Motor modules in robot-aided walking

Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of neuroengineering and rehabilitation Ročník 9; číslo 1; s. 76
Hlavní autoři: Gizzi, Leonardo, Nielsen, Jørgen Feldbæk, Felici, Francesco, Moreno, Juan C, Pons, José L, Farina, Dario
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 08.10.2012
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1743-0003, 1743-0003
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.
AbstractList Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.
It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.
Abstract Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.
It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level.BACKGROUNDIt is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level.Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3 km/h) and levels of body weight support (0 to 30%).METHODSNon Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3 km/h) and levels of body weight support (0 to 30%).The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects.RESULTSThe muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects.These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.CONCLUSIONSThese results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.
Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns. Keywords: Motor modules, Robotic gait trainer, Motor control
Background: It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods: Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results: The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions: These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.
It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3 km/h) and levels of body weight support (0 to 30%). The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.
Doc number: 76 Abstract Background: It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods: Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results: The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions: These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.
Audience Academic
Author Nielsen, Jørgen Feldbæk
Pons, José L
Felici, Francesco
Moreno, Juan C
Gizzi, Leonardo
Farina, Dario
AuthorAffiliation 5 Bioengineering Group, Spanish National Research Council, CSIC, Carretera Campo Real, Madrid, Spain
1 Pain Clinic, Center for Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Göttingen, Göttingen, Germany
2 Department of Neurorehabilitation Engineering, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Von-Siebold-Str, 4,37075, Göttingen, Germany
4 Regionshospitalet Hammel Neurocenter, Aarhus University, Voldbyvej 15, 8450, Hammel, Denmark
3 Department Human Movement and Sport Sciences, University of Roma Foro Italico, Piazza Lauro De Bosis 6, Rome, 00196, Italy
AuthorAffiliation_xml – name: 5 Bioengineering Group, Spanish National Research Council, CSIC, Carretera Campo Real, Madrid, Spain
– name: 2 Department of Neurorehabilitation Engineering, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Von-Siebold-Str, 4,37075, Göttingen, Germany
– name: 4 Regionshospitalet Hammel Neurocenter, Aarhus University, Voldbyvej 15, 8450, Hammel, Denmark
– name: 3 Department Human Movement and Sport Sciences, University of Roma Foro Italico, Piazza Lauro De Bosis 6, Rome, 00196, Italy
– name: 1 Pain Clinic, Center for Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Göttingen, Göttingen, Germany
Author_xml – sequence: 1
  givenname: Leonardo
  surname: Gizzi
  fullname: Gizzi, Leonardo
  organization: Pain Clinic, Center for Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Göttingen, Department of Neurorehabilitation Engineering, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Department Human Movement and Sport Sciences, University of Roma Foro Italico
– sequence: 2
  givenname: Jørgen Feldbæk
  surname: Nielsen
  fullname: Nielsen, Jørgen Feldbæk
  organization: Regionshospitalet Hammel Neurocenter, Aarhus University
– sequence: 3
  givenname: Francesco
  surname: Felici
  fullname: Felici, Francesco
  organization: Department Human Movement and Sport Sciences, University of Roma Foro Italico
– sequence: 4
  givenname: Juan C
  surname: Moreno
  fullname: Moreno, Juan C
  organization: Bioengineering Group, Spanish National Research Council, CSIC
– sequence: 5
  givenname: José L
  surname: Pons
  fullname: Pons, José L
  organization: Bioengineering Group, Spanish National Research Council, CSIC
– sequence: 6
  givenname: Dario
  surname: Farina
  fullname: Farina, Dario
  email: dario.farina@bccn.uni-goettingen.de
  organization: Department of Neurorehabilitation Engineering, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23043818$$D View this record in MEDLINE/PubMed
BookMark eNqNkstv1DAYxC1URB9w5YhWggOXtH7G8QWpqgpUKuICZ8vP4CWxi52A-O_rsO12FxUJ5WDr829G9mSOwUFM0QHwEsFThLr2DHFKGgghaUTD2yfgaDs42NkfguNS1nVDIaPPwCEmkJIOdUfgzac0pbwak50HV1YhrnLSaWpUsM6ufqnhe4j9c_DUq6G4F3frCfj6_vLLxcfm-vOHq4vz68a0mE4N4dRhbjS1wgvncIugNopZRBD0igndKYUg8cIwrI2x3mLOuMGI4o52WpMTcLXxtUmt5U0Oo8q_ZVJB_hmk3EuVp2AGJ23baidaLToKqTKicwIb5Lz13FuIu-r1buN1M-vRWePilNWwZ7p_EsM32aefkjBCBFwM3t4Z5PRjdmWSYyjGDYOKLs1FIswJQpjVJP8DxRwRjllFX_-FrtOcY021Ui3jgmGKH6he1beG6FO9ollM5Tkj9ddxCkWlTh-h6mfdGEztiQ91vid4tZvJNoz7OlSAbgCTUynZeWnCpKaQlojCIBGUS-vkUiy5FEsKyduHi2xl987_FJxtBKWCsXd5J4XHFbctyeL_
CitedBy_id crossref_primary_10_1016_j_clinph_2014_05_003
crossref_primary_10_1371_journal_pone_0137844
crossref_primary_10_1007_s00421_021_04762_w
crossref_primary_10_1016_j_neucli_2020_04_004
crossref_primary_10_3389_fnhum_2014_00335
crossref_primary_10_3390_brainsci11040448
crossref_primary_10_1016_j_jelekin_2016_07_010
crossref_primary_10_3390_app122211326
crossref_primary_10_1109_TNSRE_2015_2404936
crossref_primary_10_1152_jn_00220_2014
crossref_primary_10_3390_s23218800
crossref_primary_10_1016_j_jmpt_2022_09_001
crossref_primary_10_1109_ACCESS_2025_3577700
crossref_primary_10_1088_0967_3334_35_7_R143
crossref_primary_10_1186_s12984_019_0636_3
crossref_primary_10_1186_s12984_019_0616_7
crossref_primary_10_3389_fnhum_2017_00586
crossref_primary_10_3389_frobt_2020_557606
crossref_primary_10_1186_1743_0003_10_79
crossref_primary_10_1016_j_clinbiomech_2016_04_013
crossref_primary_10_1186_s12984_019_0558_0
crossref_primary_10_1371_journal_pone_0198473
crossref_primary_10_3389_fnhum_2016_00620
crossref_primary_10_3390_app12042135
crossref_primary_10_1097_MRR_0000000000000375
crossref_primary_10_1016_j_apmr_2017_06_018
crossref_primary_10_3390_app9142868
crossref_primary_10_1080_10255842_2021_1890046
crossref_primary_10_1038_sc_2016_99
crossref_primary_10_1152_jn_00676_2012
crossref_primary_10_1109_TNSRE_2020_3017128
Cites_doi 10.1073/pnas.0500199102
10.1136/bmj.321.7268.1051
10.1016/j.jbiomech.2009.10.009
10.1038/nn1010
10.1016/S0165-0270(98)00054-5
10.1016/j.clinbiomech.2004.09.016
10.1161/hs0202.102367
10.5014/ajot.53.2.171
10.1007/BF00201475
10.1152/physrev.00028.2005
10.1152/jn.00081.2006
10.1016/j.pmrj.2009.03.009
10.1007/978-3-540-89208-3_384
10.1038/5721
10.1016/j.apmr.2004.08.004
10.1177/1545968307300697
ContentType Journal Article
Copyright Gizzi et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2012 BioMed Central Ltd.
2012 Gizzi et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2012 Gizzi et al.; licensee BioMed Central Ltd. 2012 Gizzi et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Gizzi et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2012 BioMed Central Ltd.
– notice: 2012 Gizzi et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2012 Gizzi et al.; licensee BioMed Central Ltd. 2012 Gizzi et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TB
7TK
7TS
7X7
7XB
88C
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
L6V
LK8
M0S
M0T
M1P
M7P
M7S
NAPCQ
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/1743-0003-9-76
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & allied health premium.
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Healthcare Administration Database
PML(ProQuest Medical Library)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic

Neurosciences Abstracts
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 76
ExternalDocumentID oai_doaj_org_article_d66be96b98404ac98e92c1efdf7fd028
PMC3533908
2853823721
A534387409
23043818
10_1186_1743_0003_9_76
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
29L
2QV
2VQ
2WC
4.4
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPNFZ
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
AFFHD
CITATION
H13
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7TB
7TK
7TS
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c624t-374e27cb4d9f9ee2610bca5d1310fa59b8aa103f9c52bccdfd2757c2142848bb3
IEDL.DBID DOA
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313004500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1743-0003
IngestDate Tue Oct 14 19:09:23 EDT 2025
Tue Nov 04 01:43:05 EST 2025
Wed Oct 01 14:38:16 EDT 2025
Fri Sep 05 12:33:27 EDT 2025
Sat Oct 18 23:45:58 EDT 2025
Tue Nov 11 10:56:22 EST 2025
Tue Nov 04 18:29:54 EST 2025
Mon Jul 21 06:01:44 EDT 2025
Sat Nov 29 03:36:17 EST 2025
Tue Nov 18 21:00:22 EST 2025
Sat Sep 06 07:18:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Motor modules
Robotic gait trainer
Motor control
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-374e27cb4d9f9ee2610bca5d1310fa59b8aa103f9c52bccdfd2757c2142848bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://doaj.org/article/d66be96b98404ac98e92c1efdf7fd028
PMID 23043818
PQID 1265795242
PQPubID 55356
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d66be96b98404ac98e92c1efdf7fd028
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533908
proquest_miscellaneous_1273112504
proquest_miscellaneous_1272713725
proquest_journals_1265795242
gale_infotracmisc_A534387409
gale_infotracacademiconefile_A534387409
pubmed_primary_23043818
crossref_citationtrail_10_1186_1743_0003_9_76
crossref_primary_10_1186_1743_0003_9_76
springer_journals_10_1186_1743_0003_9_76
PublicationCentury 2000
PublicationDate 2012-10-08
PublicationDateYYYYMMDD 2012-10-08
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-08
  day: 08
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAbbrev J NeuroEngineering Rehabil
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2012
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 10.1186/1743-0003-9-76-B15
10.1186/1743-0003-9-76-B49
10.1186/1743-0003-9-76-B17
10.1186/1743-0003-9-76-B28
-
10.1186/1743-0003-9-76-B50
10.1186/1743-0003-9-76-B33
10.1186/1743-0003-9-76-B34
10.1186/1743-0003-9-76-B24
10.1186/1743-0003-9-76-B57
10.1186/1743-0003-9-76-B14
10.1186/1743-0003-9-76-B47
10.1186/1743-0003-9-76-B51
10.1186/1743-0003-9-76-B41
10.1186/1743-0003-9-76-B32
12037209 - J Neurophysiol. 2002 Jun;87(6):3070-89
19627940 - PM R. 2009 Jun;1(6):516-23
15708969 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3076-81
20237313 - J Neurophysiol. 2010 May;103(5):2747-56
15827916 - Arch Phys Med Rehabil. 2005 Apr;86(4):672-80
16282202 - J Neurophysiol. 2006 Feb;95(2):602-18
17925250 - Prog Brain Res. 2007;165:235-53
20007501 - J Neurophysiol. 2010 Feb;103(2):844-57
20107059 - J Neurosci. 2010 Jan 27;30(4):1322-36
20584307 - J Neuroeng Rehabil. 2010;7:30
14615435 - J Neurophysiol. 2003 Nov;90(5):3372-83
20685924 - J Neurophysiol. 2010 Oct;104(4):2092-102
18598271 - Eur J Neurosci. 2008 Jun;27(12):3351-68
20071634 - J Neurophysiol. 2010 Mar;103(3):1532-42
19211317 - IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):2-8
19879583 - J Biomech. 2010 Feb 10;43(3):412-9
17942510 - Mult Scler. 2008 Mar;14(2):231-6
15621324 - Clin Biomech (Bristol, Avon). 2005 Feb;20(2):184-93
16870725 - J Neurosci. 2006 Jul 26;26(30):7791-810
18713676 - IEEE Trans Neural Syst Rehabil Eng. 2008 Aug;16(4):360-370
19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8
18467648 - Stroke. 2008 Jun;39(6):1786-92
11823650 - Stroke. 2002 Feb;33(2):444-8
19109447 - Neurorehabil Neural Repair. 2009 Jan;23(1):5-13
22096202 - Science. 2011 Nov 18;334(6058):997-9
16394079 - J Neurophysiol. 2006 Apr;95(4):2199-212
17999427 - Mov Disord. 2008 Jan 30;23(2):280-3
10200840 - Am J Occup Ther. 1999 Mar-Apr;53(2):171-80
17894271 - IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):387-400
11321005 - J Rehabil Res Dev. 2000 Nov-Dec;37(6):693-700
12563264 - Nat Neurosci. 2003 Mar;6(3):300-8
9532434 - Electromyogr Clin Neurophysiol. 1998 Jan-Feb;38(1):51-8
20946640 - J Neuroeng Rehabil. 2010;7:51
17925255 - Prog Brain Res. 2007;165:323-46
18971381 - Neurorehabil Neural Repair. 2008 Nov-Dec;22(6):661-71
14988161 - Brain. 2004 May;127(Pt 5):1019-34
16371596 - Physiol Rev. 2006 Jan;86(1):89-154
11053175 - BMJ. 2000 Oct 28;321(7268):1051-4
18568717 - Brain Inj. 2008 Jul;22(7-8):625-32
14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82
20666620 - Disabil Rehabil Assist Technol. 2011;6(1):77-85
18029291 - Brain Res Rev. 2008 Jan;57(1):125-33
12429590 - Brain. 2002 Dec;125(Pt 12):2626-34
21511705 - J Neurophysiol. 2011 Jul;106(1):202-10
1144530 - Physiol Rev. 1975 Apr;55(2):247-304
11431524 - J Neurophysiol. 2001 Jul;86(1):447-62
21232961 - Gait Posture. 2011 Feb;33(2):256-60
15140675 - J Mot Behav. 1985 Dec;17(4):443-61
10195201 - Nat Neurosci. 1999 Feb;2(2):162-7
7578478 - Biol Cybern. 1995 Oct;73(5):409-14
9700694 - J Neurosci Methods. 1998 Aug 1;82(2):207-14
17476001 - Neurorehabil Neural Repair. 2007 Jul-Aug;21(4):307-14
16554517 - J Neurophysiol. 2006 Jun;95(6):3426-37
10899330 - J Biomech. 2000 Oct;33(10):1217-24
References_xml – ident: 10.1186/1743-0003-9-76-B49
  doi: 10.1073/pnas.0500199102
– ident: 10.1186/1743-0003-9-76-B32
  doi: 10.1136/bmj.321.7268.1051
– ident: 10.1186/1743-0003-9-76-B47
  doi: 10.1016/j.jbiomech.2009.10.009
– ident: 10.1186/1743-0003-9-76-B51
  doi: 10.1038/nn1010
– ident: 10.1186/1743-0003-9-76-B14
  doi: 10.1016/S0165-0270(98)00054-5
– ident: -
  doi: 10.1016/j.clinbiomech.2004.09.016
– ident: 10.1186/1743-0003-9-76-B34
  doi: 10.1161/hs0202.102367
– ident: 10.1186/1743-0003-9-76-B33
  doi: 10.5014/ajot.53.2.171
– ident: 10.1186/1743-0003-9-76-B15
  doi: 10.1007/BF00201475
– ident: 10.1186/1743-0003-9-76-B57
  doi: 10.1152/physrev.00028.2005
– ident: 10.1186/1743-0003-9-76-B17
  doi: 10.1152/jn.00081.2006
– ident: 10.1186/1743-0003-9-76-B41
  doi: 10.1016/j.pmrj.2009.03.009
– ident: -
  doi: 10.1007/978-3-540-89208-3_384
– ident: 10.1186/1743-0003-9-76-B50
  doi: 10.1038/5721
– ident: 10.1186/1743-0003-9-76-B28
  doi: 10.1016/j.apmr.2004.08.004
– ident: 10.1186/1743-0003-9-76-B24
  doi: 10.1177/1545968307300697
– reference: 11823650 - Stroke. 2002 Feb;33(2):444-8
– reference: 17999427 - Mov Disord. 2008 Jan 30;23(2):280-3
– reference: 18971381 - Neurorehabil Neural Repair. 2008 Nov-Dec;22(6):661-71
– reference: 14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82
– reference: 12429590 - Brain. 2002 Dec;125(Pt 12):2626-34
– reference: 12563264 - Nat Neurosci. 2003 Mar;6(3):300-8
– reference: 11053175 - BMJ. 2000 Oct 28;321(7268):1051-4
– reference: 18467648 - Stroke. 2008 Jun;39(6):1786-92
– reference: 19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8
– reference: 20946640 - J Neuroeng Rehabil. 2010;7:51
– reference: 18029291 - Brain Res Rev. 2008 Jan;57(1):125-33
– reference: 10899330 - J Biomech. 2000 Oct;33(10):1217-24
– reference: 19211317 - IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):2-8
– reference: 18598271 - Eur J Neurosci. 2008 Jun;27(12):3351-68
– reference: 17925255 - Prog Brain Res. 2007;165:323-46
– reference: 16371596 - Physiol Rev. 2006 Jan;86(1):89-154
– reference: 10200840 - Am J Occup Ther. 1999 Mar-Apr;53(2):171-80
– reference: 16870725 - J Neurosci. 2006 Jul 26;26(30):7791-810
– reference: 21232961 - Gait Posture. 2011 Feb;33(2):256-60
– reference: 7578478 - Biol Cybern. 1995 Oct;73(5):409-14
– reference: 20666620 - Disabil Rehabil Assist Technol. 2011;6(1):77-85
– reference: 15140675 - J Mot Behav. 1985 Dec;17(4):443-61
– reference: 17942510 - Mult Scler. 2008 Mar;14(2):231-6
– reference: 1144530 - Physiol Rev. 1975 Apr;55(2):247-304
– reference: 11431524 - J Neurophysiol. 2001 Jul;86(1):447-62
– reference: 20584307 - J Neuroeng Rehabil. 2010;7:30
– reference: 9532434 - Electromyogr Clin Neurophysiol. 1998 Jan-Feb;38(1):51-8
– reference: 9700694 - J Neurosci Methods. 1998 Aug 1;82(2):207-14
– reference: 20007501 - J Neurophysiol. 2010 Feb;103(2):844-57
– reference: 16282202 - J Neurophysiol. 2006 Feb;95(2):602-18
– reference: 18713676 - IEEE Trans Neural Syst Rehabil Eng. 2008 Aug;16(4):360-370
– reference: 17925250 - Prog Brain Res. 2007;165:235-53
– reference: 18568717 - Brain Inj. 2008 Jul;22(7-8):625-32
– reference: 15827916 - Arch Phys Med Rehabil. 2005 Apr;86(4):672-80
– reference: 10195201 - Nat Neurosci. 1999 Feb;2(2):162-7
– reference: 20237313 - J Neurophysiol. 2010 May;103(5):2747-56
– reference: 15621324 - Clin Biomech (Bristol, Avon). 2005 Feb;20(2):184-93
– reference: 19627940 - PM R. 2009 Jun;1(6):516-23
– reference: 16554517 - J Neurophysiol. 2006 Jun;95(6):3426-37
– reference: 16394079 - J Neurophysiol. 2006 Apr;95(4):2199-212
– reference: 14615435 - J Neurophysiol. 2003 Nov;90(5):3372-83
– reference: 15708969 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3076-81
– reference: 14988161 - Brain. 2004 May;127(Pt 5):1019-34
– reference: 22096202 - Science. 2011 Nov 18;334(6058):997-9
– reference: 11321005 - J Rehabil Res Dev. 2000 Nov-Dec;37(6):693-700
– reference: 20071634 - J Neurophysiol. 2010 Mar;103(3):1532-42
– reference: 20107059 - J Neurosci. 2010 Jan 27;30(4):1322-36
– reference: 21511705 - J Neurophysiol. 2011 Jul;106(1):202-10
– reference: 12037209 - J Neurophysiol. 2002 Jun;87(6):3070-89
– reference: 19109447 - Neurorehabil Neural Repair. 2009 Jan;23(1):5-13
– reference: 20685924 - J Neurophysiol. 2010 Oct;104(4):2092-102
– reference: 19879583 - J Biomech. 2010 Feb 10;43(3):412-9
– reference: 17476001 - Neurorehabil Neural Repair. 2007 Jul-Aug;21(4):307-14
– reference: 17894271 - IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):387-400
SSID ssj0034054
Score 2.1570966
Snippet Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating...
It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks....
Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating...
Doc number: 76 Abstract Background: It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and...
Background: It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating...
Abstract Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 76
SubjectTerms Adult
Algorithms
Analysis
Biomechanical Phenomena
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Body weight
Body Weight - physiology
Electromyography
Female
Gait Disorders, Neurologic - rehabilitation
Humans
Locomotion
Lower Extremity - innervation
Lower Extremity - physiology
Male
Motor control
Motor modules
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
Nerve Net - physiology
Neurology
Neurosciences
Physical Education and Training
Rehabilitation Medicine
Robotic gait trainer
Robotics - instrumentation
Robotics - methods
Robots
Signal Processing, Computer-Assisted
Walking - physiology
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQQgOFJZXoKAglcclahLbSXxCBVFxoNUKFak3y6_ASktS9gF_n5nEWTYFekF72vVEm4nH4288k28A9gura933CMNYleO3RKbSJoxJXtXW2cJ27Pofy5OT6uxMTsOB2zKUVQ4-sXPUrrV0Rn6Q5YUopcAd5c3594S6RlF2NbTQuArXiCUh70r3poMnZghGeCBqzKrigMA3vUXNEpkQx8jWRtTx9f_plbe2pYslkxfypt12dLT7v4rcgdsBiMaHveXchSu-mcCtLXrCCdw4Don3CbzYZiOOT3sqgvhl_GlE9D2B3WmY90HmHuwftxjXx99at577ZTxr4kVr2lVC3JQu_qnndFh_Hz4fvT999yEJvRkSW-R8hX6J-7y0hjtZS-8xDkuN1cJlCBdrLaSptM5SVksrcmOtq11eitJ2BG-8MoY9gJ2mbfwjiLUvMzrfw0Azw4-rmPc8T50WxmgubATJMFHKBn2of8ZcdQFMVSiaWMqiMyVVWUTwaiN_3lN2_FPyLc37Roqotrsf2sUXFVauckVhvCyMxFCYaysrL3Ob-drVZe0QneHfkdUocgh4W1aH9xpQOaLWUoeCcUaND2UEeyNJXMh2PDwYjAqOZKl-W0sEzzfDdCUVxzW-XZMMgtCMlbm4VIYhtBYpj-Bhb8obtSkvQMAtgnJk5KPnMh5pZl87KnKG0YJM8crXw3LYuvW_PvPHl2v5BG4iJM37Kss92Fkt1v4pXLc_VrPl4lm3vH8B2qNWDg
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VghA8UFgoBAoKUjleoibxFT8WRMUDrapSUN8sX4GVlgTtAX-fsZOsNi0g0D7teqz1MTP-xsc3APvc6lp3OcIwVqX4LZO5tBkhkla1dZbbyK7_QZycVBcX8nQL8uEtTLztPhxJRk8dzbriBwE6hzfQJJOZ4NfgOi51VUjWcPbx8-B7CcIP2lMzXq0zWnoiQ_9VP7yxEF2-JHnppDQuQEc7_9_0u3CnB5vpYacd92DLNxO4vUFBOIGbx_3h-gRebDIOp-cd3UD6Mj0bkXlPYOe0n9tB5j7sH7cYu6ffWrea-UU6bdJ5a9plFvgnXfpTz8KG_AP4dPTu_O37rM-_kFle0iX6HupLYQ11spbeY6yVG6uZKxAS1ppJU2ld5KSWlpXGWle7UjBhI4kbrYwhu7DdtI1_BKn2ogh7eBhMFvhxFfGelrnTzBhNmU0gG6ZG2b4_IUfGTMUgpeIqjGE4KSdKKsETeLWW_97RcvxR8k2Y6bVUoNOOP7TzL6q3TuU4N15yIzHcpdrKysvSFr52tagdIjD8u6AnKhg9Nsvq_u0Cdi7QZ6lDRigJyQ1lAnsjSTRWOy4eNE31zmKhipIzIRmCpQSer4tDzXABrvHtKsgg0CyIKNlfZQjCZ5bTBB52yrvudtj7D-AsATFS69G4jEua6ddIN04wIpA51nw9KPdG03875o__XfQJ3EIIWna3Kvdgezlf-adww_5YThfzZ9G4fwEJgkj9
  priority: 102
  providerName: Springer Nature
Title Motor modules in robot-aided walking
URI https://link.springer.com/article/10.1186/1743-0003-9-76
https://www.ncbi.nlm.nih.gov/pubmed/23043818
https://www.proquest.com/docview/1265795242
https://www.proquest.com/docview/1272713725
https://www.proquest.com/docview/1273112504
https://pubmed.ncbi.nlm.nih.gov/PMC3533908
https://doaj.org/article/d66be96b98404ac98e92c1efdf7fd028
Volume 9
WOSCitedRecordID wos000313004500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RBZ
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M7S
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M0T
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 7RV
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RSV
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9RAEC50FdEHj_GKrkOE9XgJm6Q76fTjruyi4AxhdlzGp9Dp7uDAmMgc-vetyjEk6_UigYKkKyRdXV1d1cdXAEexVoVqcoRhrMrxzpO-1B5jkieFNjrWNbr-RzGdJouFTHupvmhPWAMP3Aju2MRxbmWcS4xEuNIysTLUgS1MIQqDgyNZX1_ILphqbDBDN4Q3RyEZnZtmLVxjkMTH-2ee9AhppDcc1aj9v9rm3uB0dePkldXTelA6vw93W2_SPWlq8QCu2XIEd3oYgyO4NWlXz0fwqg8p7M4bPAH3tTsboHWP4F7aNl7H8xCOJhUG5-7XyuxWduMuS3dd5dXWI4BJ4_5QK5pxfwSfzs_m7957bYIFT8ch36Jx4TYUOudGFtJaDKb8XKvIBOjzFSqSeaJU4LNC6ijMtTaFCUUkdI3SxpM8Z4_hoKxK-xRcZUVAk3QYLQZ4mYRZy0PfqCjPFY-0A14n50y39aEkGKusjkKSOKN2oaVwlslMxA682fN_a3A3_sh5Ss225yK87PoBalHWalH2Ly3Cz1GjZ9Sr8be0ag8nYOUIHys7iRhnlL1QOnA44MTeqIfFndpkrTXYZEEYR0JG6A058HJfTG_SDrfSVjviQU8yYCKM_srD0D-OfO7Ak0YT99WmyX3yvhwQAx0dyGVYUi6_1HjiDF1-6eObbztt7v36b2X-7H_I_DncRu8zbDZUHsLBdr2zL-Cm_r5dbtZjuC5ml0QXoqbJGG6cnk3T2bju6Ugn_pyoSGt6geXph0n6Ge9mF5c_Aby6VOc
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKWI5UAiboYCRWuBi1Z4ZL3NAqCxVoyZRhIJUTsN4ZgyRgl2yUPGn-I3M8xLiAr31gHyK59nxG7_V8-Z7ADuRkpmseoTZXJXZXx73ufIo5SzJlFaRKtH1-_FwmBwf89EG_Gz2wmBZZWMTS0OtC4XfyPcCEoUxD61HeXXyzcOuUbi62rTQqMTiyPw4tSnb_GXvrX2_u4QcvBu_OfTqrgKeighbWI1ihsQqZZpn3BibQfipkqEObKCTyZCniZSBTzOuQpIqpTNN4jBWJTQZS9KU2vtegk2Gwt6BzVFvMPrY2H5qwx9WQ0MGSbSH4T7u26Ye9xDVZM31lR0C_vQDa47wbJHmmZXa0gEebP1vU3cTbtShtrtf6cYt2DB5F66vATB24cqgLi3owu463rI7rsAW3Gfu-xaUeRe2RrVkNzS3YWdQLIqZ-7XQy6mZu5PcnRVpsfAQfVO7p3KKyxF34MOFMHsXOnmRm_vgShMH-AXTptKBPXRCjWHE1zJMU8lC5YDXCIZQNT_YIWQqyhQtiQQKEtYJUMFFHDnwfEV_UoGS_JPyNcrZigrBxMsTxeyzqG2T0FGUGh6l3Cb7TCqeGE5UYDKdxZm28af9O5RSgSbPPpaS9c4NyxyCh4n9kDKKrR25A9stSmuqVHu4EVBRm8q5-C2dDjxdDeOVWP6Xm2KJNDbMDmhMwnNpqE0eQp85cK9SnRXbuPKBoakDcUupWvPSHsknX0qwdWrzIe7bK1806rf26H-d8wfnc_kErh6OB33R7w2PHsI1G4CTqqZ0GzqL2dI8gsvq-2Iynz2ujYsLny5aKX8BtBO1rA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6Vgip4oLBcgQJBKsdL1CQ-Eku8lGMFol2toKC-Wb4CKy1JtZuFv48nx2rTAkJCeUo8VmJ7PP4mM_4MsM-NKlR7Rpj3Vam_i0QsTESIoHlhrOGmYdc_yiaT_PRUTLfgZb8Xpsl270OS7Z4GZGkq64MzW7RTPOcHCKNxPzSJRJTxS3CZYhI9-uqfvvR2mHgoQjuaxot1BstQw9Z_0SZvLErnEybPRU2bxWi8-3_NuAHXOxAaHrZacxO2XDmCaxvUhCPYOe6C7iN4uslEHJ60NAThs_DjgOR7BLvTbsx7mVuwf1x5nz78XtnV3C3DWRkuKl3VEfJS2vCnmuOP-tvwefz25PW7qDuXITI8pbW3SdSlmdHUikI4532wWBvFbOKhYqGY0LlSSUwKYViqjbGFTTOWmYbcjeZakzuwXValuwehclmC__a8k5n4y-bEOZrGVjGtFWUmgKgfJmm69uDZGXPZOC85l9iHGEEnUsiMB_B8LX_W0nX8UfIVjvpaCmm2mwfV4qvsZq20nGsnuBbeDabKiNyJ1CSusEVWWI_M_OtQZyQaA_9ZRnV7GnzjkFZLHjJCCR56KALYG0j6SWyGxb3Wyc6ILGWScpYJ5kFUAE_WxVgTE-NKV61QxgPQhGQp-6sM8bCaxTSAu60ir5uNMQEEbQFkAxUf9MuwpJx9a2jIifcUROxrvugVfePTf9vn9_9d9DHsTN-M5dH7yYcHcNWj1LRNvNyD7Xqxcg_hivlRz5aLR82c_wX5BVTF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motor+modules+in+robot-aided+walking&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Gizzi+Leonardo&rft.au=Nielsen+J%C3%B8rgen&rft.au=Felici+Francesco&rft.au=Moreno+Juan+C&rft.date=2012-10-08&rft.pub=BMC&rft.issn=1743-0003&rft.eissn=1743-0003&rft.volume=9&rft.issue=1&rft.spage=76&rft_id=info:doi/10.1186%2F1743-0003-9-76&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d66be96b98404ac98e92c1efdf7fd028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon