PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1

The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 110; H. 52; S. 21124
Hauptverfasser: Ebi, Hiromichi, Costa, Carlotta, Faber, Anthony C, Nishtala, Madhuri, Kotani, Hiroshi, Juric, Dejan, Della Pelle, Patricia, Song, Youngchul, Yano, Seiji, Mino-Kenudson, Mari, Benes, Cyril H, Engelman, Jeffrey A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 24.12.2013
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers.
AbstractList The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers.
The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers.The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers.
Author Nishtala, Madhuri
Kotani, Hiroshi
Costa, Carlotta
Della Pelle, Patricia
Benes, Cyril H
Juric, Dejan
Engelman, Jeffrey A
Faber, Anthony C
Yano, Seiji
Mino-Kenudson, Mari
Song, Youngchul
Ebi, Hiromichi
Author_xml – sequence: 1
  givenname: Hiromichi
  surname: Ebi
  fullname: Ebi, Hiromichi
  organization: Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129
– sequence: 2
  givenname: Carlotta
  surname: Costa
  fullname: Costa, Carlotta
– sequence: 3
  givenname: Anthony C
  surname: Faber
  fullname: Faber, Anthony C
– sequence: 4
  givenname: Madhuri
  surname: Nishtala
  fullname: Nishtala, Madhuri
– sequence: 5
  givenname: Hiroshi
  surname: Kotani
  fullname: Kotani, Hiroshi
– sequence: 6
  givenname: Dejan
  surname: Juric
  fullname: Juric, Dejan
– sequence: 7
  givenname: Patricia
  surname: Della Pelle
  fullname: Della Pelle, Patricia
– sequence: 8
  givenname: Youngchul
  surname: Song
  fullname: Song, Youngchul
– sequence: 9
  givenname: Seiji
  surname: Yano
  fullname: Yano, Seiji
– sequence: 10
  givenname: Mari
  surname: Mino-Kenudson
  fullname: Mino-Kenudson, Mari
– sequence: 11
  givenname: Cyril H
  surname: Benes
  fullname: Benes, Cyril H
– sequence: 12
  givenname: Jeffrey A
  surname: Engelman
  fullname: Engelman, Jeffrey A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24327733$$D View this record in MEDLINE/PubMed
BookMark eNpNj89LwzAYhoNM3A89e5McPdgtX5I2zVFGN8cmjqHnkiZfZ6XLZtPK_O8dOMHT-x4eHniGpOf3Hgm5BTYGpsTk4E0YgwAJXAKwCzIApiFKpGa9f79PhiF8MMZ0nLIr0udScKWEGJDFeiGWtMFtV5sWA33OlpNss6Sh2npTV35LK0-LBk1oqTXeYkO_KkPbd6QbY6N5Nnug62iDR7gml6WpA96cd0TeZtnr9ClavcwX08dVZBMu20iKVBdJAbHgRuvYuESlpSodOp06iEHFzIFlgDwuNJYiRRTKpso4dcKR8RG5__Uemv1nh6HNd1WwWNfG474LOZx6lZSMwwm9O6NdsUOXH5pqZ5rv_C-f_wAdVFr9
CitedBy_id crossref_primary_10_1038_s44318_025_00484_3
crossref_primary_10_1371_journal_pone_0152584
crossref_primary_10_1080_10428194_2024_2438800
crossref_primary_10_1016_j_bbadis_2024_167458
crossref_primary_10_1096_fj_201700477R
crossref_primary_10_1016_j_jconrel_2019_12_019
crossref_primary_10_3390_ijms160921138
crossref_primary_10_1186_s12859_016_1078_6
crossref_primary_10_1080_14756366_2021_2010729
crossref_primary_10_1038_srep27471
crossref_primary_10_3389_fcell_2020_00201
crossref_primary_10_1007_s00066_023_02092_8
crossref_primary_10_3390_cancers17071152
crossref_primary_10_1016_j_envpol_2020_115541
crossref_primary_10_1080_10428194_2017_1421760
crossref_primary_10_1038_s41598_020_64289_6
crossref_primary_10_1158_1078_0432_CCR_18_0867
crossref_primary_10_3389_fnut_2022_1008893
crossref_primary_10_1002_jbt_22693
crossref_primary_10_1080_21541248_2019_1665968
crossref_primary_10_1186_s13058_014_0441_7
crossref_primary_10_2174_1381612825666190222143044
crossref_primary_10_3390_cancers12082266
crossref_primary_10_1073_pnas_2006445117
crossref_primary_10_3390_ncrna3020020
crossref_primary_10_1007_s11886_017_0826_1
crossref_primary_10_1038_bjc_2016_18
crossref_primary_10_1097_CAD_0000000000001024
crossref_primary_10_1038_cddis_2016_330
crossref_primary_10_1039_C8TX00122G
crossref_primary_10_1016_j_molliq_2018_06_045
crossref_primary_10_1016_j_yexcr_2016_02_019
crossref_primary_10_1038_srep12357
crossref_primary_10_3892_or_2021_8222
crossref_primary_10_1016_j_cell_2017_01_013
crossref_primary_10_1158_0008_5472_CAN_15_1654
crossref_primary_10_1523_JNEUROSCI_3521_15_2016
crossref_primary_10_1093_carcin_bgu129
crossref_primary_10_1111_jcmm_16946
crossref_primary_10_1158_2159_8290_CD_17_0867
crossref_primary_10_1038_s41598_017_05423_9
crossref_primary_10_1093_carcin_bgx082
crossref_primary_10_3389_fonc_2019_01469
crossref_primary_10_3390_cancers14071652
crossref_primary_10_1371_journal_pone_0100880
crossref_primary_10_4103_ijmpo_ijmpo_53_17
crossref_primary_10_1038_onc_2014_328
crossref_primary_10_15252_emmm_201404670
crossref_primary_10_1016_j_jbc_2023_105224
crossref_primary_10_1073_pnas_1523693113
crossref_primary_10_15252_embj_201797115
crossref_primary_10_1016_j_canlet_2018_07_011
crossref_primary_10_1016_j_critrevonc_2020_102886
crossref_primary_10_3389_fgene_2021_662843
crossref_primary_10_3390_biom9040153
crossref_primary_10_1093_carcin_bgx091
crossref_primary_10_1016_j_bioorg_2020_104344
crossref_primary_10_1038_s41467_017_00263_7
crossref_primary_10_1002_jcb_25747
crossref_primary_10_1042_BST20231546
crossref_primary_10_1158_1078_0432_CCR_18_0368
crossref_primary_10_3390_cancers15051416
crossref_primary_10_1016_j_bbamcr_2015_03_016
crossref_primary_10_1038_s41540_024_00369_x
crossref_primary_10_3390_cancers14020279
crossref_primary_10_1016_j_intimp_2022_108552
crossref_primary_10_1038_ncomms14797
crossref_primary_10_1074_jbc_M116_743401
crossref_primary_10_1039_D2FO03672J
crossref_primary_10_1016_j_ccell_2014_09_011
crossref_primary_10_1186_s12885_021_08366_7
crossref_primary_10_1186_s12943_023_01827_6
crossref_primary_10_1371_journal_pone_0246264
crossref_primary_10_3390_ijms21218342
crossref_primary_10_1177_1559325815622174
crossref_primary_10_1074_jbc_M113_539882
crossref_primary_10_1111_cas_12383
crossref_primary_10_1155_2015_404368
crossref_primary_10_3389_fphar_2021_678733
crossref_primary_10_1016_j_jhazmat_2019_121885
crossref_primary_10_1155_2022_1639560
crossref_primary_10_1186_s12885_024_12030_1
crossref_primary_10_1038_s41551_019_0400_9
crossref_primary_10_1186_s12885_015_1544_y
crossref_primary_10_3390_cells10092211
crossref_primary_10_1042_BST20170519
crossref_primary_10_3390_ijms24054522
crossref_primary_10_1186_s41236_017_0007_6
crossref_primary_10_1371_journal_pone_0133850
crossref_primary_10_1074_jbc_M116_723882
crossref_primary_10_14348_molcells_2021_0031
crossref_primary_10_1186_s12964_023_01047_x
crossref_primary_10_1186_s13578_015_0062_6
crossref_primary_10_1016_j_mce_2018_07_005
crossref_primary_10_3390_cancers12061540
crossref_primary_10_4161_21541248_2014_973770
crossref_primary_10_1038_onc_2015_45
crossref_primary_10_1371_journal_pone_0148730
crossref_primary_10_1016_j_biopha_2020_110033
crossref_primary_10_1186_s12964_015_0111_0
crossref_primary_10_1002_mc_22457
crossref_primary_10_3892_ol_2018_9094
crossref_primary_10_1007_s00418_017_1559_3
crossref_primary_10_1016_S1875_5364_23_60444_3
crossref_primary_10_3390_molecules26226829
crossref_primary_10_1172_JCI76412
crossref_primary_10_1016_j_ccell_2014_11_008
crossref_primary_10_1177_0271678X17732025
crossref_primary_10_1016_j_canlet_2019_08_015
crossref_primary_10_1038_s41375_023_02020_w
crossref_primary_10_1186_s13058_021_01457_0
crossref_primary_10_2217_fon_2017_0458
crossref_primary_10_1038_onc_2017_295
crossref_primary_10_3389_fphys_2020_579117
crossref_primary_10_1016_j_ccell_2014_11_007
crossref_primary_10_1158_1078_0432_CCR_17_3440
crossref_primary_10_1111_jpi_12637
crossref_primary_10_1371_journal_pbio_3002446
crossref_primary_10_1096_fj_201901503R
crossref_primary_10_1111_jcmm_13997
crossref_primary_10_1007_s00044_018_2158_0
crossref_primary_10_1038_s41408_022_00663_z
crossref_primary_10_1038_s41467_020_17102_x
crossref_primary_10_1097_JCMA_0000000000000781
crossref_primary_10_1016_j_bcp_2017_03_007
crossref_primary_10_1002_bies_201600165
crossref_primary_10_1158_1541_7786_MCR_16_0184
crossref_primary_10_1002_2211_5463_12256
crossref_primary_10_1155_2017_4537532
crossref_primary_10_1016_j_molcel_2021_07_021
crossref_primary_10_1073_pnas_2208947119
crossref_primary_10_3892_ijmm_2025_5636
crossref_primary_10_1038_oncsis_2015_28
crossref_primary_10_1098_rsob_180033
crossref_primary_10_1038_s41467_020_15308_7
crossref_primary_10_1124_mol_116_105338
crossref_primary_10_1038_s41467_017_00942_5
crossref_primary_10_1038_s41388_018_0436_4
crossref_primary_10_1038_s42003_022_03140_2
crossref_primary_10_1038_s42255_025_01349_z
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1314124110
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 24327733
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01CA137008
– fundername: NCI NIH HHS
  grantid: R01 CA166480
– fundername: NCI NIH HHS
  grantid: R01 CA137008
– fundername: NCI NIH HHS
  grantid: R01CA140594
– fundername: NCI NIH HHS
  grantid: R01 CA140594
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c624t-4389b6b1532a995ad678f7fded98d151750d1c01e25b9ef38ee37c87ad7995e02
IEDL.DBID 7X8
ISICitedReferencesCount 176
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328858800065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 07:46:38 EDT 2025
Mon Jul 21 05:55:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-4389b6b1532a995ad678f7fded98d151750d1c01e25b9ef38ee37c87ad7995e02
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/110/52/21124.full.pdf
PMID 24327733
PQID 1490744021
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1490744021
pubmed_primary_24327733
PublicationCentury 2000
PublicationDate 2013-12-24
PublicationDateYYYYMMDD 2013-12-24
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
SSID ssj0009580
Score 2.5231469
Snippet The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 21124
SubjectTerms Animals
Breast Neoplasms - physiopathology
Class I Phosphatidylinositol 3-Kinases
Computational Biology
Databases, Genetic
Female
Guanine Nucleotide Exchange Factors - metabolism
Immunoblotting
MAP Kinase Signaling System - drug effects
MAP Kinase Signaling System - physiology
Mice
Mice, Nude
Neuropeptides - metabolism
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - metabolism
Phosphoinositide-3 Kinase Inhibitors
rac1 GTP-Binding Protein - metabolism
Receptor, ErbB-2 - genetics
Title PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1
URI https://www.ncbi.nlm.nih.gov/pubmed/24327733
https://www.proquest.com/docview/1490744021
Volume 110
WOSCitedRecordID wos000328858800065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA7-OnhR58_5iwgeFIxrkrZpTiLS6ZgbZajsNtIkhV26uc7hn-9L26EXQfDSSwmUx_devpe8fh9Cl74SMvMFZJpONfGBIhPobKHn0aFUoYSepJx2f3sW_X40HMqkPnAr6rHKZU0sC7WZaHdG3gIm7zkxO0bvpu_EuUa529XaQmMVrXOgMg7VYhj9EN2NKjUCSUkI65fSPoK3prkqbimnznyZUu93flnuM-3t_37hDtqqGSa-ryDRQCs230WNOocLfFULTV_voU7S4V08q9zo4VUv7rbiQRe7mQ7lflPH4xynbmp9jrVDxwwvxgoDZcQDpclj3L7BCRnYT7qPXtvxy8MTqa0ViA6ZPyfO8zwNUyh3TEkZKAN7ViYyY42MDJAA4BGGao9aFqTSZjyylgsdCWWcgJz12AFayye5PUKY-0CiaCrDNAideJYSNOOBMRzqbMCUbqKLZbhGAF13H6FyO_koRt8Ba6LDKuajaaWxMWI-Z0JwfvyH1SdokzmTCsoI80_RegaJa8_Qhl7Mx8XsvMQEPPtJ7wucw7u_
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PI3K+regulates+MEK%2FERK+signaling+in+breast+cancer+via+the+Rac-GEF%2C+P-Rex1&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ebi%2C+Hiromichi&rft.au=Costa%2C+Carlotta&rft.au=Faber%2C+Anthony+C&rft.au=Nishtala%2C+Madhuri&rft.date=2013-12-24&rft.eissn=1091-6490&rft.volume=110&rft.issue=52&rft.spage=21124&rft_id=info:doi/10.1073%2Fpnas.1314124110&rft_id=info%3Apmid%2F24327733&rft_id=info%3Apmid%2F24327733&rft.externalDocID=24327733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon