta. The DL model was designed and trained to take the input of FEA and directly output the aortic wall stress distributions, bypassing the FEA calculation process. The trained DL model is capable of predicting the stress distributions with average errors of 0.492% and 0.891% in the Von Mises stress distribution and peak Von Mises stress, respectively. This study marks, to our knowledge, the first study that demonstrates the feasibility and great potential of using the DL technique as a fast and accurate surrogate of FEA for stress analysis.
Author Liang, Liang
Sun, Wei
Liu, Minliang
Martin, Caitlin
Author_xml – sequence: 1
  givenname: Liang
  surname: Liang
  fullname: Liang, Liang
  organization: Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Room 206, 387 Technology Circle, Atlanta, GA 30313-2412, USA
– sequence: 2
  givenname: Minliang
  surname: Liu
  fullname: Liu, Minliang
  organization: Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Room 206, 387 Technology Circle, Atlanta, GA 30313-2412, USA
– sequence: 3
  givenname: Caitlin
  surname: Martin
  fullname: Martin, Caitlin
  organization: Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Room 206, 387 Technology Circle, Atlanta, GA 30313-2412, USA
– sequence: 4
  givenname: Wei
  orcidid: 0000-0002-8708-5128
  surname: Sun
  fullname: Sun, Wei
  email: wei.sun@bme.gatech.edu
  organization: Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Room 206, 387 Technology Circle, Atlanta, GA 30313-2412, USA wei.sun@bme.gatech.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29367242$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAURi1URB-wMiKPLCmx4zgOW1XxkiqxwBxdx9fFKHGCnQz996RQJKZ7hqNPOndJZr7zSMg1S9csLdVdiM6uecqKdaqEOCMLVgie5FLy2T-ek2WMn2maFVmeX5A5LzNZcMEXJGyoQexpgxC883sKfR86qD_o0FGMg2thQBqHgDFS4yZwehxc5-8pUAtxoOANhboew484htDtj9RZap13AybYYIv-KEJziC5eknMLTcSr012R98eHt-1zsnt9etludkktuRgSsEVhUqtNWStZcitKyYQGnWpuTW6sZlpqrYyyRubAADKLFnPGmMpVJoCvyO3v7hT0NU4tVetijU0DHrsxVqwsJ5eXSk3qzUkddYum6sPUHQ7V35_4N1qIbyM
CitedBy_id crossref_primary_10_3390_app12010394
crossref_primary_10_1016_j_compscitech_2024_110431
crossref_primary_10_1007_s12206_025_0320_4
crossref_primary_10_1016_j_advengsoft_2022_103240
crossref_primary_10_1016_j_compositesa_2025_108823
crossref_primary_10_3389_fphy_2020_00030
crossref_primary_10_3390_diagnostics12071530
crossref_primary_10_1016_j_eswa_2024_125916
crossref_primary_10_1007_s12541_024_01191_5
crossref_primary_10_1088_1755_1315_1333_1_012028
crossref_primary_10_4271_15_17_01_0002
crossref_primary_10_1007_s00158_021_03137_1
crossref_primary_10_1016_j_oceaneng_2024_119431
crossref_primary_10_1080_10667857_2024_2443211
crossref_primary_10_1007_s00500_023_09491_0
crossref_primary_10_1016_j_matdes_2021_109937
crossref_primary_10_1007_s00158_020_02659_4
crossref_primary_10_1016_j_bonr_2022_101179
crossref_primary_10_1016_j_compbiomed_2023_107287
crossref_primary_10_1088_1361_6560_adde0d
crossref_primary_10_3390_electronics12224631
crossref_primary_10_1016_j_mfglet_2025_06_165
crossref_primary_10_1016_j_commatsci_2022_111290
crossref_primary_10_1515_bmt_2019_0298
crossref_primary_10_1007_s00366_022_01765_9
crossref_primary_10_1016_j_taml_2023_100489
crossref_primary_10_1007_s00266_025_04924_7
crossref_primary_10_1016_j_jmapro_2025_04_013
crossref_primary_10_3389_fmech_2022_1003170
crossref_primary_10_1016_j_engfracmech_2022_108914
crossref_primary_10_1016_j_mechmat_2025_105418
crossref_primary_10_1080_13588265_2022_2130600
crossref_primary_10_1016_j_geoen_2022_211368
crossref_primary_10_1016_j_jcp_2021_110784
crossref_primary_10_1016_j_compbiomed_2025_110683
crossref_primary_10_1016_j_engfailanal_2024_108632
crossref_primary_10_1016_j_cma_2024_117289
crossref_primary_10_3389_fcvm_2024_1358601
crossref_primary_10_1016_j_compbiomed_2020_104038
crossref_primary_10_1016_j_ijengsci_2020_103319
crossref_primary_10_1016_j_jmbbm_2025_107074
crossref_primary_10_1016_j_aei_2023_102337
crossref_primary_10_1016_j_scriptamat_2021_113805
crossref_primary_10_1016_j_jhydrol_2020_124700
crossref_primary_10_1016_j_procir_2024_10_069
crossref_primary_10_1016_j_compbiomed_2021_104794
crossref_primary_10_1016_j_brain_2023_100079
crossref_primary_10_1002_admt_202201479
crossref_primary_10_1016_j_nucengdes_2022_111842
crossref_primary_10_1007_s11517_025_03294_1
crossref_primary_10_1016_j_jmbbm_2024_106495
crossref_primary_10_1111_ffe_14330
crossref_primary_10_3389_frobt_2021_631371
crossref_primary_10_1016_j_jmbbm_2021_104371
crossref_primary_10_1017_jfm_2022_174
crossref_primary_10_1016_j_jjcc_2022_05_007
crossref_primary_10_1088_2632_2153_ad134a
crossref_primary_10_1016_j_ijmecsci_2024_109393
crossref_primary_10_1038_s41598_020_60853_2
crossref_primary_10_1177_03093247241293499
crossref_primary_10_1007_s12008_024_01905_z
crossref_primary_10_1016_j_procir_2021_11_295
crossref_primary_10_1108_JFRA_05_2023_0277
crossref_primary_10_1016_j_finel_2021_103572
crossref_primary_10_1038_s41598_020_77935_w
crossref_primary_10_1080_10255842_2022_2112183
crossref_primary_10_1007_s00170_021_07084_5
crossref_primary_10_3390_app9245369
crossref_primary_10_1016_j_aei_2020_101184
crossref_primary_10_1016_j_compstruct_2022_115233
crossref_primary_10_3390_s23083938
crossref_primary_10_1016_j_cnsns_2022_106780
crossref_primary_10_1016_j_tafmec_2024_104493
crossref_primary_10_3390_bioengineering9110687
crossref_primary_10_1016_j_heliyon_2022_e11242
crossref_primary_10_1134_S0025654424606943
crossref_primary_10_1007_s40964_024_00686_x
crossref_primary_10_1109_ACCESS_2023_3282453
crossref_primary_10_3390_ijms24031948
crossref_primary_10_1007_s00466_024_02475_3
crossref_primary_10_1007_s11517_018_1940_y
crossref_primary_10_1007_s12206_023_1130_1
crossref_primary_10_1016_j_cma_2022_115594
crossref_primary_10_1016_j_mechmat_2024_104948
crossref_primary_10_1007_s00466_021_02112_3
crossref_primary_10_1016_j_cma_2024_117372
crossref_primary_10_1016_j_compositesb_2021_109282
crossref_primary_10_1038_s41598_022_09128_6
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_3390_biomechanics2020016
crossref_primary_10_1016_j_jbiomech_2019_109544
crossref_primary_10_1016_j_apenergy_2023_122354
crossref_primary_10_3390_buildings14103215
crossref_primary_10_1016_j_jmps_2022_105044
crossref_primary_10_1080_01495739_2024_2400583
crossref_primary_10_1093_cvr_cvab038
crossref_primary_10_1007_s00170_020_05895_6
crossref_primary_10_1016_j_commatsci_2025_114090
crossref_primary_10_1016_j_istruc_2025_110224
crossref_primary_10_1088_1757_899X_1189_1_012031
crossref_primary_10_1016_j_ijfatigue_2022_106808
crossref_primary_10_1016_j_cma_2024_117486
crossref_primary_10_3389_fcvm_2021_769927
crossref_primary_10_1007_s12265_024_10550_6
crossref_primary_10_1109_JBHI_2022_3198650
crossref_primary_10_3390_ijms21186756
crossref_primary_10_1007_s40430_022_03480_4
crossref_primary_10_1109_ACCESS_2020_2977880
crossref_primary_10_32604_cmes_2022_018519
crossref_primary_10_1080_24725854_2021_1891485
crossref_primary_10_1007_s10439_025_03798_9
crossref_primary_10_1007_s11104_024_07077_9
crossref_primary_10_1007_s10439_022_02967_4
crossref_primary_10_1007_s11709_022_0882_5
crossref_primary_10_1177_09544062211010828
crossref_primary_10_48084_etasr_11631
crossref_primary_10_1115_1_4069278
crossref_primary_10_1080_10255842_2023_2236747
crossref_primary_10_1002_aisy_202200099
crossref_primary_10_1016_j_jmbbm_2024_106859
crossref_primary_10_1016_j_jmbbm_2024_106736
crossref_primary_10_3390_bioengineering6040104
crossref_primary_10_3390_en15114129
crossref_primary_10_1016_j_dte_2025_100057
crossref_primary_10_1016_j_compstruc_2020_106425
crossref_primary_10_1073_pnas_2401230121
crossref_primary_10_1371_journal_pcbi_1010988
crossref_primary_10_1007_s00521_024_09935_0
crossref_primary_10_1007_s10462_024_10931_y
crossref_primary_10_1007_s13239_024_00737_y
crossref_primary_10_1016_j_media_2020_101845
crossref_primary_10_3390_buildings13020317
crossref_primary_10_1016_j_enganabound_2020_03_028
crossref_primary_10_1080_10298436_2021_1990288
crossref_primary_10_1016_j_ijheatfluidflow_2025_110011
crossref_primary_10_1016_j_engfracmech_2024_110720
crossref_primary_10_3390_s20226439
crossref_primary_10_1007_s00466_021_02009_1
crossref_primary_10_3390_bioengineering12040433
crossref_primary_10_1038_s41467_021_22348_0
crossref_primary_10_1007_s11831_024_10200_9
crossref_primary_10_1016_j_mtcomm_2021_102197
crossref_primary_10_1016_j_compstruc_2021_106714
crossref_primary_10_1016_j_engappai_2023_107187
crossref_primary_10_1016_j_jcp_2024_112952
crossref_primary_10_1016_j_ymssp_2023_111014
crossref_primary_10_3389_fgene_2023_1142446
crossref_primary_10_1016_j_engappai_2023_106894
crossref_primary_10_1016_j_engappai_2021_104232
crossref_primary_10_1039_D5TA00982K
crossref_primary_10_1016_j_cma_2025_118046
crossref_primary_10_1038_s41598_019_54707_9
crossref_primary_10_1016_j_enganabound_2022_03_030
crossref_primary_10_1016_j_cmpb_2022_107013
crossref_primary_10_1080_24748706_2020_1740365
crossref_primary_10_1016_j_cma_2020_113401
crossref_primary_10_3390_jpm10020028
crossref_primary_10_1038_s44172_025_00410_9
crossref_primary_10_3389_fphys_2025_1518732
crossref_primary_10_1016_j_oceaneng_2024_120277
crossref_primary_10_3390_asi5050097
crossref_primary_10_1016_j_cma_2024_117446
crossref_primary_10_1016_j_compbiomed_2024_108041
crossref_primary_10_1002_qre_3313
crossref_primary_10_1007_s13369_024_08810_3
crossref_primary_10_1155_2022_4617392
crossref_primary_10_1016_j_advengsoft_2023_103461
crossref_primary_10_1038_s41598_020_79191_4
crossref_primary_10_1016_j_cmpb_2023_107888
crossref_primary_10_1016_j_cmpb_2023_107524
crossref_primary_10_1177_30494826251336314
crossref_primary_10_1016_j_eswa_2022_118884
crossref_primary_10_1016_j_hybadv_2023_100026
crossref_primary_10_1016_j_actamat_2020_03_016
crossref_primary_10_1016_j_apm_2022_02_036
crossref_primary_10_1016_j_ijmecsci_2021_106972
crossref_primary_10_1016_j_mechmat_2021_104191
crossref_primary_10_1007_s00158_023_03593_x
crossref_primary_10_3390_jmmp4030092
crossref_primary_10_1088_1674_4527_ac9f06
crossref_primary_10_1080_1064119X_2022_2136045
crossref_primary_10_1007_s40747_023_01276_0
crossref_primary_10_1016_j_jmbbm_2025_107007
crossref_primary_10_48175_IJARSCT_23916
crossref_primary_10_1145_3654662
crossref_primary_10_3389_fcvm_2021_759675
crossref_primary_10_3389_fbuil_2025_1612575
crossref_primary_10_5802_crmeca_240
crossref_primary_10_3390_machines11111013
crossref_primary_10_1007_s11831_022_09795_8
crossref_primary_10_1016_j_compstruc_2021_106484
crossref_primary_10_3390_ma16206815
crossref_primary_10_1007_s00466_023_02278_y
crossref_primary_10_1002_nag_3505
crossref_primary_10_1016_j_spinee_2021_05_024
crossref_primary_10_1007_s10845_021_01902_z
crossref_primary_10_1016_j_yjmcc_2019_04_026
crossref_primary_10_3389_fbuil_2021_745598
crossref_primary_10_1016_j_measurement_2020_108726
crossref_primary_10_1007_s10409_025_25340_x
crossref_primary_10_3390_polym13162592
crossref_primary_10_1016_j_cma_2025_118119
crossref_primary_10_1007_s00158_022_03485_6
crossref_primary_10_1016_j_compstruct_2025_119675
crossref_primary_10_1007_s11831_024_10063_0
crossref_primary_10_1016_j_jcis_2021_11_195
crossref_primary_10_3390_foods10040763
crossref_primary_10_1007_s00266_025_05131_0
crossref_primary_10_1007_s10439_018_2024_8
crossref_primary_10_3390_ma14185200
crossref_primary_10_1007_s00158_024_03908_6
crossref_primary_10_1016_j_compbiomed_2019_04_022
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_3390_bioengineering12050437
crossref_primary_10_1007_s00500_022_07362_8
crossref_primary_10_3390_fluids7060197
crossref_primary_10_1016_j_actbio_2022_02_027
crossref_primary_10_1016_j_compositesa_2024_108618
crossref_primary_10_1016_j_engappai_2023_106295
crossref_primary_10_3389_fphys_2021_694945
crossref_primary_10_3390_diagnostics14030261
crossref_primary_10_1088_1361_651X_ad4b4c
crossref_primary_10_1186_s12872_018_0818_0
crossref_primary_10_1016_j_cma_2023_116347
crossref_primary_10_3390_math11122723
crossref_primary_10_3390_app12178678
crossref_primary_10_1016_j_medengphy_2018_12_001
crossref_primary_10_1103_PhysRevFluids_8_064004
crossref_primary_10_1007_s00170_019_03363_4
crossref_primary_10_3389_fbioe_2024_1268314
crossref_primary_10_1016_j_compbiomed_2022_105699
crossref_primary_10_1177_16878132241290948
crossref_primary_10_1002_admi_202100175
crossref_primary_10_3389_fbioe_2023_1201177
crossref_primary_10_1016_j_cma_2021_114037
crossref_primary_10_1016_j_matdes_2023_112357
crossref_primary_10_1038_s43586_025_00406_x
crossref_primary_10_1016_j_engappai_2023_107150
crossref_primary_10_1108_RPJ_04_2024_0168
crossref_primary_10_1007_s10686_025_09980_0
crossref_primary_10_1016_j_engfracmech_2021_107890
crossref_primary_10_3390_act10020028
crossref_primary_10_1016_j_prosdent_2024_06_012
crossref_primary_10_3390_ai5040102
crossref_primary_10_1007_s13239_021_00552_9
crossref_primary_10_2118_201430_PA
crossref_primary_10_1016_j_eswa_2024_123953
crossref_primary_10_3390_s21051654
crossref_primary_10_1016_j_jbiomech_2019_01_057
crossref_primary_10_1016_j_eswa_2024_124928
crossref_primary_10_3389_fphy_2019_00117
crossref_primary_10_1080_10494820_2020_1719162
crossref_primary_10_1038_s41598_022_26424_3
crossref_primary_10_3389_fphy_2019_00235
crossref_primary_10_1016_j_eml_2021_101566
crossref_primary_10_1016_j_enganabound_2023_08_020
crossref_primary_10_3390_jcm12144774
crossref_primary_10_1016_j_jmbbm_2022_105577
crossref_primary_10_1088_1361_6668_adfa48
crossref_primary_10_1016_j_cma_2023_116229
crossref_primary_10_1016_j_oceaneng_2024_118768
crossref_primary_10_1016_j_matdes_2023_112126
crossref_primary_10_3390_jcs4020061
crossref_primary_10_1016_j_cma_2021_113959
crossref_primary_10_1016_j_engstruct_2024_119023
crossref_primary_10_1007_s11831_025_10302_y
crossref_primary_10_1016_j_jcis_2022_01_037
crossref_primary_10_1007_s11517_025_03311_3
crossref_primary_10_1016_j_epsr_2025_111984
crossref_primary_10_1016_j_jdent_2024_105348
crossref_primary_10_1016_j_cma_2024_117073
crossref_primary_10_1007_s10010_024_00730_w
crossref_primary_10_1016_j_ress_2021_107734
crossref_primary_10_3390_buildings14113515
crossref_primary_10_1016_j_heliyon_2023_e16129
crossref_primary_10_1016_j_cma_2022_115766
crossref_primary_10_1007_s00366_024_02033_8
crossref_primary_10_1109_JIOT_2022_3221932
crossref_primary_10_1016_j_molliq_2022_118489
crossref_primary_10_1515_nanoph_2020_0194
ContentType Journal Article
Copyright 2018 The Author(s).
Copyright_xml – notice: 2018 The Author(s).
DBID NPM
7X8
DOI 10.1098/rsif.2017.0844
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1742-5662
ExternalDocumentID 29367242
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL104080
GroupedDBID ---
0R~
18M
29L
2WC
4.4
53G
5GY
5VS
ACGFO
ACQIA
ACRPL
ADBBV
ADDVE
ADNMO
AENEX
AFFVI
AGPVY
AGQPQ
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BGBPD
BTFSW
C1A
CAG
COF
CS3
DIK
DU5
EBS
EJD
GX1
H13
HYE
HZ~
KQ8
MRS
MV1
NPM
NSAHA
O9-
P2P
ROL
RPM
RRY
S70
TR2
V1E
W8F
XSW
7X8
ID FETCH-LOGICAL-c624t-af77d0fbd9c8692f49614bab0b2fd5dfb1b6bb8d8fd65a1aa3fefe511185834a2
IEDL.DBID 7X8
ISICitedReferencesCount 345
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423770900032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1742-5662
IngestDate Thu Oct 02 06:12:26 EDT 2025
Mon Jul 21 06:06:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 138
Keywords deep learning
finite-element analysis
neural network
stress analysis
Language English
License 2018 The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-af77d0fbd9c8692f49614bab0b2fd5dfb1b6bb8d8fd65a1aa3fefe511185834a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8708-5128
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0844
PMID 29367242
PQID 1991182988
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1991182988
pubmed_primary_29367242
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the Royal Society interface
PublicationTitleAlternate J R Soc Interface
PublicationYear 2018
SSID ssj0037355
Score 2.6551046
Snippet Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
Title A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/29367242
https://www.proquest.com/docview/1991182988
Volume 15
WOSCitedRecordID wos000423770900032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ27T8MwEMYtoAwsQHmWl4zEAINpnrbDgipExULVAaRulR37UJekJC1_P-fELRMSEksmR4rss_27s_N9hNykGiEWc1mWKiFYog0wabhlEoTTKgmE0NCYTYjRSE4m2dgX3Gp_rXK1JjYLtSlzVyPvuys6yMKZlI_zT-Zco9zpqrfQ2CSdGFHGRbWYrE8RYhE3rqcI3ZhwcR6tRRtlHzPxRsBT3AcySX7Hy2abGe799wP3ya4HTDpoI6JLNmxxQLp-Ctf01utM3x2SakCNtXPqjSM-6EpfnC5K6sQ3EGYtbX8mocYJ7HpvrAeqKKh6QVVhqMrzZdU0XFZV6YpytAQKM8eyzLaX07FhK31yRN6Hz29PL8xbMLCcR8mCKRDCBKBNlkueRZBkuJ1rpQMdgUkN6FBzraWRYHiqQqVisGAR4hADZJyo6JhsFWVhTwlNNIS5yS3moDrhPNMqFThoHBO-gIMMe-R61a9TDHF3bqEKWy7r6U_P9shJOzjTeavFMUVa4QIx4-wPb5-THRxx2RZQLkgHcILbS7Kdfy1mdXXVxA4-R-PXb7yv0RY
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+approach+to+estimate+stress+distribution%3A+a+fast+and+accurate+surrogate+of+finite-element+analysis&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=Liang%2C+Liang&rft.au=Liu%2C+Minliang&rft.au=Martin%2C+Caitlin&rft.au=Sun%2C+Wei&rft.date=2018-01-01&rft.eissn=1742-5662&rft.volume=15&rft.issue=138&rft_id=info:doi/10.1098%2Frsif.2017.0844&rft_id=info%3Apmid%2F29367242&rft_id=info%3Apmid%2F29367242&rft.externalDocID=29367242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5662&client=summon