PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1
The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitiv...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 110; H. 52; S. 21124 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
24.12.2013
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers. |
|---|---|
| AbstractList | The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers. The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers.The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers. |
| Author | Nishtala, Madhuri Kotani, Hiroshi Costa, Carlotta Della Pelle, Patricia Benes, Cyril H Juric, Dejan Engelman, Jeffrey A Faber, Anthony C Yano, Seiji Mino-Kenudson, Mari Song, Youngchul Ebi, Hiromichi |
| Author_xml | – sequence: 1 givenname: Hiromichi surname: Ebi fullname: Ebi, Hiromichi organization: Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129 – sequence: 2 givenname: Carlotta surname: Costa fullname: Costa, Carlotta – sequence: 3 givenname: Anthony C surname: Faber fullname: Faber, Anthony C – sequence: 4 givenname: Madhuri surname: Nishtala fullname: Nishtala, Madhuri – sequence: 5 givenname: Hiroshi surname: Kotani fullname: Kotani, Hiroshi – sequence: 6 givenname: Dejan surname: Juric fullname: Juric, Dejan – sequence: 7 givenname: Patricia surname: Della Pelle fullname: Della Pelle, Patricia – sequence: 8 givenname: Youngchul surname: Song fullname: Song, Youngchul – sequence: 9 givenname: Seiji surname: Yano fullname: Yano, Seiji – sequence: 10 givenname: Mari surname: Mino-Kenudson fullname: Mino-Kenudson, Mari – sequence: 11 givenname: Cyril H surname: Benes fullname: Benes, Cyril H – sequence: 12 givenname: Jeffrey A surname: Engelman fullname: Engelman, Jeffrey A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24327733$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj89LwzAYhoNM3A89e5McPdgtX5I2zVFGN8cmjqHnkiZfZ6XLZtPK_O8dOMHT-x4eHniGpOf3Hgm5BTYGpsTk4E0YgwAJXAKwCzIApiFKpGa9f79PhiF8MMZ0nLIr0udScKWEGJDFeiGWtMFtV5sWA33OlpNss6Sh2npTV35LK0-LBk1oqTXeYkO_KkPbd6QbY6N5Nnug62iDR7gml6WpA96cd0TeZtnr9ClavcwX08dVZBMu20iKVBdJAbHgRuvYuESlpSodOp06iEHFzIFlgDwuNJYiRRTKpso4dcKR8RG5__Uemv1nh6HNd1WwWNfG474LOZx6lZSMwwm9O6NdsUOXH5pqZ5rv_C-f_wAdVFr9 |
| CitedBy_id | crossref_primary_10_1038_s44318_025_00484_3 crossref_primary_10_1371_journal_pone_0152584 crossref_primary_10_1080_10428194_2024_2438800 crossref_primary_10_1016_j_bbadis_2024_167458 crossref_primary_10_1096_fj_201700477R crossref_primary_10_1016_j_jconrel_2019_12_019 crossref_primary_10_3390_ijms160921138 crossref_primary_10_1186_s12859_016_1078_6 crossref_primary_10_1080_14756366_2021_2010729 crossref_primary_10_1038_srep27471 crossref_primary_10_3389_fcell_2020_00201 crossref_primary_10_1007_s00066_023_02092_8 crossref_primary_10_3390_cancers17071152 crossref_primary_10_1016_j_envpol_2020_115541 crossref_primary_10_1080_10428194_2017_1421760 crossref_primary_10_1038_s41598_020_64289_6 crossref_primary_10_1158_1078_0432_CCR_18_0867 crossref_primary_10_3389_fnut_2022_1008893 crossref_primary_10_1002_jbt_22693 crossref_primary_10_1080_21541248_2019_1665968 crossref_primary_10_1186_s13058_014_0441_7 crossref_primary_10_2174_1381612825666190222143044 crossref_primary_10_3390_cancers12082266 crossref_primary_10_1073_pnas_2006445117 crossref_primary_10_3390_ncrna3020020 crossref_primary_10_1007_s11886_017_0826_1 crossref_primary_10_1038_bjc_2016_18 crossref_primary_10_1097_CAD_0000000000001024 crossref_primary_10_1038_cddis_2016_330 crossref_primary_10_1039_C8TX00122G crossref_primary_10_1016_j_molliq_2018_06_045 crossref_primary_10_1016_j_yexcr_2016_02_019 crossref_primary_10_1038_srep12357 crossref_primary_10_3892_or_2021_8222 crossref_primary_10_1016_j_cell_2017_01_013 crossref_primary_10_1158_0008_5472_CAN_15_1654 crossref_primary_10_1523_JNEUROSCI_3521_15_2016 crossref_primary_10_1093_carcin_bgu129 crossref_primary_10_1111_jcmm_16946 crossref_primary_10_1158_2159_8290_CD_17_0867 crossref_primary_10_1038_s41598_017_05423_9 crossref_primary_10_1093_carcin_bgx082 crossref_primary_10_3389_fonc_2019_01469 crossref_primary_10_3390_cancers14071652 crossref_primary_10_1371_journal_pone_0100880 crossref_primary_10_4103_ijmpo_ijmpo_53_17 crossref_primary_10_1038_onc_2014_328 crossref_primary_10_15252_emmm_201404670 crossref_primary_10_1016_j_jbc_2023_105224 crossref_primary_10_1073_pnas_1523693113 crossref_primary_10_15252_embj_201797115 crossref_primary_10_1016_j_canlet_2018_07_011 crossref_primary_10_1016_j_critrevonc_2020_102886 crossref_primary_10_3389_fgene_2021_662843 crossref_primary_10_3390_biom9040153 crossref_primary_10_1093_carcin_bgx091 crossref_primary_10_1016_j_bioorg_2020_104344 crossref_primary_10_1038_s41467_017_00263_7 crossref_primary_10_1002_jcb_25747 crossref_primary_10_1042_BST20231546 crossref_primary_10_1158_1078_0432_CCR_18_0368 crossref_primary_10_3390_cancers15051416 crossref_primary_10_1016_j_bbamcr_2015_03_016 crossref_primary_10_1038_s41540_024_00369_x crossref_primary_10_3390_cancers14020279 crossref_primary_10_1016_j_intimp_2022_108552 crossref_primary_10_1038_ncomms14797 crossref_primary_10_1074_jbc_M116_743401 crossref_primary_10_1039_D2FO03672J crossref_primary_10_1016_j_ccell_2014_09_011 crossref_primary_10_1186_s12885_021_08366_7 crossref_primary_10_1186_s12943_023_01827_6 crossref_primary_10_1371_journal_pone_0246264 crossref_primary_10_3390_ijms21218342 crossref_primary_10_1177_1559325815622174 crossref_primary_10_1074_jbc_M113_539882 crossref_primary_10_1111_cas_12383 crossref_primary_10_1155_2015_404368 crossref_primary_10_3389_fphar_2021_678733 crossref_primary_10_1016_j_jhazmat_2019_121885 crossref_primary_10_1155_2022_1639560 crossref_primary_10_1186_s12885_024_12030_1 crossref_primary_10_1038_s41551_019_0400_9 crossref_primary_10_1186_s12885_015_1544_y crossref_primary_10_3390_cells10092211 crossref_primary_10_1042_BST20170519 crossref_primary_10_3390_ijms24054522 crossref_primary_10_1186_s41236_017_0007_6 crossref_primary_10_1371_journal_pone_0133850 crossref_primary_10_1074_jbc_M116_723882 crossref_primary_10_14348_molcells_2021_0031 crossref_primary_10_1186_s12964_023_01047_x crossref_primary_10_1186_s13578_015_0062_6 crossref_primary_10_1016_j_mce_2018_07_005 crossref_primary_10_3390_cancers12061540 crossref_primary_10_4161_21541248_2014_973770 crossref_primary_10_1038_onc_2015_45 crossref_primary_10_1371_journal_pone_0148730 crossref_primary_10_1016_j_biopha_2020_110033 crossref_primary_10_1186_s12964_015_0111_0 crossref_primary_10_1002_mc_22457 crossref_primary_10_3892_ol_2018_9094 crossref_primary_10_1007_s00418_017_1559_3 crossref_primary_10_1016_S1875_5364_23_60444_3 crossref_primary_10_3390_molecules26226829 crossref_primary_10_1172_JCI76412 crossref_primary_10_1016_j_ccell_2014_11_008 crossref_primary_10_1177_0271678X17732025 crossref_primary_10_1016_j_canlet_2019_08_015 crossref_primary_10_1038_s41375_023_02020_w crossref_primary_10_1186_s13058_021_01457_0 crossref_primary_10_2217_fon_2017_0458 crossref_primary_10_1038_onc_2017_295 crossref_primary_10_3389_fphys_2020_579117 crossref_primary_10_1016_j_ccell_2014_11_007 crossref_primary_10_1158_1078_0432_CCR_17_3440 crossref_primary_10_1111_jpi_12637 crossref_primary_10_1371_journal_pbio_3002446 crossref_primary_10_1096_fj_201901503R crossref_primary_10_1111_jcmm_13997 crossref_primary_10_1007_s00044_018_2158_0 crossref_primary_10_1038_s41408_022_00663_z crossref_primary_10_1038_s41467_020_17102_x crossref_primary_10_1097_JCMA_0000000000000781 crossref_primary_10_1016_j_bcp_2017_03_007 crossref_primary_10_1002_bies_201600165 crossref_primary_10_1158_1541_7786_MCR_16_0184 crossref_primary_10_1002_2211_5463_12256 crossref_primary_10_1155_2017_4537532 crossref_primary_10_1016_j_molcel_2021_07_021 crossref_primary_10_1073_pnas_2208947119 crossref_primary_10_3892_ijmm_2025_5636 crossref_primary_10_1038_oncsis_2015_28 crossref_primary_10_1098_rsob_180033 crossref_primary_10_1038_s41467_020_15308_7 crossref_primary_10_1124_mol_116_105338 crossref_primary_10_1038_s41467_017_00942_5 crossref_primary_10_1038_s41388_018_0436_4 crossref_primary_10_1038_s42003_022_03140_2 crossref_primary_10_1038_s42255_025_01349_z |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1314124110 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 24327733 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01CA137008 – fundername: NCI NIH HHS grantid: R01 CA166480 – fundername: NCI NIH HHS grantid: R01 CA137008 – fundername: NCI NIH HHS grantid: R01CA140594 – fundername: NCI NIH HHS grantid: R01 CA140594 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c624t-4389b6b1532a995ad678f7fded98d151750d1c01e25b9ef38ee37c87ad7995e02 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 176 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328858800065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 07:46:38 EDT 2025 Mon Jul 21 05:55:46 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 52 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c624t-4389b6b1532a995ad678f7fded98d151750d1c01e25b9ef38ee37c87ad7995e02 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/110/52/21124.full.pdf |
| PMID | 24327733 |
| PQID | 1490744021 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1490744021 pubmed_primary_24327733 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-12-24 |
| PublicationDateYYYYMMDD | 2013-12-24 |
| PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2013 |
| SSID | ssj0009580 |
| Score | 2.5231469 |
| Snippet | The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 21124 |
| SubjectTerms | Animals Breast Neoplasms - physiopathology Class I Phosphatidylinositol 3-Kinases Computational Biology Databases, Genetic Female Guanine Nucleotide Exchange Factors - metabolism Immunoblotting MAP Kinase Signaling System - drug effects MAP Kinase Signaling System - physiology Mice Mice, Nude Neuropeptides - metabolism Phosphatidylinositol 3-Kinases - genetics Phosphatidylinositol 3-Kinases - metabolism Phosphoinositide-3 Kinase Inhibitors rac1 GTP-Binding Protein - metabolism Receptor, ErbB-2 - genetics |
| Title | PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1 |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24327733 https://www.proquest.com/docview/1490744021 |
| Volume | 110 |
| WOSCitedRecordID | wos000328858800065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA7-OnhR58_5iwgeFIxrkrZpTiLS6ZgbZajsNtIkhV26uc7hn-9L26EXQfDSSwmUx_devpe8fh9Cl74SMvMFZJpONfGBIhPobKHn0aFUoYSepJx2f3sW_X40HMqkPnAr6rHKZU0sC7WZaHdG3gIm7zkxO0bvpu_EuUa529XaQmMVrXOgMg7VYhj9EN2NKjUCSUkI65fSPoK3prkqbimnznyZUu93flnuM-3t_37hDtqqGSa-ryDRQCs230WNOocLfFULTV_voU7S4V08q9zo4VUv7rbiQRe7mQ7lflPH4xynbmp9jrVDxwwvxgoDZcQDpclj3L7BCRnYT7qPXtvxy8MTqa0ViA6ZPyfO8zwNUyh3TEkZKAN7ViYyY42MDJAA4BGGao9aFqTSZjyylgsdCWWcgJz12AFayye5PUKY-0CiaCrDNAideJYSNOOBMRzqbMCUbqKLZbhGAF13H6FyO_koRt8Ba6LDKuajaaWxMWI-Z0JwfvyH1SdokzmTCsoI80_RegaJa8_Qhl7Mx8XsvMQEPPtJ7wucw7u_ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PI3K+regulates+MEK%2FERK+signaling+in+breast+cancer+via+the+Rac-GEF%2C+P-Rex1&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ebi%2C+Hiromichi&rft.au=Costa%2C+Carlotta&rft.au=Faber%2C+Anthony+C&rft.au=Nishtala%2C+Madhuri&rft.date=2013-12-24&rft.eissn=1091-6490&rft.volume=110&rft.issue=52&rft.spage=21124&rft_id=info:doi/10.1073%2Fpnas.1314124110&rft_id=info%3Apmid%2F24327733&rft_id=info%3Apmid%2F24327733&rft.externalDocID=24327733 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |