Bio-Based Nitriles from the Heterogeneously Catalyzed Oxidative Decarboxylation of Amino Acids
The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4Br, and H2O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylati...
Uložené v:
| Vydané v: | ChemSusChem Ročník 8; číslo 2; s. 345 - 352 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Weinheim
WILEY-VCH Verlag
01.01.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1864-5631, 1864-564X, 1864-564X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4Br, and H2O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein‐rich byproduct from the starch industry into useful bio‐based N‐containing chemicals.
Going the extra nitrile: A catalytic system that consists of a tungstate‐exchanged layered double hydroxide and a bromide salt is developed for the oxidative decarboxylation of amino acids under mild conditions using H2O2 as a green oxidant. Several functional groups are tolerated, and the nitrile selectivity is often 99 %. This strategy offers opportunities for protein‐rich biomass valorization. |
|---|---|
| AbstractList | The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4 Br, and H2 O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals. The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH 4 Br, and H 2 O 2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein‐rich byproduct from the starch industry into useful bio‐based N‐containing chemicals. The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by insitu halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4Br, and H2O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90%. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals. The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4 Br, and H2 O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals.The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4 Br, and H2 O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals. The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4Br, and H2O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein‐rich byproduct from the starch industry into useful bio‐based N‐containing chemicals. Going the extra nitrile: A catalytic system that consists of a tungstate‐exchanged layered double hydroxide and a bromide salt is developed for the oxidative decarboxylation of amino acids under mild conditions using H2O2 as a green oxidant. Several functional groups are tolerated, and the nitrile selectivity is often 99 %. This strategy offers opportunities for protein‐rich biomass valorization. |
| Author | De Vos, Dirk E. Depla, Diederik Lagrain, Bert Claes, Laurens Matthessen, Roman Rombouts, Ine De Baerdemaeker, Trees Stassen, Ivo Delcour, Jan A. |
| Author_xml | – sequence: 1 givenname: Laurens surname: Claes fullname: Claes, Laurens organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium) – sequence: 2 givenname: Roman surname: Matthessen fullname: Matthessen, Roman organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium) – sequence: 3 givenname: Ine surname: Rombouts fullname: Rombouts, Ine organization: Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee (Belgium) – sequence: 4 givenname: Ivo surname: Stassen fullname: Stassen, Ivo organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium) – sequence: 5 givenname: Trees surname: De Baerdemaeker fullname: De Baerdemaeker, Trees organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium) – sequence: 6 givenname: Diederik surname: Depla fullname: Depla, Diederik organization: Research Group DRAFT, Department of Solid State Sciences, Ghent University, Krijgslaan 281(S1), 9000 Gent (Belgium) – sequence: 7 givenname: Jan A. surname: Delcour fullname: Delcour, Jan A. organization: Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee (Belgium) – sequence: 8 givenname: Bert surname: Lagrain fullname: Lagrain, Bert organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium) – sequence: 9 givenname: Dirk E. surname: De Vos fullname: De Vos, Dirk E. email: Dirk.DeVos@biw.kuleuven.be organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25470619$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtv1DAURi1URF9sWSJLbNhk8CtOspymdNqqahfTClZYTnINLknc2h6Y8OtxO2WEKiFWvpbOsa--bx_tjG4EhN5QMqOEsA9tCO2MESoIKwl9gfZoKUWWS_F5Zztzuov2Q7glRJJKyldol-WiIJJWe-jLkXXZkQ7Q4Usbve0hYOPdgOM3wKcQwbuvMIJbhX7CtY66n34l9mptOx3tD8DH0GrfuPXUp7sbsTN4PtjR4Xlru3CIXhrdB3j9dB6gm5OP1_VpdnG1OKvnF1krmaBZkfNONAwkgDGM06plRlCmy7w0hDRAuqqoOil5ZUgBopFCdyWTBaMScgolP0DvN-_eeXe_ghDVYEMLfa8fd1dU5kxwWXCS0HfP0Fu38mPaTtG0h-SMiyJRb5-oVTNAp-68HbSf1J_kEjDbAK13IXgwW4QS9VCNeqhGbatJgngmtDY-Zha9tv2_tWqj_UzdTP_5RNXLZf23m21cGyKst67231WKosjVp8uFOuH19fFykatz_ht2PrFP |
| CitedBy_id | crossref_primary_10_1002_adsc_201800011 crossref_primary_10_1002_cssc_201802980 crossref_primary_10_1016_j_jclepro_2018_09_151 crossref_primary_10_1002_ajoc_202400291 crossref_primary_10_1002_cssc_201802418 crossref_primary_10_1002_cctc_201900800 crossref_primary_10_1016_j_mcat_2021_111517 crossref_primary_10_1039_D1RE00186H crossref_primary_10_1016_j_apcatb_2023_123599 crossref_primary_10_1039_C5CC00181A crossref_primary_10_1111_ijfs_14461 crossref_primary_10_1002_cctc_202200399 crossref_primary_10_1016_j_cej_2025_159527 crossref_primary_10_1016_j_fitote_2015_05_019 crossref_primary_10_1016_j_jclepro_2023_135931 crossref_primary_10_1039_C7CC01380A crossref_primary_10_1039_D1RE00578B crossref_primary_10_1016_j_cattod_2023_114221 |
| Cites_doi | 10.1248/cpb.54.1715 10.1021/cr050989d 10.1039/b820336a 10.1002/anie.200300599 10.1089/ind.2007.3.269 10.1021/ja01297a017 10.1021/cr00021a014 10.1006/jssc.2001.9340 10.1016/j.materresbull.2013.01.030 10.1081/SCC-200030958 10.1039/C3GC41935E 10.1002/cssc.201100030 10.1007/s00253-007-0932-x 10.1042/bj0100319 10.1021/cr050313i 10.1021/ja00332a052 10.1016/j.indcrop.2014.02.039 10.1002/cssc.201200098 10.1039/c0gc00611d 10.1016/j.jcs.2004.09.008 10.1038/23674 10.1002/ange.200300599 10.1016/S0021-9258(18)64296-6 10.1002/jctb.4135 10.1016/0003-9861(85)90014-1 10.1002/cssc.201100776 10.1002/anie.200901223 10.1023/A:1015375306212 10.1016/0304-4165(73)90198-0 10.1021/ja015930c 10.1042/bj0110079 10.1055/s-2004-830896 10.1016/j.biombioe.2009.12.019 10.1002/ejoc.201403112 10.1016/0960-8524(94)90156-2 10.1002/ange.200901223 10.1126/science.1218930 10.1016/j.biombioe.2012.04.021 10.1016/S0021-9517(02)00066-0 10.1016/j.apcata.2008.10.004 10.1039/b205292j 10.1021/cr068360d 10.1016/j.chroma.2009.05.066 10.1039/c0gc00805b |
| ContentType | Journal Article |
| Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/cssc.201402801 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1864-564X |
| EndPage | 352 |
| ExternalDocumentID | 3912751701 25470619 10_1002_cssc_201402801 CSSC201402801 ark_67375_WNG_F3CTDSG5_J |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: BELSPO funderid: IAP‐PAI P7/05 – fundername: Flemish government – fundername: KU Leuven funderid: IOF‐ZKC6712 – fundername: IWT Flanders – fundername: FWO Flanders |
| GroupedDBID | --- 05W 0R~ 1OC 29B 31~ 33P 4.4 5GY 5VS 66C 77Q 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADKYN ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MY~ O9- OIG P2W PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR XV2 ZZTAW ~S- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c6241-753d4b2e6eeff2319c2f412a858f00be0d979d6639f07e4b64ad8267216e51e83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347843800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 1864-564X |
| IngestDate | Thu Jul 10 19:08:59 EDT 2025 Sat Nov 29 14:54:19 EST 2025 Mon Jul 21 05:55:49 EDT 2025 Tue Nov 18 22:29:04 EST 2025 Thu Oct 16 04:47:37 EDT 2025 Tue Nov 11 03:10:25 EST 2025 Sun Sep 21 06:19:31 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | oxidation biomass tungsten heterogeneous catalysis amino acids |
| Language | English |
| License | 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6241-753d4b2e6eeff2319c2f412a858f00be0d979d6639f07e4b64ad8267216e51e83 |
| Notes | IWT Flanders BELSPO - No. IAP-PAI P7/05 ark:/67375/WNG-F3CTDSG5-J ArticleID:CSSC201402801 istex:1070C567D19EB97A17F9F8F97CD1A469987376F7 KU Leuven - No. IOF-ZKC6712 Flemish government FWO Flanders ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cssc.201402801 |
| PMID | 25470619 |
| PQID | 1753632347 |
| PQPubID | 986333 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1652436730 proquest_journals_1753632347 pubmed_primary_25470619 crossref_primary_10_1002_cssc_201402801 crossref_citationtrail_10_1002_cssc_201402801 wiley_primary_10_1002_cssc_201402801_CSSC201402801 istex_primary_ark_67375_WNG_F3CTDSG5_J |
| PublicationCentury | 2000 |
| PublicationDate | January 2015 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2015 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
| References | T. M. Lammens, M. C. R. Franssen, E. L. Scott, J. P. M. Sanders, Biomass Bioenergy 2012, 44, 168-181. B. Sels, D. De Vos, M. Buntinx, F. Pierard, A. Kirsch-De Mesmaeker, P. Jacobs, Nature 1999, 400, 855-857 B. M. Choudary, B. Bharathi, C. Venkat Reddy, M. Lakshmi Kantam, J. Chem. Soc. Perkin Trans. 1 2002, 2069-2074. A. Van Der Borght, H. Goesaert, W. S. Veraverbeke, J. A. Delcour, J. Cereal Sci. 2005, 41, 221-237. C. Martín, A. Moure, G. Martín, E. Carrillo, H. Domínguez, J. C. Parajó, Biomass Bioenergy 2010, 34, 533-538. T. Shono, Y. Matsumara, K. Inoue, J. Am. Chem. Soc. 1984, 106, 6075-6076 G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044-4098. H. D. Dakin, Biochem. J. 1916, 10, 319-323 A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502 M. Nieder, L. Hager, Arch. Biochem. Biophys. 1985, 240, 121-127 B. F. Sels, D. E. De Vos, P. A. Jacobs, J. Am. Chem. Soc. 2001, 123, 8350-8359. C. Wood, K. A. Rosentrater, K. Muthukumarappan, Ind. Crops Prod. 2014, 56, 118-127. S. Aisawa, S. Takahashi, W. Ogasawara, Y. Umetsu, E. Narita, J. Solid State Chem. 2001, 162, 52-62. Angew. Chem. 2009, 121, 8576-8603. Angew. Chem. 2004, 116, 806-843 C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff, Science 2012, 337, 695-699. R. Matthessen, L. Claes, J. Fransaer, K. Binnemans, D. E. De Vos, Eur. J. Org. Chem. 2014, 6649-6652. G. W. Stevenson, J. M. Luck, J. Biol. Chem. 1961, 236, 715-717 T. M. Lammens, J. Le Nôtre, M. C. R. Franssen, E. L. Scott, J. P. M. Sanders, ChemSusChem 2011, 4, 785-791. G. A. Hiegel, J. C. Lewis, J. W. Bae, Synth. Commun. 2004, 34, 3449-3453 J. Le Nôtre, E. L. Scott, M. C. R. Franssen, J. P. M. Sanders, Green Chem. 2011, 13, 807-809. J. J. Dai, Y. B. Huang, C. Fang, Q. X. Guo, Y. Fu, ChemSusChem 2012, 5, 617-620 G. Laval, B. T. Golding, Synlett 2003, 542-546. H. D. Dakin, Biochem. J. 1917, 11, 79-95. A. But, J. Le Nôtre, E. L. Scott, R. Wever, J. P. M. Sanders, ChemSusChem 2012, 5, 1199-1202. A. H. Friedman, S. Morgulis, J. Am. Chem. Soc. 1936, 58, 909-913. A. Podgoršek, M. Zupan, J. Iskra, Angew. Chem. Int. Ed. 2009, 48, 8424-8450 M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788-824 A. L. Demain, Ind. Biotechnol. 2007, 3, 269-283. O. M. Kattan Readi, E. Rolevink, K. Nijmeijer, J. Chem. Technol. Biotechnol. 2014, 89, 425-435. I. Rombouts, L. Lamberts, I. Celus, B. Lagrain, K. Brijs, J. A. Delcour, J. Chromatogr. A 2009, 1216, 5557-5562. B. F. Sels, D. E. De Vos, M. Buntinx, P. A. Jacobs, J. Catal. 2003, 216, 288-297 M. Jitianu, D. C. Gunness, D. E. Aboagye, M. Zaharescu, A. Jitianu, Mater. Res. Bull. 2013, 48, 1864-1873. W. E. Pereira, Y. Hoyano, R. E. Summons, V. A. Bacon, A. M. Duffield, Biochim. Biophys. Acta Gen. Subj. 1973, 313, 170-180. R. A. Sheldon, Green Chem. 2014, 16, 950-963 B. W. Hoffer, J. A. Moulijn, Appl. Catal. A 2009, 352, 193-201. P. G. Dalev, Bioresour. Technol. 1994, 48, 265-267. D. E. De Vos, B. F. Sels, P. A. Jacobs, Cattech 2002, 6, 14-29. L. De Luca, G. Giacomelli, Synlett 2004, 2180-2184. P. Levecque, H. Poelman, P. Jacobs, D. De Vos, B. Sels, Phys. Chem. Chem. Phys. 2009, 11, 2964-2975 Y. Yokoyama, T. Yamaguchi, M. Sato, E. Kobayashi, Y. Murakami, H. Okuno, Chem. Pharm. Bull. 2006, 54, 1715-1719 Y. Teng, E. L. Scott, A. N. T. van Zeeland, J. P. M. Sanders, Green Chem. 2011, 13, 624-630 A. Butler, J. V. Walker, Chem. Rev. 1993, 93, 1937-1944 E. Scott, F. Peter, J. Sanders, Appl. Microbiol. Biotechnol. 2007, 75, 751-762. F. H. Vaillancourt, E. Yeh, D. A. Vosburg, S. Garneau-Tsodikova, C. T. Walsh, Chem. Rev. 2006, 106, 3364-3378. 2010; 34 2001; 123 2007; 107 2004 2004; 43 116 2013; 48 2001; 162 2003; 216 2009 2009; 48 121 2006; 54 1936; 58 1984; 106 2002; 6 2009; 352 2005; 41 2011; 13 1994; 48 1961; 236 2004 1999; 400 2003 2002 2007; 75 2011; 4 2014; 89 1985; 240 2009; 11 2009; 1216 1973; 313 1993; 93 2004; 34 1917; 11 2014; 16 2014 2007; 3 2012; 337 2012; 44 2006; 106 2012; 5 2014; 56 1916; 10 e_1_2_6_51_2 e_1_2_6_51_3 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 Laval G. (e_1_2_6_20_2) 2003 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 Stevenson G. W. (e_1_2_6_19_2) 1961; 236 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_6_3 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
| References_xml | – reference: M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788-824; – reference: I. Rombouts, L. Lamberts, I. Celus, B. Lagrain, K. Brijs, J. A. Delcour, J. Chromatogr. A 2009, 1216, 5557-5562. – reference: G. A. Hiegel, J. C. Lewis, J. W. Bae, Synth. Commun. 2004, 34, 3449-3453; – reference: T. Shono, Y. Matsumara, K. Inoue, J. Am. Chem. Soc. 1984, 106, 6075-6076; – reference: A. Podgoršek, M. Zupan, J. Iskra, Angew. Chem. Int. Ed. 2009, 48, 8424-8450; – reference: Y. Teng, E. L. Scott, A. N. T. van Zeeland, J. P. M. Sanders, Green Chem. 2011, 13, 624-630; – reference: C. Wood, K. A. Rosentrater, K. Muthukumarappan, Ind. Crops Prod. 2014, 56, 118-127. – reference: J. Le Nôtre, E. L. Scott, M. C. R. Franssen, J. P. M. Sanders, Green Chem. 2011, 13, 807-809. – reference: P. Levecque, H. Poelman, P. Jacobs, D. De Vos, B. Sels, Phys. Chem. Chem. Phys. 2009, 11, 2964-2975; – reference: M. Jitianu, D. C. Gunness, D. E. Aboagye, M. Zaharescu, A. Jitianu, Mater. Res. Bull. 2013, 48, 1864-1873. – reference: J. J. Dai, Y. B. Huang, C. Fang, Q. X. Guo, Y. Fu, ChemSusChem 2012, 5, 617-620; – reference: S. Aisawa, S. Takahashi, W. Ogasawara, Y. Umetsu, E. Narita, J. Solid State Chem. 2001, 162, 52-62. – reference: Angew. Chem. 2004, 116, 806-843; – reference: B. F. Sels, D. E. De Vos, P. A. Jacobs, J. Am. Chem. Soc. 2001, 123, 8350-8359. – reference: G. Laval, B. T. Golding, Synlett 2003, 542-546. – reference: L. De Luca, G. Giacomelli, Synlett 2004, 2180-2184. – reference: T. M. Lammens, M. C. R. Franssen, E. L. Scott, J. P. M. Sanders, Biomass Bioenergy 2012, 44, 168-181. – reference: H. D. Dakin, Biochem. J. 1917, 11, 79-95. – reference: A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502; – reference: B. F. Sels, D. E. De Vos, M. Buntinx, P. A. Jacobs, J. Catal. 2003, 216, 288-297; – reference: D. E. De Vos, B. F. Sels, P. A. Jacobs, Cattech 2002, 6, 14-29. – reference: B. W. Hoffer, J. A. Moulijn, Appl. Catal. A 2009, 352, 193-201. – reference: Y. Yokoyama, T. Yamaguchi, M. Sato, E. Kobayashi, Y. Murakami, H. Okuno, Chem. Pharm. Bull. 2006, 54, 1715-1719; – reference: A. Van Der Borght, H. Goesaert, W. S. Veraverbeke, J. A. Delcour, J. Cereal Sci. 2005, 41, 221-237. – reference: R. Matthessen, L. Claes, J. Fransaer, K. Binnemans, D. E. De Vos, Eur. J. Org. Chem. 2014, 6649-6652. – reference: R. A. Sheldon, Green Chem. 2014, 16, 950-963; – reference: Angew. Chem. 2009, 121, 8576-8603. – reference: B. M. Choudary, B. Bharathi, C. Venkat Reddy, M. Lakshmi Kantam, J. Chem. Soc. Perkin Trans. 1 2002, 2069-2074. – reference: F. H. Vaillancourt, E. Yeh, D. A. Vosburg, S. Garneau-Tsodikova, C. T. Walsh, Chem. Rev. 2006, 106, 3364-3378. – reference: G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044-4098. – reference: E. Scott, F. Peter, J. Sanders, Appl. Microbiol. Biotechnol. 2007, 75, 751-762. – reference: G. W. Stevenson, J. M. Luck, J. Biol. Chem. 1961, 236, 715-717; – reference: H. D. Dakin, Biochem. J. 1916, 10, 319-323; – reference: A. But, J. Le Nôtre, E. L. Scott, R. Wever, J. P. M. Sanders, ChemSusChem 2012, 5, 1199-1202. – reference: W. E. Pereira, Y. Hoyano, R. E. Summons, V. A. Bacon, A. M. Duffield, Biochim. Biophys. Acta Gen. Subj. 1973, 313, 170-180. – reference: P. G. Dalev, Bioresour. Technol. 1994, 48, 265-267. – reference: C. Martín, A. Moure, G. Martín, E. Carrillo, H. Domínguez, J. C. Parajó, Biomass Bioenergy 2010, 34, 533-538. – reference: C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff, Science 2012, 337, 695-699. – reference: M. Nieder, L. Hager, Arch. Biochem. Biophys. 1985, 240, 121-127; – reference: A. L. Demain, Ind. Biotechnol. 2007, 3, 269-283. – reference: O. M. Kattan Readi, E. Rolevink, K. Nijmeijer, J. Chem. Technol. Biotechnol. 2014, 89, 425-435. – reference: A. H. Friedman, S. Morgulis, J. Am. Chem. Soc. 1936, 58, 909-913. – reference: T. M. Lammens, J. Le Nôtre, M. C. R. Franssen, E. L. Scott, J. P. M. Sanders, ChemSusChem 2011, 4, 785-791. – reference: B. Sels, D. De Vos, M. Buntinx, F. Pierard, A. Kirsch-De Mesmaeker, P. Jacobs, Nature 1999, 400, 855-857; – reference: A. Butler, J. V. Walker, Chem. Rev. 1993, 93, 1937-1944; – volume: 34 start-page: 3449 year: 2004 end-page: 3453 publication-title: Synth. Commun. – volume: 11 start-page: 2964 year: 2009 end-page: 2975 publication-title: Phys. Chem. Chem. Phys. – volume: 56 start-page: 118 year: 2014 end-page: 127 publication-title: Ind. Crops Prod. – volume: 352 start-page: 193 year: 2009 end-page: 201 publication-title: Appl. Catal. A – volume: 3 start-page: 269 year: 2007 end-page: 283 publication-title: Ind. Biotechnol. – volume: 58 start-page: 909 year: 1936 end-page: 913 publication-title: J. Am. Chem. Soc. – volume: 313 start-page: 170 year: 1973 end-page: 180 publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 6 start-page: 14 year: 2002 end-page: 29 publication-title: Cattech – volume: 44 start-page: 168 year: 2012 end-page: 181 publication-title: Biomass Bioenergy – start-page: 2180 year: 2004 end-page: 2184 publication-title: Synlett – volume: 48 start-page: 265 year: 1994 end-page: 267 publication-title: Bioresour. Technol. – volume: 400 start-page: 855 year: 1999 end-page: 857 publication-title: Nature – volume: 1216 start-page: 5557 year: 2009 end-page: 5562 publication-title: J. Chromatogr. A – volume: 13 start-page: 624 year: 2011 end-page: 630 publication-title: Green Chem. – volume: 48 start-page: 1864 year: 2013 end-page: 1873 publication-title: Mater. Res. Bull. – volume: 5 start-page: 1199 year: 2012 end-page: 1202 publication-title: ChemSusChem – volume: 4 start-page: 785 year: 2011 end-page: 791 publication-title: ChemSusChem – volume: 11 start-page: 79 year: 1917 end-page: 95 publication-title: Biochem. J. – volume: 106 start-page: 4044 year: 2006 end-page: 4098 publication-title: Chem. Rev. – volume: 13 start-page: 807 year: 2011 end-page: 809 publication-title: Green Chem. – volume: 216 start-page: 288 year: 2003 end-page: 297 publication-title: J. Catal. – volume: 89 start-page: 425 year: 2014 end-page: 435 publication-title: J. Chem. Technol. Biotechnol. – volume: 34 start-page: 533 year: 2010 end-page: 538 publication-title: Biomass Bioenergy – volume: 123 start-page: 8350 year: 2001 end-page: 8359 publication-title: J. Am. Chem. Soc. – volume: 236 start-page: 715 year: 1961 end-page: 717 publication-title: J. Biol. Chem. – volume: 5 start-page: 617 year: 2012 end-page: 620 publication-title: ChemSusChem – volume: 93 start-page: 1937 year: 1993 end-page: 1944 publication-title: Chem. Rev. – volume: 107 start-page: 2411 year: 2007 end-page: 2502 publication-title: Chem. Rev. – volume: 16 start-page: 950 year: 2014 end-page: 963 publication-title: Green Chem. – volume: 75 start-page: 751 year: 2007 end-page: 762 publication-title: Appl. Microbiol. Biotechnol. – start-page: 542 year: 2003 end-page: 546 publication-title: Synlett – volume: 54 start-page: 1715 year: 2006 end-page: 1719 publication-title: Chem. Pharm. Bull. – volume: 240 start-page: 121 year: 1985 end-page: 127 publication-title: Arch. Biochem. Biophys. – start-page: 6649 year: 2014 end-page: 6652 publication-title: Eur. J. Org. Chem. – volume: 106 start-page: 6075 year: 1984 end-page: 6076 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 319 year: 1916 end-page: 323 publication-title: Biochem. J. – volume: 162 start-page: 52 year: 2001 end-page: 62 publication-title: J. Solid State Chem. – volume: 43 116 start-page: 788 806 year: 2004 2004 end-page: 824 843 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 start-page: 221 year: 2005 end-page: 237 publication-title: J. Cereal Sci. – volume: 48 121 start-page: 8424 8576 year: 2009 2009 end-page: 8450 8603 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 106 start-page: 3364 year: 2006 end-page: 3378 publication-title: Chem. Rev. – volume: 337 start-page: 695 year: 2012 end-page: 699 publication-title: Science – start-page: 2069 year: 2002 end-page: 2074 publication-title: J. Chem. Soc. Perkin Trans. 1 – ident: e_1_2_6_50_2 doi: 10.1248/cpb.54.1715 – ident: e_1_2_6_52_2 – ident: e_1_2_6_2_2 doi: 10.1021/cr050989d – ident: e_1_2_6_21_2 – ident: e_1_2_6_40_2 doi: 10.1039/b820336a – ident: e_1_2_6_6_2 doi: 10.1002/anie.200300599 – ident: e_1_2_6_49_2 – ident: e_1_2_6_7_2 doi: 10.1089/ind.2007.3.269 – ident: e_1_2_6_43_2 doi: 10.1021/ja01297a017 – ident: e_1_2_6_53_2 doi: 10.1021/cr00021a014 – ident: e_1_2_6_42_2 doi: 10.1006/jssc.2001.9340 – ident: e_1_2_6_35_2 – ident: e_1_2_6_41_2 doi: 10.1016/j.materresbull.2013.01.030 – ident: e_1_2_6_25_2 doi: 10.1081/SCC-200030958 – ident: e_1_2_6_3_2 doi: 10.1039/C3GC41935E – start-page: 542 year: 2003 ident: e_1_2_6_20_2 publication-title: Synlett – ident: e_1_2_6_46_2 doi: 10.1002/cssc.201100030 – ident: e_1_2_6_13_2 doi: 10.1007/s00253-007-0932-x – ident: e_1_2_6_22_2 doi: 10.1042/bj0100319 – ident: e_1_2_6_54_2 doi: 10.1021/cr050313i – ident: e_1_2_6_29_2 doi: 10.1021/ja00332a052 – ident: e_1_2_6_10_2 doi: 10.1016/j.indcrop.2014.02.039 – ident: e_1_2_6_34_2 doi: 10.1002/cssc.201200098 – ident: e_1_2_6_16_2 doi: 10.1039/c0gc00611d – ident: e_1_2_6_9_2 doi: 10.1016/j.jcs.2004.09.008 – ident: e_1_2_6_28_2 – ident: e_1_2_6_37_2 doi: 10.1038/23674 – ident: e_1_2_6_6_3 doi: 10.1002/ange.200300599 – ident: e_1_2_6_39_2 – volume: 236 start-page: 715 year: 1961 ident: e_1_2_6_19_2 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)64296-6 – ident: e_1_2_6_17_2 doi: 10.1002/jctb.4135 – ident: e_1_2_6_33_2 doi: 10.1016/0003-9861(85)90014-1 – ident: e_1_2_6_30_2 doi: 10.1002/cssc.201100776 – ident: e_1_2_6_51_2 doi: 10.1002/anie.200901223 – ident: e_1_2_6_5_2 – ident: e_1_2_6_45_2 doi: 10.1023/A:1015375306212 – ident: e_1_2_6_24_2 – ident: e_1_2_6_44_2 doi: 10.1016/0304-4165(73)90198-0 – ident: e_1_2_6_38_2 doi: 10.1021/ja015930c – ident: e_1_2_6_23_2 doi: 10.1042/bj0110079 – ident: e_1_2_6_32_2 – ident: e_1_2_6_15_2 – ident: e_1_2_6_26_2 doi: 10.1055/s-2004-830896 – ident: e_1_2_6_12_2 doi: 10.1016/j.biombioe.2009.12.019 – ident: e_1_2_6_31_2 doi: 10.1002/ejoc.201403112 – ident: e_1_2_6_11_2 doi: 10.1016/0960-8524(94)90156-2 – ident: e_1_2_6_18_2 – ident: e_1_2_6_51_3 doi: 10.1002/ange.200901223 – ident: e_1_2_6_4_2 doi: 10.1126/science.1218930 – ident: e_1_2_6_8_2 doi: 10.1016/j.biombioe.2012.04.021 – ident: e_1_2_6_36_2 doi: 10.1016/S0021-9517(02)00066-0 – ident: e_1_2_6_47_2 doi: 10.1016/j.apcata.2008.10.004 – ident: e_1_2_6_1_2 – ident: e_1_2_6_48_2 doi: 10.1039/b205292j – ident: e_1_2_6_14_2 doi: 10.1021/cr068360d – ident: e_1_2_6_55_2 doi: 10.1016/j.chroma.2009.05.066 – ident: e_1_2_6_27_2 doi: 10.1039/c0gc00805b |
| SSID | ssj0060966 |
| Score | 2.282984 |
| Snippet | The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate... The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate... The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by insitu halide oxidation using catalytic amounts of tungstate... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 345 |
| SubjectTerms | Amino acids Amino Acids - chemistry Aqueous solutions biomass Catalysis Decarboxylation Glutens - chemistry heterogeneous catalysis Hydrolysis Nitriles - chemistry oxidation Oxidation-Reduction Triticum - chemistry tungsten |
| Title | Bio-Based Nitriles from the Heterogeneously Catalyzed Oxidative Decarboxylation of Amino Acids |
| URI | https://api.istex.fr/ark:/67375/WNG-F3CTDSG5-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201402801 https://www.ncbi.nlm.nih.gov/pubmed/25470619 https://www.proquest.com/docview/1753632347 https://www.proquest.com/docview/1652436730 |
| Volume | 8 |
| WOSCitedRecordID | wos000347843800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELagRYIL_wuBZWUkBKdoE8d27GM3pbtCq4LorujNJLYjRSwNSrqo5cQj8Iw8CeP8QSUQEtwSZeJYnhnPN47nM0LPrE4zlkaRr4XkPuWU-8L5lavyMRGEBJM3JK6n8Xwulkv55pcq_pYfYlhwc57RzNfOwdOsPvxJGqrr2lEQQoJAhCvgGhMwXjZC4-nb2flpPxtzgOhNhZHg1Gc8CnvixoAc7rawE5jGbow3v0OduyC2iUKzW__f_9voZodA8aQ1mTvoil3dRdeT_uC3e-j9UVF-__rtCOKbwfNiXUHzNXZ1KBjQIj5xG2hKsDtbXtYXW5y4BaDtF5B9vSlMwyOOp6CcKis323anHS5zPPlYrEo80YWp76Pz2cuz5MTvDmLwNYcI70NKY2hGLLc2zwEQSk1yGpJUMJEHQWYDI2NpALvIPIgtzThNDaQtjhfIstCKaA-NVuXKPkQ40EFMjOFMWkPDMEs1szLTOpckiI1gHvJ7LSjdsZS7wzIuVMuvTJQbNzWMm4deDPKfWn6OP0o-b5Q6iKXVB7erLWbq3fxYzaLkbLo4ZuqVh_Z7ravOoWvlCE15RCIae-jp8BgU4_6vpM2Iq5AzQiNoMvDQg9Zaho9BHh4DdJIeIo1R_KWzKlkskuHu0b-89BjdgGvWLhfto9G6urRP0DX9eV3U1QG6Gi_FQecsPwAEzxKb |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bj5QwFG7Mjsn64v2CrloTo09kobSFPs4yzo46onFm4751oS0JcR0MzJoZn_wJ_kZ_iafczCQaE-MjUAqcS8-Fc74i9NSoNGNpELgqEtylnHI3snplu3x0ACZB5w2I6zxMkuj0VLzrqgltL0yLDzEk3KxmNOu1VXCbkD78hRqq6tpiEEKEQCLbwTWiIEsg5KPJ--nJvF-OOfjoTYtRxKnLeOD3yI0eOdydYccyjSyRN79zO3e92MYMTa_9hw-4jq52Piget0JzA10yq5toP-63fruFzo6K8se370dg4TROinUF89fYdqJg8BfxzJbQlCB5pryoz7c4timg7VcY-3ZT6AZJHE-APVVWbrZtrR0uczz-VKxKPFaFrm-jk-mLZTxzu60YXMXBxrsQ1GiaEcONyXNwCYUiOfVJGrEo97zMeFqEQoP3InIvNDTjNNUQuFhkIMN8EwV30N6qXJl7CHvKC4nWnAmjqe9nqWJGZErlgnihjpiD3J4NUnU45Xa7jHPZIiwTaekmB7o56Pkw_nOL0PHHkc8arg7D0uqjrWsLmfyQHMtpEC8ni2MmXznooGe77FS6lhbSlAckoKGDngyXgTH2D0vaUFz6nBEawJSeg-624jI8DCLxEJwn4SDSSMVfXlbGi0U8HN3_l5seo_3Z8s1czl8mrx-gK3CetcmjA7S3ri7MQ3RZfVkXdfWo05mfAMQVow |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXQRceD8CBYyE4BQ1cWwnPm6zpAVWS8W2ojeT2I4Utd1UyRbtcuIn8Bv5Jdh5oZVASIhjEsdJ5uGZcWa-AXipZZrRNAhcGXHmEkaYG1m9slU-KjAmQeUNiOssnM-jkxN-2GUT2lqYFh9i2HCzmtGs11bB9YXKd3-hhsq6thiEJkLAka3gGhPbSWYE4-nH5HjWL8fM-OhNiVHEiEtZ4PfIjR7e3Z5hyzKNLZHXv3M7t73Yxgwlt_7DB9yGm50Piiat0NyBK3p5F67Hfeu3e_B5ryh_fPu-ZyycQvNiVZn5a2QrUZDxF9GBTaEpjeTp8rI-26DYbgFtvpqxH9aFapDE0dSwp8rK9abNtUNljibnxbJEE1mo-j4cJ2-O4gO3a8XgSmZsvGuCGkUyrJnWeW5cQi5xTnycRjTKPS_TnuIhV8Z74bkXapIxkioTuFhkIE19HQUPYLQsl_oRIE96IVaKUa4V8f0slVTzTMqcYy9UEXXA7dkgZIdTbttlnIkWYRkLSzcx0M2B18P4ixah448jXzVcHYal1anNawup-DTfF0kQH00X-1S8c2CnZ7voVLoWFtKUBTggoQMvhsuGMfYPS9pQXPiMYhKYKT0HHrbiMjzMROKhcZ64A7iRir-8rIgXi3g4evwvNz2Ha4fTRMzezt8_gRvmNG33jnZgtKou9VO4Kr-sirp61qnMT2roFR4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-based+nitriles+from+the+heterogeneously+catalyzed+oxidative+decarboxylation+of+amino+acids&rft.jtitle=ChemSusChem&rft.au=Claes%2C+Laurens&rft.au=Matthessen%2C+Roman&rft.au=Rombouts%2C+Ine&rft.au=Stassen%2C+Ivo&rft.date=2015-01-01&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=8&rft.issue=2&rft.spage=345&rft_id=info:doi/10.1002%2Fcssc.201402801&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |