Bio-Based Nitriles from the Heterogeneously Catalyzed Oxidative Decarboxylation of Amino Acids

The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4Br, and H2O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylati...

Full description

Saved in:
Bibliographic Details
Published in:ChemSusChem Vol. 8; no. 2; pp. 345 - 352
Main Authors: Claes, Laurens, Matthessen, Roman, Rombouts, Ine, Stassen, Ivo, De Baerdemaeker, Trees, Depla, Diederik, Delcour, Jan A., Lagrain, Bert, De Vos, Dirk E.
Format: Journal Article
Language:English
Published: Weinheim WILEY-VCH Verlag 01.01.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects:
ISSN:1864-5631, 1864-564X, 1864-564X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4Br, and H2O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein‐rich byproduct from the starch industry into useful bio‐based N‐containing chemicals. Going the extra nitrile: A catalytic system that consists of a tungstate‐exchanged layered double hydroxide and a bromide salt is developed for the oxidative decarboxylation of amino acids under mild conditions using H2O2 as a green oxidant. Several functional groups are tolerated, and the nitrile selectivity is often 99 %. This strategy offers opportunities for protein‐rich biomass valorization.
AbstractList The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4 Br, and H2 O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals.
The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH 4 Br, and H 2 O 2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein‐rich byproduct from the starch industry into useful bio‐based N‐containing chemicals.
The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by insitu halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4Br, and H2O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90%. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals.
The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4 Br, and H2 O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals.The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4 Br, and H2 O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals.
The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4Br, and H2O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein‐rich byproduct from the starch industry into useful bio‐based N‐containing chemicals. Going the extra nitrile: A catalytic system that consists of a tungstate‐exchanged layered double hydroxide and a bromide salt is developed for the oxidative decarboxylation of amino acids under mild conditions using H2O2 as a green oxidant. Several functional groups are tolerated, and the nitrile selectivity is often 99 %. This strategy offers opportunities for protein‐rich biomass valorization.
Author De Vos, Dirk E.
Depla, Diederik
Lagrain, Bert
Claes, Laurens
Matthessen, Roman
Rombouts, Ine
De Baerdemaeker, Trees
Stassen, Ivo
Delcour, Jan A.
Author_xml – sequence: 1
  givenname: Laurens
  surname: Claes
  fullname: Claes, Laurens
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium)
– sequence: 2
  givenname: Roman
  surname: Matthessen
  fullname: Matthessen, Roman
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium)
– sequence: 3
  givenname: Ine
  surname: Rombouts
  fullname: Rombouts, Ine
  organization: Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee (Belgium)
– sequence: 4
  givenname: Ivo
  surname: Stassen
  fullname: Stassen, Ivo
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium)
– sequence: 5
  givenname: Trees
  surname: De Baerdemaeker
  fullname: De Baerdemaeker, Trees
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium)
– sequence: 6
  givenname: Diederik
  surname: Depla
  fullname: Depla, Diederik
  organization: Research Group DRAFT, Department of Solid State Sciences, Ghent University, Krijgslaan 281(S1), 9000 Gent (Belgium)
– sequence: 7
  givenname: Jan A.
  surname: Delcour
  fullname: Delcour, Jan A.
  organization: Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee (Belgium)
– sequence: 8
  givenname: Bert
  surname: Lagrain
  fullname: Lagrain, Bert
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium)
– sequence: 9
  givenname: Dirk E.
  surname: De Vos
  fullname: De Vos, Dirk E.
  email: Dirk.DeVos@biw.kuleuven.be
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25470619$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAURi1URF9sWSJLbNhk8CtOspymdNqqahfTClZYTnINLknc2h6Y8OtxO2WEKiFWvpbOsa--bx_tjG4EhN5QMqOEsA9tCO2MESoIKwl9gfZoKUWWS_F5Zztzuov2Q7glRJJKyldol-WiIJJWe-jLkXXZkQ7Q4Usbve0hYOPdgOM3wKcQwbuvMIJbhX7CtY66n34l9mptOx3tD8DH0GrfuPXUp7sbsTN4PtjR4Xlru3CIXhrdB3j9dB6gm5OP1_VpdnG1OKvnF1krmaBZkfNONAwkgDGM06plRlCmy7w0hDRAuqqoOil5ZUgBopFCdyWTBaMScgolP0DvN-_eeXe_ghDVYEMLfa8fd1dU5kxwWXCS0HfP0Fu38mPaTtG0h-SMiyJRb5-oVTNAp-68HbSf1J_kEjDbAK13IXgwW4QS9VCNeqhGbatJgngmtDY-Zha9tv2_tWqj_UzdTP_5RNXLZf23m21cGyKst67231WKosjVp8uFOuH19fFykatz_ht2PrFP
CitedBy_id crossref_primary_10_1002_adsc_201800011
crossref_primary_10_1002_cssc_201802980
crossref_primary_10_1016_j_jclepro_2018_09_151
crossref_primary_10_1002_ajoc_202400291
crossref_primary_10_1002_cssc_201802418
crossref_primary_10_1002_cctc_201900800
crossref_primary_10_1016_j_mcat_2021_111517
crossref_primary_10_1039_D1RE00186H
crossref_primary_10_1016_j_apcatb_2023_123599
crossref_primary_10_1039_C5CC00181A
crossref_primary_10_1111_ijfs_14461
crossref_primary_10_1002_cctc_202200399
crossref_primary_10_1016_j_cej_2025_159527
crossref_primary_10_1016_j_fitote_2015_05_019
crossref_primary_10_1016_j_jclepro_2023_135931
crossref_primary_10_1039_C7CC01380A
crossref_primary_10_1039_D1RE00578B
crossref_primary_10_1016_j_cattod_2023_114221
Cites_doi 10.1248/cpb.54.1715
10.1021/cr050989d
10.1039/b820336a
10.1002/anie.200300599
10.1089/ind.2007.3.269
10.1021/ja01297a017
10.1021/cr00021a014
10.1006/jssc.2001.9340
10.1016/j.materresbull.2013.01.030
10.1081/SCC-200030958
10.1039/C3GC41935E
10.1002/cssc.201100030
10.1007/s00253-007-0932-x
10.1042/bj0100319
10.1021/cr050313i
10.1021/ja00332a052
10.1016/j.indcrop.2014.02.039
10.1002/cssc.201200098
10.1039/c0gc00611d
10.1016/j.jcs.2004.09.008
10.1038/23674
10.1002/ange.200300599
10.1016/S0021-9258(18)64296-6
10.1002/jctb.4135
10.1016/0003-9861(85)90014-1
10.1002/cssc.201100776
10.1002/anie.200901223
10.1023/A:1015375306212
10.1016/0304-4165(73)90198-0
10.1021/ja015930c
10.1042/bj0110079
10.1055/s-2004-830896
10.1016/j.biombioe.2009.12.019
10.1002/ejoc.201403112
10.1016/0960-8524(94)90156-2
10.1002/ange.200901223
10.1126/science.1218930
10.1016/j.biombioe.2012.04.021
10.1016/S0021-9517(02)00066-0
10.1016/j.apcata.2008.10.004
10.1039/b205292j
10.1021/cr068360d
10.1016/j.chroma.2009.05.066
10.1039/c0gc00805b
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201402801
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 352
ExternalDocumentID 3912751701
25470619
10_1002_cssc_201402801
CSSC201402801
ark_67375_WNG_F3CTDSG5_J
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: BELSPO
  funderid: IAP‐PAI P7/05
– fundername: Flemish government
– fundername: KU Leuven
  funderid: IOF‐ZKC6712
– fundername: IWT Flanders
– fundername: FWO Flanders
GroupedDBID ---
05W
0R~
1OC
29B
31~
33P
4.4
5GY
5VS
66C
77Q
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADKYN
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MY~
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
XV2
ZZTAW
~S-
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c6241-753d4b2e6eeff2319c2f412a858f00be0d979d6639f07e4b64ad8267216e51e83
IEDL.DBID DRFUL
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347843800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Thu Jul 10 19:08:59 EDT 2025
Sat Nov 29 14:54:19 EST 2025
Mon Jul 21 05:55:49 EDT 2025
Tue Nov 18 22:29:04 EST 2025
Thu Oct 16 04:47:37 EDT 2025
Tue Nov 11 03:10:25 EST 2025
Sun Sep 21 06:19:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords oxidation
biomass
tungsten
heterogeneous catalysis
amino acids
Language English
License 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6241-753d4b2e6eeff2319c2f412a858f00be0d979d6639f07e4b64ad8267216e51e83
Notes IWT Flanders
BELSPO - No. IAP-PAI P7/05
ark:/67375/WNG-F3CTDSG5-J
ArticleID:CSSC201402801
istex:1070C567D19EB97A17F9F8F97CD1A469987376F7
KU Leuven - No. IOF-ZKC6712
Flemish government
FWO Flanders
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cssc.201402801
PMID 25470619
PQID 1753632347
PQPubID 986333
PageCount 8
ParticipantIDs proquest_miscellaneous_1652436730
proquest_journals_1753632347
pubmed_primary_25470619
crossref_primary_10_1002_cssc_201402801
crossref_citationtrail_10_1002_cssc_201402801
wiley_primary_10_1002_cssc_201402801_CSSC201402801
istex_primary_ark_67375_WNG_F3CTDSG5_J
PublicationCentury 2000
PublicationDate January 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References T. M. Lammens, M. C. R. Franssen, E. L. Scott, J. P. M. Sanders, Biomass Bioenergy 2012, 44, 168-181.
B. Sels, D. De Vos, M. Buntinx, F. Pierard, A. Kirsch-De Mesmaeker, P. Jacobs, Nature 1999, 400, 855-857
B. M. Choudary, B. Bharathi, C. Venkat Reddy, M. Lakshmi Kantam, J. Chem. Soc. Perkin Trans. 1 2002, 2069-2074.
A. Van Der Borght, H. Goesaert, W. S. Veraverbeke, J. A. Delcour, J. Cereal Sci. 2005, 41, 221-237.
C. Martín, A. Moure, G. Martín, E. Carrillo, H. Domínguez, J. C. Parajó, Biomass Bioenergy 2010, 34, 533-538.
T. Shono, Y. Matsumara, K. Inoue, J. Am. Chem. Soc. 1984, 106, 6075-6076
G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044-4098.
H. D. Dakin, Biochem. J. 1916, 10, 319-323
A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502
M. Nieder, L. Hager, Arch. Biochem. Biophys. 1985, 240, 121-127
B. F. Sels, D. E. De Vos, P. A. Jacobs, J. Am. Chem. Soc. 2001, 123, 8350-8359.
C. Wood, K. A. Rosentrater, K. Muthukumarappan, Ind. Crops Prod. 2014, 56, 118-127.
S. Aisawa, S. Takahashi, W. Ogasawara, Y. Umetsu, E. Narita, J. Solid State Chem. 2001, 162, 52-62.
Angew. Chem. 2009, 121, 8576-8603.
Angew. Chem. 2004, 116, 806-843
C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff, Science 2012, 337, 695-699.
R. Matthessen, L. Claes, J. Fransaer, K. Binnemans, D. E. De Vos, Eur. J. Org. Chem. 2014, 6649-6652.
G. W. Stevenson, J. M. Luck, J. Biol. Chem. 1961, 236, 715-717
T. M. Lammens, J. Le Nôtre, M. C. R. Franssen, E. L. Scott, J. P. M. Sanders, ChemSusChem 2011, 4, 785-791.
G. A. Hiegel, J. C. Lewis, J. W. Bae, Synth. Commun. 2004, 34, 3449-3453
J. Le Nôtre, E. L. Scott, M. C. R. Franssen, J. P. M. Sanders, Green Chem. 2011, 13, 807-809.
J. J. Dai, Y. B. Huang, C. Fang, Q. X. Guo, Y. Fu, ChemSusChem 2012, 5, 617-620
G. Laval, B. T. Golding, Synlett 2003, 542-546.
H. D. Dakin, Biochem. J. 1917, 11, 79-95.
A. But, J. Le Nôtre, E. L. Scott, R. Wever, J. P. M. Sanders, ChemSusChem 2012, 5, 1199-1202.
A. H. Friedman, S. Morgulis, J. Am. Chem. Soc. 1936, 58, 909-913.
A. Podgoršek, M. Zupan, J. Iskra, Angew. Chem. Int. Ed. 2009, 48, 8424-8450
M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788-824
A. L. Demain, Ind. Biotechnol. 2007, 3, 269-283.
O. M. Kattan Readi, E. Rolevink, K. Nijmeijer, J. Chem. Technol. Biotechnol. 2014, 89, 425-435.
I. Rombouts, L. Lamberts, I. Celus, B. Lagrain, K. Brijs, J. A. Delcour, J. Chromatogr. A 2009, 1216, 5557-5562.
B. F. Sels, D. E. De Vos, M. Buntinx, P. A. Jacobs, J. Catal. 2003, 216, 288-297
M. Jitianu, D. C. Gunness, D. E. Aboagye, M. Zaharescu, A. Jitianu, Mater. Res. Bull. 2013, 48, 1864-1873.
W. E. Pereira, Y. Hoyano, R. E. Summons, V. A. Bacon, A. M. Duffield, Biochim. Biophys. Acta Gen. Subj. 1973, 313, 170-180.
R. A. Sheldon, Green Chem. 2014, 16, 950-963
B. W. Hoffer, J. A. Moulijn, Appl. Catal. A 2009, 352, 193-201.
P. G. Dalev, Bioresour. Technol. 1994, 48, 265-267.
D. E. De Vos, B. F. Sels, P. A. Jacobs, Cattech 2002, 6, 14-29.
L. De Luca, G. Giacomelli, Synlett 2004, 2180-2184.
P. Levecque, H. Poelman, P. Jacobs, D. De Vos, B. Sels, Phys. Chem. Chem. Phys. 2009, 11, 2964-2975
Y. Yokoyama, T. Yamaguchi, M. Sato, E. Kobayashi, Y. Murakami, H. Okuno, Chem. Pharm. Bull. 2006, 54, 1715-1719
Y. Teng, E. L. Scott, A. N. T. van Zeeland, J. P. M. Sanders, Green Chem. 2011, 13, 624-630
A. Butler, J. V. Walker, Chem. Rev. 1993, 93, 1937-1944
E. Scott, F. Peter, J. Sanders, Appl. Microbiol. Biotechnol. 2007, 75, 751-762.
F. H. Vaillancourt, E. Yeh, D. A. Vosburg, S. Garneau-Tsodikova, C. T. Walsh, Chem. Rev. 2006, 106, 3364-3378.
2010; 34
2001; 123
2007; 107
2004 2004; 43 116
2013; 48
2001; 162
2003; 216
2009 2009; 48 121
2006; 54
1936; 58
1984; 106
2002; 6
2009; 352
2005; 41
2011; 13
1994; 48
1961; 236
2004
1999; 400
2003
2002
2007; 75
2011; 4
2014; 89
1985; 240
2009; 11
2009; 1216
1973; 313
1993; 93
2004; 34
1917; 11
2014; 16
2014
2007; 3
2012; 337
2012; 44
2006; 106
2012; 5
2014; 56
1916; 10
e_1_2_6_51_2
e_1_2_6_51_3
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
Laval G. (e_1_2_6_20_2) 2003
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
Stevenson G. W. (e_1_2_6_19_2) 1961; 236
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_6_3
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788-824;
– reference: I. Rombouts, L. Lamberts, I. Celus, B. Lagrain, K. Brijs, J. A. Delcour, J. Chromatogr. A 2009, 1216, 5557-5562.
– reference: G. A. Hiegel, J. C. Lewis, J. W. Bae, Synth. Commun. 2004, 34, 3449-3453;
– reference: T. Shono, Y. Matsumara, K. Inoue, J. Am. Chem. Soc. 1984, 106, 6075-6076;
– reference: A. Podgoršek, M. Zupan, J. Iskra, Angew. Chem. Int. Ed. 2009, 48, 8424-8450;
– reference: Y. Teng, E. L. Scott, A. N. T. van Zeeland, J. P. M. Sanders, Green Chem. 2011, 13, 624-630;
– reference: C. Wood, K. A. Rosentrater, K. Muthukumarappan, Ind. Crops Prod. 2014, 56, 118-127.
– reference: J. Le Nôtre, E. L. Scott, M. C. R. Franssen, J. P. M. Sanders, Green Chem. 2011, 13, 807-809.
– reference: P. Levecque, H. Poelman, P. Jacobs, D. De Vos, B. Sels, Phys. Chem. Chem. Phys. 2009, 11, 2964-2975;
– reference: M. Jitianu, D. C. Gunness, D. E. Aboagye, M. Zaharescu, A. Jitianu, Mater. Res. Bull. 2013, 48, 1864-1873.
– reference: J. J. Dai, Y. B. Huang, C. Fang, Q. X. Guo, Y. Fu, ChemSusChem 2012, 5, 617-620;
– reference: S. Aisawa, S. Takahashi, W. Ogasawara, Y. Umetsu, E. Narita, J. Solid State Chem. 2001, 162, 52-62.
– reference: Angew. Chem. 2004, 116, 806-843;
– reference: B. F. Sels, D. E. De Vos, P. A. Jacobs, J. Am. Chem. Soc. 2001, 123, 8350-8359.
– reference: G. Laval, B. T. Golding, Synlett 2003, 542-546.
– reference: L. De Luca, G. Giacomelli, Synlett 2004, 2180-2184.
– reference: T. M. Lammens, M. C. R. Franssen, E. L. Scott, J. P. M. Sanders, Biomass Bioenergy 2012, 44, 168-181.
– reference: H. D. Dakin, Biochem. J. 1917, 11, 79-95.
– reference: A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502;
– reference: B. F. Sels, D. E. De Vos, M. Buntinx, P. A. Jacobs, J. Catal. 2003, 216, 288-297;
– reference: D. E. De Vos, B. F. Sels, P. A. Jacobs, Cattech 2002, 6, 14-29.
– reference: B. W. Hoffer, J. A. Moulijn, Appl. Catal. A 2009, 352, 193-201.
– reference: Y. Yokoyama, T. Yamaguchi, M. Sato, E. Kobayashi, Y. Murakami, H. Okuno, Chem. Pharm. Bull. 2006, 54, 1715-1719;
– reference: A. Van Der Borght, H. Goesaert, W. S. Veraverbeke, J. A. Delcour, J. Cereal Sci. 2005, 41, 221-237.
– reference: R. Matthessen, L. Claes, J. Fransaer, K. Binnemans, D. E. De Vos, Eur. J. Org. Chem. 2014, 6649-6652.
– reference: R. A. Sheldon, Green Chem. 2014, 16, 950-963;
– reference: Angew. Chem. 2009, 121, 8576-8603.
– reference: B. M. Choudary, B. Bharathi, C. Venkat Reddy, M. Lakshmi Kantam, J. Chem. Soc. Perkin Trans. 1 2002, 2069-2074.
– reference: F. H. Vaillancourt, E. Yeh, D. A. Vosburg, S. Garneau-Tsodikova, C. T. Walsh, Chem. Rev. 2006, 106, 3364-3378.
– reference: G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044-4098.
– reference: E. Scott, F. Peter, J. Sanders, Appl. Microbiol. Biotechnol. 2007, 75, 751-762.
– reference: G. W. Stevenson, J. M. Luck, J. Biol. Chem. 1961, 236, 715-717;
– reference: H. D. Dakin, Biochem. J. 1916, 10, 319-323;
– reference: A. But, J. Le Nôtre, E. L. Scott, R. Wever, J. P. M. Sanders, ChemSusChem 2012, 5, 1199-1202.
– reference: W. E. Pereira, Y. Hoyano, R. E. Summons, V. A. Bacon, A. M. Duffield, Biochim. Biophys. Acta Gen. Subj. 1973, 313, 170-180.
– reference: P. G. Dalev, Bioresour. Technol. 1994, 48, 265-267.
– reference: C. Martín, A. Moure, G. Martín, E. Carrillo, H. Domínguez, J. C. Parajó, Biomass Bioenergy 2010, 34, 533-538.
– reference: C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff, Science 2012, 337, 695-699.
– reference: M. Nieder, L. Hager, Arch. Biochem. Biophys. 1985, 240, 121-127;
– reference: A. L. Demain, Ind. Biotechnol. 2007, 3, 269-283.
– reference: O. M. Kattan Readi, E. Rolevink, K. Nijmeijer, J. Chem. Technol. Biotechnol. 2014, 89, 425-435.
– reference: A. H. Friedman, S. Morgulis, J. Am. Chem. Soc. 1936, 58, 909-913.
– reference: T. M. Lammens, J. Le Nôtre, M. C. R. Franssen, E. L. Scott, J. P. M. Sanders, ChemSusChem 2011, 4, 785-791.
– reference: B. Sels, D. De Vos, M. Buntinx, F. Pierard, A. Kirsch-De Mesmaeker, P. Jacobs, Nature 1999, 400, 855-857;
– reference: A. Butler, J. V. Walker, Chem. Rev. 1993, 93, 1937-1944;
– volume: 34
  start-page: 3449
  year: 2004
  end-page: 3453
  publication-title: Synth. Commun.
– volume: 11
  start-page: 2964
  year: 2009
  end-page: 2975
  publication-title: Phys. Chem. Chem. Phys.
– volume: 56
  start-page: 118
  year: 2014
  end-page: 127
  publication-title: Ind. Crops Prod.
– volume: 352
  start-page: 193
  year: 2009
  end-page: 201
  publication-title: Appl. Catal. A
– volume: 3
  start-page: 269
  year: 2007
  end-page: 283
  publication-title: Ind. Biotechnol.
– volume: 58
  start-page: 909
  year: 1936
  end-page: 913
  publication-title: J. Am. Chem. Soc.
– volume: 313
  start-page: 170
  year: 1973
  end-page: 180
  publication-title: Biochim. Biophys. Acta Gen. Subj.
– volume: 6
  start-page: 14
  year: 2002
  end-page: 29
  publication-title: Cattech
– volume: 44
  start-page: 168
  year: 2012
  end-page: 181
  publication-title: Biomass Bioenergy
– start-page: 2180
  year: 2004
  end-page: 2184
  publication-title: Synlett
– volume: 48
  start-page: 265
  year: 1994
  end-page: 267
  publication-title: Bioresour. Technol.
– volume: 400
  start-page: 855
  year: 1999
  end-page: 857
  publication-title: Nature
– volume: 1216
  start-page: 5557
  year: 2009
  end-page: 5562
  publication-title: J. Chromatogr. A
– volume: 13
  start-page: 624
  year: 2011
  end-page: 630
  publication-title: Green Chem.
– volume: 48
  start-page: 1864
  year: 2013
  end-page: 1873
  publication-title: Mater. Res. Bull.
– volume: 5
  start-page: 1199
  year: 2012
  end-page: 1202
  publication-title: ChemSusChem
– volume: 4
  start-page: 785
  year: 2011
  end-page: 791
  publication-title: ChemSusChem
– volume: 11
  start-page: 79
  year: 1917
  end-page: 95
  publication-title: Biochem. J.
– volume: 106
  start-page: 4044
  year: 2006
  end-page: 4098
  publication-title: Chem. Rev.
– volume: 13
  start-page: 807
  year: 2011
  end-page: 809
  publication-title: Green Chem.
– volume: 216
  start-page: 288
  year: 2003
  end-page: 297
  publication-title: J. Catal.
– volume: 89
  start-page: 425
  year: 2014
  end-page: 435
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 34
  start-page: 533
  year: 2010
  end-page: 538
  publication-title: Biomass Bioenergy
– volume: 123
  start-page: 8350
  year: 2001
  end-page: 8359
  publication-title: J. Am. Chem. Soc.
– volume: 236
  start-page: 715
  year: 1961
  end-page: 717
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 617
  year: 2012
  end-page: 620
  publication-title: ChemSusChem
– volume: 93
  start-page: 1937
  year: 1993
  end-page: 1944
  publication-title: Chem. Rev.
– volume: 107
  start-page: 2411
  year: 2007
  end-page: 2502
  publication-title: Chem. Rev.
– volume: 16
  start-page: 950
  year: 2014
  end-page: 963
  publication-title: Green Chem.
– volume: 75
  start-page: 751
  year: 2007
  end-page: 762
  publication-title: Appl. Microbiol. Biotechnol.
– start-page: 542
  year: 2003
  end-page: 546
  publication-title: Synlett
– volume: 54
  start-page: 1715
  year: 2006
  end-page: 1719
  publication-title: Chem. Pharm. Bull.
– volume: 240
  start-page: 121
  year: 1985
  end-page: 127
  publication-title: Arch. Biochem. Biophys.
– start-page: 6649
  year: 2014
  end-page: 6652
  publication-title: Eur. J. Org. Chem.
– volume: 106
  start-page: 6075
  year: 1984
  end-page: 6076
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 319
  year: 1916
  end-page: 323
  publication-title: Biochem. J.
– volume: 162
  start-page: 52
  year: 2001
  end-page: 62
  publication-title: J. Solid State Chem.
– volume: 43 116
  start-page: 788 806
  year: 2004 2004
  end-page: 824 843
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41
  start-page: 221
  year: 2005
  end-page: 237
  publication-title: J. Cereal Sci.
– volume: 48 121
  start-page: 8424 8576
  year: 2009 2009
  end-page: 8450 8603
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 106
  start-page: 3364
  year: 2006
  end-page: 3378
  publication-title: Chem. Rev.
– volume: 337
  start-page: 695
  year: 2012
  end-page: 699
  publication-title: Science
– start-page: 2069
  year: 2002
  end-page: 2074
  publication-title: J. Chem. Soc. Perkin Trans. 1
– ident: e_1_2_6_50_2
  doi: 10.1248/cpb.54.1715
– ident: e_1_2_6_52_2
– ident: e_1_2_6_2_2
  doi: 10.1021/cr050989d
– ident: e_1_2_6_21_2
– ident: e_1_2_6_40_2
  doi: 10.1039/b820336a
– ident: e_1_2_6_6_2
  doi: 10.1002/anie.200300599
– ident: e_1_2_6_49_2
– ident: e_1_2_6_7_2
  doi: 10.1089/ind.2007.3.269
– ident: e_1_2_6_43_2
  doi: 10.1021/ja01297a017
– ident: e_1_2_6_53_2
  doi: 10.1021/cr00021a014
– ident: e_1_2_6_42_2
  doi: 10.1006/jssc.2001.9340
– ident: e_1_2_6_35_2
– ident: e_1_2_6_41_2
  doi: 10.1016/j.materresbull.2013.01.030
– ident: e_1_2_6_25_2
  doi: 10.1081/SCC-200030958
– ident: e_1_2_6_3_2
  doi: 10.1039/C3GC41935E
– start-page: 542
  year: 2003
  ident: e_1_2_6_20_2
  publication-title: Synlett
– ident: e_1_2_6_46_2
  doi: 10.1002/cssc.201100030
– ident: e_1_2_6_13_2
  doi: 10.1007/s00253-007-0932-x
– ident: e_1_2_6_22_2
  doi: 10.1042/bj0100319
– ident: e_1_2_6_54_2
  doi: 10.1021/cr050313i
– ident: e_1_2_6_29_2
  doi: 10.1021/ja00332a052
– ident: e_1_2_6_10_2
  doi: 10.1016/j.indcrop.2014.02.039
– ident: e_1_2_6_34_2
  doi: 10.1002/cssc.201200098
– ident: e_1_2_6_16_2
  doi: 10.1039/c0gc00611d
– ident: e_1_2_6_9_2
  doi: 10.1016/j.jcs.2004.09.008
– ident: e_1_2_6_28_2
– ident: e_1_2_6_37_2
  doi: 10.1038/23674
– ident: e_1_2_6_6_3
  doi: 10.1002/ange.200300599
– ident: e_1_2_6_39_2
– volume: 236
  start-page: 715
  year: 1961
  ident: e_1_2_6_19_2
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)64296-6
– ident: e_1_2_6_17_2
  doi: 10.1002/jctb.4135
– ident: e_1_2_6_33_2
  doi: 10.1016/0003-9861(85)90014-1
– ident: e_1_2_6_30_2
  doi: 10.1002/cssc.201100776
– ident: e_1_2_6_51_2
  doi: 10.1002/anie.200901223
– ident: e_1_2_6_5_2
– ident: e_1_2_6_45_2
  doi: 10.1023/A:1015375306212
– ident: e_1_2_6_24_2
– ident: e_1_2_6_44_2
  doi: 10.1016/0304-4165(73)90198-0
– ident: e_1_2_6_38_2
  doi: 10.1021/ja015930c
– ident: e_1_2_6_23_2
  doi: 10.1042/bj0110079
– ident: e_1_2_6_32_2
– ident: e_1_2_6_15_2
– ident: e_1_2_6_26_2
  doi: 10.1055/s-2004-830896
– ident: e_1_2_6_12_2
  doi: 10.1016/j.biombioe.2009.12.019
– ident: e_1_2_6_31_2
  doi: 10.1002/ejoc.201403112
– ident: e_1_2_6_11_2
  doi: 10.1016/0960-8524(94)90156-2
– ident: e_1_2_6_18_2
– ident: e_1_2_6_51_3
  doi: 10.1002/ange.200901223
– ident: e_1_2_6_4_2
  doi: 10.1126/science.1218930
– ident: e_1_2_6_8_2
  doi: 10.1016/j.biombioe.2012.04.021
– ident: e_1_2_6_36_2
  doi: 10.1016/S0021-9517(02)00066-0
– ident: e_1_2_6_47_2
  doi: 10.1016/j.apcata.2008.10.004
– ident: e_1_2_6_1_2
– ident: e_1_2_6_48_2
  doi: 10.1039/b205292j
– ident: e_1_2_6_14_2
  doi: 10.1021/cr068360d
– ident: e_1_2_6_55_2
  doi: 10.1016/j.chroma.2009.05.066
– ident: e_1_2_6_27_2
  doi: 10.1039/c0gc00805b
SSID ssj0060966
Score 2.282984
Snippet The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate...
The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate...
The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by insitu halide oxidation using catalytic amounts of tungstate...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 345
SubjectTerms Amino acids
Amino Acids - chemistry
Aqueous solutions
biomass
Catalysis
Decarboxylation
Glutens - chemistry
heterogeneous catalysis
Hydrolysis
Nitriles - chemistry
oxidation
Oxidation-Reduction
Triticum - chemistry
tungsten
Title Bio-Based Nitriles from the Heterogeneously Catalyzed Oxidative Decarboxylation of Amino Acids
URI https://api.istex.fr/ark:/67375/WNG-F3CTDSG5-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201402801
https://www.ncbi.nlm.nih.gov/pubmed/25470619
https://www.proquest.com/docview/1753632347
https://www.proquest.com/docview/1652436730
Volume 8
WOSCitedRecordID wos000347843800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagRYIX7pfAmIyE4ClaYju289ildBNCBdFN9M04sSNFbM2UdKjliZ_Ab-SXcJwbVAIhwVuiOI51Lj7fcezvIPTcstCS0AifZ4L7TIsAfI6FkKVIKnOI50boptiEmM_lchm_--UUf8sPMSy4Oc9o5mvn4DqtD36ShmZ17SgIIUEg0h3gGhMw3miExtP3s9M3_WzMAaI3J4wkZ37EadgTNwbkYLeHncA0djLe_A517oLYJgrNbv3_-G-jmx0CxZPWZO6gK3Z1F11P-sJv99DHw6L8_vXbIcQ3g-fFuoLua-zOoWBAi_jYbaApwe5seVmfbXHiFoC2X6Dt201hGh5xPLWZrtJys2132uEyx5PzYlXiSVaY-j46nb06SY79rhCDn3GI8D6kNIalxHJr8xwAYZyRnIVEywjUGaQ2MLGIDWCXOA-EZSln2kDa4niBbBRaSR-g0apc2UcI68zx78QAUw1l1Jo0p6nmIoyljMFQUg_5vRZU1rGUu2IZZ6rlVybKyU0NcvPQy6H9RcvP8ceWLxqlDs109cntahOR-jA_UjOanEwXR5F67aG9Xuuqc-haOUJTTgllwkPPhsegGPd_RTcSVyGPCKPQZeChh621DB-DPFwAdIo9RBqj-MtgVbJYJMPd43956Qm6AddRu1y0h0br6tI-Rdeyz-uirvbRVbGU-52z_ABs1RHY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bj5QwFG7Mjsn64v2CrloTo09koS0tPM4yzo46onFm4751oS0JcR0MzJoZn_wJ_kZ_iafczCQaE-MjUAqcS893Du1XhJ4a5hvia-FyJbjLUuGBzzEfspSQhjnEcy3SZrMJkSTh6Wn0rptNaNfCtPwQQ8HNekYzXlsHtwXpw1-soaquLQchZAgktCu4RgxsCYx8NHk_PZn3wzEHjN4sMQo5cwNO_Z650SOHuz3sRKaRFfLmd7BzF8U2YWh67T98wHV0tcOgeNwazQ10yaxuov243_rtFjo7Ksof374fQYTTOCnWFfRfY7sSBQNexDM7haYEyzPlRX2-xbEtAW2_Qtu3m0I3TOJ4YlRaZeVm2861w2WOx5-KVYnHqtD1bXQyfbGMZ263FYOrOMR4F5IazTJiuDF5DpAwUiRnPknDABTqZcbTkYg0oJco94RhGWephsTFMgOZwDchvYP2VuXK3EM4VZaBJwKgqimjRmc5zVIu_CgMIzCVzEFurwapOp5yu13GuWwZlom0cpOD3Bz0fGj_uWXo-GPLZ41Wh2Zp9dHOaxOB_JAcyymNl5PFcSBfOeigV7vsXLqWltKUU0KZcNCT4TIoxv5hSRuJS58HhFHo0nPQ3dZchodBJi4APEUOIo1V_OVlZbxYxMPR_X-56THany3fzOX8ZfL6AboC54O2eHSA9tbVhXmILqsv66KuHnU-8xNj1BTg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dj5QwEJ-YXaO--P2BnloTo0_kgJYWHvdYuVMveHHv4r1VoCUhnssF9syuT_4J_o3-JU75MptoTIyPQCnQmen8pkx_A_BcM1d7rhI2zwW3WSoctDnmYpQS0KBAf65E2habEEkSnJ6GR302odkL0_FDjAtuxjLa-doYuD5Xxe4v1tC8aQwHIUYIXmB2cE2ZqSQzgen8fXxyOEzHHDF6u8Uo4Mz2OXUH5kbH293uYcszTc0gr38HO7dRbOuG4hv_4QNuwvUeg5JZpzS34JJe3oar0VD67Q583CurH9--76GHUyQpVzX23xCzE4UgXiQHJoWmQs3T1UVztiGRWQLafMW279alapnEyVznaZ1V602Xa0eqgsw-l8uKzPJSNXfhJH51HB3YfSkGO-fo420MahTLPM21LgqEhGHuFcz10sBHgTqZdlQoQoXoJSwcoVnGWaowcDHMQNp3dUDvwWRZLfUDIGluGHhCBKqKMqpVVtAs5cINgyBEVckssAcxyLznKTflMs5kx7DsSTNuchw3C16O7c87ho4_tnzRSnVsltafTF6b8OWHZF_GNDqeL_Z9-caCnUHssjfpRhpKU049yoQFz8bLKBjzhyVtR1y63PcYxS4dC-536jI-DCNxgeAptMBrteIvLyujxSIajx7-y01P4crRPJaHr5O3j-Aanva7taMdmKzqC_0YLudfVmVTP-lN5ifOuxRb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-based+nitriles+from+the+heterogeneously+catalyzed+oxidative+decarboxylation+of+amino+acids&rft.jtitle=ChemSusChem&rft.au=Claes%2C+Laurens&rft.au=Matthessen%2C+Roman&rft.au=Rombouts%2C+Ine&rft.au=Stassen%2C+Ivo&rft.date=2015-01-01&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=8&rft.issue=2&rft.spage=345&rft_id=info:doi/10.1002%2Fcssc.201402801&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon