Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites
Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we el...
Uložené v:
| Vydané v: | Nucleic acids research Ročník 37; číslo 11; s. 3723 - 3738 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Oxford University Press
01.06.2009
Oxford Publishing Limited (England) |
| Predmet: | |
| ISSN: | 0305-1048, 1362-4962, 1362-4962 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased Vmax and decreased the Km for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members. |
|---|---|
| AbstractList | Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased V
max and decreased the K
m for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members. Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased Vmax and decreased the Km for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members. Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased V(max) and decreased the K(m) for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members. Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased V[sub]max and decreased the K[sub]m for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members. Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased V(max) and decreased the K(m) for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members.Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased V(max) and decreased the K(m) for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members. |
| Author | Hottiger, Michael O. Messner, Simon Fey, Monika Hassa, Paul O. Altmeyer, Matthias |
| AuthorAffiliation | 1 Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland, 2 Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and 3 European Molecular Biology Laboratory (EMBL), Gene Expression Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany |
| AuthorAffiliation_xml | – name: 1 Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland, 2 Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and 3 European Molecular Biology Laboratory (EMBL), Gene Expression Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany |
| Author_xml | – sequence: 1 fullname: Altmeyer, Matthias – sequence: 2 fullname: Messner, Simon – sequence: 3 fullname: Hassa, Paul O – sequence: 4 fullname: Fey, Monika – sequence: 5 fullname: Hottiger, Michael O |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19372272$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0l1rFDEUBuAgFbut3vgDNAiKCmNPPiazcyMsrXaFFRfdongTspnMNu1sMiYz4vx7U6cuWsRe5SLPeck5OQdoz3lnEHpI4BWBkh05FY42ly2l5R00IUzQjJeC7qEJMMgzAny6jw5ivAAgnOT8HtonJSsoLegEDe99Y3TfqIC3Rp8rZ-MW-xq3vhmez06WWbBrH4fmheqsd3g94OXs45Jg5SpsK-M6W1s93qWqZojWGRxMtFVvIlYR7zIMVlqbtvMBR9uZeB_drVUTzYPr8xCdvX2zOp5niw-n745ni0wLyrqshlpxNqViWhFeamZYyZVgBug0LyotGDE1iCKvC80IUZRSBczknJS6Ehwqdohej7ltv96aSqc3B9XINtitCoP0ysq_b5w9lxv_XVJRljnhKeDZdUDw31JXndzaqE3TKGd8H6UoOIFcTG-FXLD0UhC3QgpQCAoswSc34IXvg0vjujIipyUhCT36s8FdZ78_OQEYgQ4-xmBqqW33689Sv7aRBOTVHsm0R3Lco1Ty8kbJLvVf-OmIfd_-32Wjs7EzP3ZShcs0Q1bkcv7lq1x9ntPVyelCrpJ_PPpaeak2wUZ59okCYUAEL9Iw2U81-O8g |
| CODEN | NARHAD |
| CitedBy_id | crossref_primary_10_1016_j_chembiol_2018_09_008 crossref_primary_10_3390_cancers12071813 crossref_primary_10_1089_ars_2017_7269 crossref_primary_10_1038_s41467_017_02253_1 crossref_primary_10_1002_ange_202200977 crossref_primary_10_1002_cbic_202400440 crossref_primary_10_1038_ncomms2672 crossref_primary_10_1038_nsmb_2523 crossref_primary_10_1093_nar_gkv1383 crossref_primary_10_1021_jasms_0c00040 crossref_primary_10_1016_j_mrrev_2017_09_004 crossref_primary_10_1002_med_21442 crossref_primary_10_1186_s12929_022_00870_7 crossref_primary_10_1016_j_molcel_2010_06_017 crossref_primary_10_1016_j_cell_2024_01_015 crossref_primary_10_1016_j_molcel_2013_08_025 crossref_primary_10_1016_j_molcel_2013_08_026 crossref_primary_10_1515_hsz_2021_0382 crossref_primary_10_1038_nrm3376 crossref_primary_10_1016_j_bbapap_2014_07_012 crossref_primary_10_1016_j_mam_2013_01_005 crossref_primary_10_1016_j_mam_2013_01_004 crossref_primary_10_3390_cancers13246385 crossref_primary_10_1016_j_mam_2013_01_007 crossref_primary_10_1016_j_dnarep_2022_103382 crossref_primary_10_1017_erm_2024_14 crossref_primary_10_1002_ange_202313317 crossref_primary_10_1096_fj_202001759R crossref_primary_10_1038_ncomms12917 crossref_primary_10_1155_2014_917605 crossref_primary_10_1042_BSR20240986 crossref_primary_10_1186_1477_7827_7_143 crossref_primary_10_1111_febs_12315 crossref_primary_10_1016_j_bbcan_2025_189282 crossref_primary_10_1016_j_molcel_2016_11_015 crossref_primary_10_1016_j_arr_2023_102078 crossref_primary_10_1074_jbc_M112_397067 crossref_primary_10_1096_fj_09_137695 crossref_primary_10_1016_j_ejmech_2020_112570 crossref_primary_10_1016_j_bcp_2018_09_028 crossref_primary_10_1007_s00018_012_1003_8 crossref_primary_10_1101_gad_183509_111 crossref_primary_10_1080_15257770_2014_984073 crossref_primary_10_1016_j_jmb_2019_05_028 crossref_primary_10_1016_j_cbi_2015_05_019 crossref_primary_10_1016_j_chembiol_2015_03_007 crossref_primary_10_1111_febs_16907 crossref_primary_10_3389_fmicb_2021_811671 crossref_primary_10_15252_embj_2020104542 crossref_primary_10_1016_j_biochi_2015_03_016 crossref_primary_10_1038_nsmb_1664 crossref_primary_10_15252_embj_2018100024 crossref_primary_10_1016_j_semcdb_2018_04_013 crossref_primary_10_1016_j_sbi_2012_08_005 crossref_primary_10_1016_j_molcel_2015_05_007 crossref_primary_10_1038_nrm3601 crossref_primary_10_1016_j_jaut_2009_11_013 crossref_primary_10_1016_j_heliyon_2022_e09600 crossref_primary_10_1016_j_neo_2014_03_002 crossref_primary_10_1134_S0026893316040038 crossref_primary_10_1073_pnas_1405005111 crossref_primary_10_1073_pnas_2107277118 crossref_primary_10_1038_onc_2010_338 crossref_primary_10_1515_hsz_2019_0182 crossref_primary_10_1016_j_molcel_2016_07_006 crossref_primary_10_1134_S0026893315010094 crossref_primary_10_1016_j_bmcl_2013_02_094 crossref_primary_10_1016_j_mam_2013_02_002 crossref_primary_10_3389_fonc_2020_573502 crossref_primary_10_1038_srep34487 crossref_primary_10_1111_febs_15518 crossref_primary_10_1016_j_sbi_2013_01_003 crossref_primary_10_1186_1478_811X_11_5 crossref_primary_10_1186_s12964_022_00932_1 crossref_primary_10_1083_jcb_202101021 crossref_primary_10_1158_0008_5472_CAN_13_1701 crossref_primary_10_1038_nsmb_2335 crossref_primary_10_1038_nrc2812 crossref_primary_10_1007_s00018_017_2717_4 crossref_primary_10_1038_s41467_024_47222_7 crossref_primary_10_1016_j_ab_2012_06_015 crossref_primary_10_1126_science_1221870 crossref_primary_10_1093_nar_gkaa307 crossref_primary_10_1080_10409238_2017_1394265 crossref_primary_10_1042_BJ20141554 crossref_primary_10_1002_mco2_70314 crossref_primary_10_1038_cddis_2016_345 crossref_primary_10_1111_febs_12358 crossref_primary_10_1111_j_1742_4658_2011_08286_x crossref_primary_10_1158_1078_0432_CCR_10_0523 crossref_primary_10_1002_med_21300 crossref_primary_10_1111_cpr_12268 crossref_primary_10_1074_jbc_M110_202507 crossref_primary_10_1016_j_neuint_2014_07_001 crossref_primary_10_1128_MCB_00827_09 crossref_primary_10_1016_j_tibs_2009_12_003 crossref_primary_10_1007_s00726_010_0676_2 crossref_primary_10_1016_j_plaphy_2011_02_004 crossref_primary_10_1093_nar_gku474 crossref_primary_10_1016_j_freeradbiomed_2016_11_039 crossref_primary_10_1042_BSR20212489 crossref_primary_10_1016_j_biochi_2015_02_010 crossref_primary_10_1016_j_molcel_2015_06_006 crossref_primary_10_1073_pnas_0906753106 crossref_primary_10_1093_nar_gkz120 crossref_primary_10_3389_fphar_2019_00172 crossref_primary_10_1104_pp_109_142786 crossref_primary_10_1038_s41467_019_08530_5 crossref_primary_10_1111_jipb_12530 crossref_primary_10_1016_j_dnarep_2021_103125 crossref_primary_10_1134_S0006297920010095 crossref_primary_10_1093_biolre_iox137 crossref_primary_10_1371_journal_pbio_1000428 crossref_primary_10_1016_j_ijbiomac_2024_139046 crossref_primary_10_1016_j_molcel_2015_06_012 crossref_primary_10_1093_nar_gku288 crossref_primary_10_1146_annurev_biochem_061809_174504 crossref_primary_10_1074_jbc_M110_175190 crossref_primary_10_1111_febs_12298 crossref_primary_10_1016_j_jplph_2016_03_020 crossref_primary_10_1080_17460794_2025_2465178 crossref_primary_10_1111_j_1349_7006_2011_02152_x crossref_primary_10_1038_s41598_024_58076_w crossref_primary_10_1016_j_bbamcr_2016_09_019 crossref_primary_10_3390_challe9010024 crossref_primary_10_1186_s12870_019_1958_9 crossref_primary_10_1586_epr_11_63 crossref_primary_10_1002_cmdc_201500391 crossref_primary_10_1016_j_bcp_2010_04_022 crossref_primary_10_1093_nar_gkx446 crossref_primary_10_1038_ncomms5426 crossref_primary_10_3390_cancers14174162 crossref_primary_10_1093_nar_gkx565 crossref_primary_10_1016_j_bbrc_2022_06_070 crossref_primary_10_1128_MCB_00196_15 crossref_primary_10_1038_nchembio_2568 crossref_primary_10_1016_j_semcdb_2016_09_011 crossref_primary_10_1038_s41598_019_39542_2 crossref_primary_10_1016_j_febslet_2011_03_031 crossref_primary_10_3390_biom3010001 crossref_primary_10_1007_s10482_017_0951_2 crossref_primary_10_1093_nar_gkq463 crossref_primary_10_1016_j_cell_2010_08_016 crossref_primary_10_1038_cddis_2016_58 crossref_primary_10_1093_toxsci_kfab110 crossref_primary_10_1093_nar_gkw442 crossref_primary_10_1016_j_jmb_2009_09_032 crossref_primary_10_1038_s41388_018_0615_3 crossref_primary_10_1016_j_bcp_2024_116045 crossref_primary_10_1038_s42003_022_04241_8 crossref_primary_10_1016_j_ejmech_2020_112712 crossref_primary_10_1016_j_str_2012_12_019 crossref_primary_10_1002_em_22623 crossref_primary_10_3390_cells8121625 crossref_primary_10_1186_1472_6807_11_37 crossref_primary_10_1002_1878_0261_12390 crossref_primary_10_1016_j_gde_2010_06_001 crossref_primary_10_1016_j_isci_2023_107917 crossref_primary_10_1042_BST20180418 crossref_primary_10_3389_fphys_2017_00916 crossref_primary_10_1016_j_ajpath_2010_12_004 crossref_primary_10_3389_fonc_2020_00570 crossref_primary_10_3390_cells11233853 crossref_primary_10_3390_medicines7090054 crossref_primary_10_1016_j_dnarep_2014_03_005 crossref_primary_10_1042_BCJ20230230 crossref_primary_10_1002_biof_1688 crossref_primary_10_1016_j_molcel_2021_11_014 crossref_primary_10_1073_pnas_1713912115 crossref_primary_10_1016_j_celrep_2025_115737 crossref_primary_10_1016_j_bcp_2019_03_037 crossref_primary_10_1016_j_dnarep_2025_103845 crossref_primary_10_1146_annurev_biochem_060614_034506 crossref_primary_10_1016_j_mrfmmm_2011_10_012 crossref_primary_10_3390_ijms24108766 crossref_primary_10_1016_j_jmb_2011_01_034 crossref_primary_10_1021_ja906135d crossref_primary_10_1128_MMBR_00038_18 crossref_primary_10_3390_v14092049 crossref_primary_10_1016_j_pharmthera_2021_107968 crossref_primary_10_1074_jbc_M109_077834 crossref_primary_10_3389_fphar_2025_1578342 crossref_primary_10_1016_j_mrfmmm_2013_07_001 crossref_primary_10_1074_jbc_M115_646638 crossref_primary_10_1016_j_jmb_2019_12_019 crossref_primary_10_1155_2012_321653 crossref_primary_10_1016_j_dnarep_2014_09_004 crossref_primary_10_1016_j_mam_2012_12_005 crossref_primary_10_1134_S0006297922140048 crossref_primary_10_3390_cancers11101493 crossref_primary_10_1021_acschembio_4c00582 crossref_primary_10_1002_anie_202313317 crossref_primary_10_3389_fphar_2020_00170 crossref_primary_10_1016_j_ejmech_2019_01_024 crossref_primary_10_3390_ijms20122999 crossref_primary_10_3892_ol_2017_6771 crossref_primary_10_1093_nar_gkw710 crossref_primary_10_1098_rsob_120173 crossref_primary_10_1016_j_arr_2024_102206 crossref_primary_10_1016_j_dnarep_2025_103841 crossref_primary_10_1016_j_dnarep_2015_02_004 crossref_primary_10_1016_j_ejmech_2012_02_001 crossref_primary_10_1126_science_1216338 crossref_primary_10_1038_nrc3748 crossref_primary_10_1016_j_mad_2015_04_001 crossref_primary_10_2147_CMAR_S346052 crossref_primary_10_1158_1541_7786_MCR_20_0839 crossref_primary_10_3390_cells10030599 crossref_primary_10_1074_jbc_M110_105668 crossref_primary_10_1016_j_molcel_2015_10_013 crossref_primary_10_1002_jcb_26585 crossref_primary_10_1016_j_tcb_2011_06_001 crossref_primary_10_1016_j_mrfmmm_2012_06_003 crossref_primary_10_1038_s41598_018_26450_0 crossref_primary_10_1038_emboj_2013_83 crossref_primary_10_1158_0008_5472_CAN_10_0528 crossref_primary_10_1111_pbi_13490 crossref_primary_10_1371_journal_pone_0037287 crossref_primary_10_1038_s41419_023_05968_w crossref_primary_10_1126_science_1202723 crossref_primary_10_3389_fphar_2024_1421816 crossref_primary_10_1002_anie_202200977 crossref_primary_10_1016_j_ab_2012_10_029 crossref_primary_10_1016_j_leukres_2016_03_007 crossref_primary_10_1093_nar_gkae756 crossref_primary_10_1016_j_jmb_2023_168207 crossref_primary_10_1016_j_dnarep_2010_02_011 crossref_primary_10_1093_nar_gkaa718 crossref_primary_10_1016_j_chembiol_2017_08_027 crossref_primary_10_3389_fmicb_2024_1397688 crossref_primary_10_1016_j_lfs_2021_119556 crossref_primary_10_1016_j_dnarep_2013_07_001 crossref_primary_10_3390_biology10020163 |
| Cites_doi | 10.1016/0006-291X(87)90543-2 10.1242/jcs.00341 10.1016/j.jmb.2003.11.055 10.1074/jbc.M202390200 10.1016/j.biocel.2008.03.008 10.1074/jbc.271.18.10461 10.2741/2909 10.1016/S0968-0004(99)01537-6 10.1016/j.cell.2007.07.035 10.1126/science.1069300 10.1016/S0021-9258(19)68788-0 10.1111/j.1432-1033.1987.tb13621.x 10.1016/0006-291X(77)91431-0 10.1016/0167-4838(91)99007-F 10.1074/jbc.M106528200 10.1021/bi982148p 10.1016/0006-291X(63)90024-X 10.1073/pnas.0609211104 10.1074/jbc.M307957200 10.1016/0022-2836(89)90302-1 10.1016/S0076-6879(97)80119-X 10.1016/S0021-9258(17)43555-1 10.1016/S0021-9258(17)35726-5 10.1128/MMBR.00040-05 10.1038/nrm1963 10.1093/nar/gkm944 10.1021/bi00311a024 10.1021/bi00311a023 10.1002/j.1460-2075.1992.tb05404.x 10.1021/bi050755o 10.2307/3576299 10.1016/j.molmed.2008.02.003 10.1021/bi800018a 10.1073/pnas.93.15.7481 10.1073/pnas.87.8.2990 10.1093/nar/gkh215 10.1074/jbc.M507553200 10.1074/jbc.M708558200 10.1006/bbrc.1994.2012 10.1016/S0006-291X(72)80169-4 10.1021/bi00057a017 10.1042/0264-6021:3420249 10.1016/S0021-9258(19)38671-5 10.1016/S0021-9258(18)45824-3 10.1073/pnas.84.23.8370 10.1021/bi00186a018 10.1016/S0021-9258(19)43873-8 10.1073/pnas.1633591100 |
| ContentType | Journal Article |
| Copyright | 2009 The Author(s) 2009 2009 The Author(s) |
| Copyright_xml | – notice: 2009 The Author(s) 2009 – notice: 2009 The Author(s) |
| DBID | FBQ BSCLL TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7S9 L.6 7X8 5PM |
| DOI | 10.1093/nar/gkp229 |
| DatabaseName | AGRIS Istex Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA Virology and AIDS Abstracts MEDLINE - Academic Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Open Access: Oxford University Press Open Journals url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1362-4962 |
| EndPage | 3738 |
| ExternalDocumentID | PMC2699514 1762353241 19372272 10_1093_nar_gkp229 10.1093/nar/gkp229 ark_67375_HXZ_TWH2TDGL_T US201301647630 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 .GJ .I3 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUTJ ADBBV ADHZD AEGXH AEKPW AENEX AENZO AEQTP AFFNX AFPKN AFRAH AFULF AFYAG AGKRT AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FBQ FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OJZSN OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XFK XSB XSW YSK ZA5 ZKX ZXP ~91 ~D7 ~KM 0R~ AAHBH ABEJV ABGNP ABIME ABNGD ABPIB ABXVV ABZEO ACUKT ACVCV ACZBC AEHUL AFSHK AGMDO AGQPQ AMNDL APJGH BSCLL OVT ACMRT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c623t-f0fa438268d149c3e394a63e02857dc631ef0675f7c311a222a03e5419cd640d3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 293 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000267441800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-1048 1362-4962 |
| IngestDate | Tue Sep 30 15:53:14 EDT 2025 Fri Sep 05 11:23:19 EDT 2025 Fri Sep 05 10:01:44 EDT 2025 Mon Sep 08 01:56:14 EDT 2025 Mon Oct 06 17:13:32 EDT 2025 Mon Jul 21 05:16:15 EDT 2025 Sat Nov 29 02:59:01 EST 2025 Tue Nov 18 20:25:58 EST 2025 Wed Aug 28 03:25:05 EDT 2024 Sat Sep 20 11:01:55 EDT 2025 Wed Dec 27 19:25:52 EST 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc/2.0/uk This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c623t-f0fa438268d149c3e394a63e02857dc631ef0675f7c311a222a03e5419cd640d3 |
| Notes | istex:19E8DAED79BE8D943A743A42A05C8FB1259128F8 ark:/67375/HXZ-TWH2TDGL-T ArticleID:gkp229 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1093/nar/gkp229 |
| PMID | 19372272 |
| PQID | 200652911 |
| PQPubID | 36121 |
| PageCount | 16 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2699514 proquest_miscellaneous_67410568 proquest_miscellaneous_46306706 proquest_miscellaneous_20076203 proquest_journals_200652911 pubmed_primary_19372272 crossref_citationtrail_10_1093_nar_gkp229 crossref_primary_10_1093_nar_gkp229 oup_primary_10_1093_nar_gkp229 istex_primary_ark_67375_HXZ_TWH2TDGL_T fao_agris_US201301647630 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-06-01 |
| PublicationDateYYYYMMDD | 2009-06-01 |
| PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Nucleic acids research |
| PublicationTitleAlternate | Nucleic Acids Res |
| PublicationYear | 2009 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Chambon ( key 20170510092824_B7) 1963; 11 Rosenthal ( key 20170510092824_B32) 1994; 202 Suzuki ( key 20170510092824_B3) 1987; 146 Fjeld ( key 20170510092824_B38) 2003; 100 Berger ( key 20170510092824_B6) 1985; 101 Kawaichi ( key 20170510092824_B23) 1981; 256 D’Amours ( key 20170510092824_B9) 1999; 342 (Pt 2) Zhang ( key 20170510092824_B37) 2002; 295 Yelamos ( key 20170510092824_B18) 2008; 14 Simonin ( key 20170510092824_B28) 1993; 268 Pion ( key 20170510092824_B13) 2005; 44 Fahrer ( key 20170510092824_B27) 2007; 35 Malik ( key 20170510092824_B46) 1984; 23 Gradwohl ( key 20170510092824_B35) 1990; 87 Kameshita ( key 20170510092824_B5) 1986; 261 Wong ( key 20170510092824_B45) 1984; 23 Cervantes-Laurean ( key 20170510092824_B41) 1993; 32 Menissier-de Murcia ( key 20170510092824_B34) 1989; 210 Berger ( key 20170510092824_B39) 2007; 104 Cervantes-Laurean ( key 20170510092824_B30) 1996; 271 Ogata ( key 20170510092824_B24) 1980; 255 Hassa ( key 20170510092824_B25) 2003; 278 Cervantes-Laurean ( key 20170510092824_B40) 1997; 280 Hassa ( key 20170510092824_B47) 2001; 276 Mendoza-Alvarez ( key 20170510092824_B29) 2004; 336 Adamietz ( key 20170510092824_B49) 1987; 169 Haenni ( key 20170510092824_B44) 2008; 40 Urbanek ( key 20170510092824_B20) 2002; 48 Desmarais ( key 20170510092824_B14) 1991; 1078 Cherney ( key 20170510092824_B4) 1987; 84 Ruf ( key 20170510092824_B8) 1996; 93 Schreiber ( key 20170510092824_B16) 2006; 7 Tao ( key 20170510092824_B10) 2008; 47 Langelier ( key 20170510092824_B11) 2008; 283 Yang ( key 20170510092824_B36) 2007; 130 Ueda ( key 20170510092824_B42) 1972; 46 Schreiber ( key 20170510092824_B12) 1992; 11 Mendoza-Alvarez ( key 20170510092824_B22) 1999; 38 Hassa ( key 20170510092824_B26) 2005; 280 Hassa ( key 20170510092824_B1) 2008; 13 Aravind ( key 20170510092824_B17) 2000; 25 Hassa ( key 20170510092824_B2) 2006; 70 Oka ( key 20170510092824_B43) 1984; 259 Oliver ( key 20170510092824_B21) 2004; 32 Smulson ( key 20170510092824_B31) 1994; 33 Schreiber ( key 20170510092824_B15) 2002; 277 Yoshihara ( key 20170510092824_B48) 1977; 78 Ikejima ( key 20170510092824_B33) 1990; 265 Augustin ( key 20170510092824_B19) 2003; 116 2511329 - J Mol Biol. 1989 Nov 5;210(1):229-33 200230 - Biochem Biophys Res Commun. 1977 Oct 24;78(4):1281-8 6693407 - J Biol Chem. 1984 Jan 25;259(2):986-95 11590148 - J Biol Chem. 2001 Dec 7;276(49):45588-97 18055453 - J Biol Chem. 2008 Feb 15;283(7):4105-14 1648406 - Biochim Biophys Acta. 1991 Jun 24;1078(2):179-86 16959969 - Microbiol Mol Biol Rev. 2006 Sep;70(3):789-829 12448766 - Folia Biol (Praha). 2002;48(5):182-91 6270088 - J Biol Chem. 1981 Sep 25;256(18):9483-9 9211323 - Methods Enzymol. 1997;280:275-87 6089879 - Biochemistry. 1984 Jul 31;23(16):3721-5 2891139 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8370-4 17360427 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3765-70 3121314 - Eur J Biochem. 1987 Dec 1;169(2):365-72 18353725 - Trends Mol Med. 2008 Apr;14(4):169-78 3155867 - Radiat Res. 1985 Jan;101(1):4-15 2109322 - Proc Natl Acad Sci U S A. 1990 Apr;87(8):2990-4 17889652 - Cell. 2007 Sep 21;130(6):1095-107 12960163 - J Biol Chem. 2003 Nov 14;278(46):45145-53 8431431 - Biochemistry. 1993 Feb 16;32(6):1528-34 8631841 - J Biol Chem. 1996 May 3;271(18):10461-9 3113420 - Biochem Biophys Res Commun. 1987 Jul 31;146(2):403-9 8193132 - Biochemistry. 1994 May 24;33(20):6186-91 18452307 - Biochemistry. 2008 May 27;47(21):5804-13 17991682 - Nucleic Acids Res. 2007;35(21):e143 11847309 - Science. 2002 Mar 8;295(5561):1895-7 8048960 - Biochem Biophys Res Commun. 1994 Jul 29;202(2):880-7 10455009 - Biochem J. 1999 Sep 1;342 ( Pt 2):249-68 10194306 - Biochemistry. 1999 Mar 30;38(13):3948-53 18436469 - Int J Biochem Cell Biol. 2008;40(10):2274-83 16262266 - Biochemistry. 2005 Nov 8;44(44):14670-81 14741207 - J Mol Biol. 2004 Feb 6;336(1):105-14 8390463 - J Biol Chem. 1993 Jun 25;268(18):13454-61 16204234 - J Biol Chem. 2005 Dec 9;280(49):40450-64 12872005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9202-7 4333419 - Biochem Biophys Res Commun. 1972 Jan 31;46(2):516-23 12640039 - J Cell Sci. 2003 Apr 15;116(Pt 8):1551-62 16829982 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):517-28 14739238 - Nucleic Acids Res. 2004;32(2):456-64 14019961 - Biochem Biophys Res Commun. 1963 Apr 2;11:39-43 11948190 - J Biol Chem. 2002 Jun 21;277(25):23028-36 1505517 - EMBO J. 1992 Sep;11(9):3263-9 3081511 - J Biol Chem. 1986 Mar 15;261(8):3863-8 6477891 - Biochemistry. 1984 Jul 31;23(16):3726-30 10694879 - Trends Biochem Sci. 2000 Mar;25(3):112-4 8755499 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7481-5 2123876 - J Biol Chem. 1990 Dec 15;265(35):21907-13 6772638 - J Biol Chem. 1980 Aug 25;255(16):7616-20 17981777 - Front Biosci. 2008;13:3046-82 |
| References_xml | – volume: 146 start-page: 403 year: 1987 ident: key 20170510092824_B3 article-title: Molecular cloning of cDNA for human poly(ADP-ribose) polymerase and expression of its gene during HL-60 cell differentiation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(87)90543-2 – volume: 116 start-page: 1551 year: 2003 ident: key 20170510092824_B19 article-title: PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression publication-title: J. Cell Sci. doi: 10.1242/jcs.00341 – volume: 336 start-page: 105 year: 2004 ident: key 20170510092824_B29 article-title: The 40 kDa carboxy-terminal domain of poly(ADP-ribose) polymerase-1 forms catalytically competent homo- and heterodimers in the absence of DNA publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.11.055 – volume: 277 start-page: 23028 year: 2002 ident: key 20170510092824_B15 article-title: Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M202390200 – volume: 40 start-page: 2274 year: 2008 ident: key 20170510092824_B44 article-title: Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2008.03.008 – volume: 271 start-page: 10461 year: 1996 ident: key 20170510092824_B30 article-title: Glycation and glycoxidation of histones by ADP-ribose publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.18.10461 – volume: 13 start-page: 3046 year: 2008 ident: key 20170510092824_B1 article-title: The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases publication-title: Front. Biosci. doi: 10.2741/2909 – volume: 25 start-page: 112 year: 2000 ident: key 20170510092824_B17 article-title: SAP – a putative DNA-binding motif involved in chromosomal organization publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(99)01537-6 – volume: 130 start-page: 1095 year: 2007 ident: key 20170510092824_B36 article-title: Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival publication-title: Cell doi: 10.1016/j.cell.2007.07.035 – volume: 295 start-page: 1895 year: 2002 ident: key 20170510092824_B37 article-title: Regulation of corepressor function by nuclear NADH publication-title: Science doi: 10.1126/science.1069300 – volume: 256 start-page: 9483 year: 1981 ident: key 20170510092824_B23 article-title: Multiple autopoly(ADP-ribosyl)ation of rat liver poly(ADP-ribose) synthetase. Mode of modification and properties of automodified synthetase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)68788-0 – volume: 169 start-page: 365 year: 1987 ident: key 20170510092824_B49 article-title: Poly(ADP-ribose) synthase is the major endogenous nonhistone acceptor for poly(ADP-ribose) in alkylated rat hepatoma cells publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1987.tb13621.x – volume: 78 start-page: 1281 year: 1977 ident: key 20170510092824_B48 article-title: Enzyme-bound early product of purified poly(ADP-ribose) polymerase publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(77)91431-0 – volume: 1078 start-page: 179 year: 1991 ident: key 20170510092824_B14 article-title: Enzymological properties of poly(ADP-ribose)polymerase: characterization of automodification sites and NADase activity publication-title: Biochim. Biophys. Acta. doi: 10.1016/0167-4838(91)99007-F – volume: 276 start-page: 45588 year: 2001 ident: key 20170510092824_B47 article-title: The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function publication-title: J. Biol. Chem. doi: 10.1074/jbc.M106528200 – volume: 38 start-page: 3948 year: 1999 ident: key 20170510092824_B22 article-title: Biochemical characterization of mono(ADP-ribosyl)ated poly(ADP-ribose) polymerase publication-title: Biochemistry doi: 10.1021/bi982148p – volume: 11 start-page: 39 year: 1963 ident: key 20170510092824_B7 article-title: Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(63)90024-X – volume: 104 start-page: 3765 year: 2007 ident: key 20170510092824_B39 article-title: Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0609211104 – volume: 278 start-page: 45145 year: 2003 ident: key 20170510092824_B25 article-title: Transcriptional coactivation of nuclear factor-kappaB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M307957200 – volume: 210 start-page: 229 year: 1989 ident: key 20170510092824_B34 article-title: Zinc-binding domain of poly(ADP-ribose)polymerase participates in the recognition of single strand breaks on DNA publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(89)90302-1 – volume: 280 start-page: 275 year: 1997 ident: key 20170510092824_B40 article-title: Preparation of low molecular weight model conjugates for ADP-ribose linkages to protein publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(97)80119-X – volume: 259 start-page: 986 year: 1984 ident: key 20170510092824_B43 article-title: ADP-ribosyl protein lyase. Purification, properties, and identification of the product publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)43555-1 – volume: 261 start-page: 3863 year: 1986 ident: key 20170510092824_B5 article-title: Reconstitution and poly(ADP-ribosyl)ation of proteolytically fragmented poly(ADP-ribose) synthetase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)35726-5 – volume: 70 start-page: 789 year: 2006 ident: key 20170510092824_B2 article-title: Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00040-05 – volume: 7 start-page: 517 year: 2006 ident: key 20170510092824_B16 article-title: Poly(ADP-ribose): novel functions for an old molecule publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1963 – volume: 35 start-page: e143 year: 2007 ident: key 20170510092824_B27 article-title: Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm944 – volume: 23 start-page: 3726 year: 1984 ident: key 20170510092824_B45 article-title: A relationship between nuclear poly(adenosine diphosphate ribosylation) and acetylation posttranslational modifications. 2. Histone studies publication-title: Biochemistry doi: 10.1021/bi00311a024 – volume: 48 start-page: 182 year: 2002 ident: key 20170510092824_B20 article-title: Cloning and expression of PARP-3 (Adprt3) and U3-55k, two genes closely linked on mouse chromosome 9 publication-title: Folia Biol. (Praha) – volume: 23 start-page: 3721 year: 1984 ident: key 20170510092824_B46 article-title: A relationship between nuclear poly(adenosine diphosphate ribosylation) and acetylation posttranslational modifications. 1. Nucleosome studies publication-title: Biochemistry doi: 10.1021/bi00311a023 – volume: 11 start-page: 3263 year: 1992 ident: key 20170510092824_B12 article-title: The human poly(ADP-ribose) polymerase nuclear localization signal is a bipartite element functionally separate from DNA binding and catalytic activity publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05404.x – volume: 44 start-page: 14670 year: 2005 ident: key 20170510092824_B13 article-title: DNA-induced dimerization of poly(ADP-ribose) polymerase-1 triggers its activation publication-title: Biochemistry doi: 10.1021/bi050755o – volume: 101 start-page: 4 year: 1985 ident: key 20170510092824_B6 article-title: Poly(ADP-ribose) in the cellular response to DNA damage publication-title: Radiat. Res. doi: 10.2307/3576299 – volume: 14 start-page: 169 year: 2008 ident: key 20170510092824_B18 article-title: Toward specific functions of poly(ADP-ribose) polymerase-2 publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2008.02.003 – volume: 47 start-page: 5804 year: 2008 ident: key 20170510092824_B10 article-title: Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif publication-title: Biochemistry doi: 10.1021/bi800018a – volume: 93 start-page: 7481 year: 1996 ident: key 20170510092824_B8 article-title: Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.93.15.7481 – volume: 87 start-page: 2990 year: 1990 ident: key 20170510092824_B35 article-title: The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.87.8.2990 – volume: 32 start-page: 456 year: 2004 ident: key 20170510092824_B21 article-title: Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh215 – volume: 280 start-page: 40450 year: 2005 ident: key 20170510092824_B26 article-title: Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M507553200 – volume: 283 start-page: 4105 year: 2008 ident: key 20170510092824_B11 article-title: A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M708558200 – volume: 202 start-page: 880 year: 1994 ident: key 20170510092824_B32 article-title: Expression and characterization of a fusion protein between the catalytic domain of poly(ADP-ribose) polymerase and the DNA binding domain of the glucocorticoid receptor publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1994.2012 – volume: 46 start-page: 516 year: 1972 ident: key 20170510092824_B42 article-title: Poly ADP-ribose glycohydrolase from rat liver nuclei, a novel enzyme degrading the polymer publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(72)80169-4 – volume: 32 start-page: 1528 year: 1993 ident: key 20170510092824_B41 article-title: Protein glycation by ADP-ribose: studies of model conjugates publication-title: Biochemistry doi: 10.1021/bi00057a017 – volume: 342 (Pt 2) start-page: 249 year: 1999 ident: key 20170510092824_B9 article-title: Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions publication-title: Biochem. J. doi: 10.1042/0264-6021:3420249 – volume: 268 start-page: 13454 year: 1993 ident: key 20170510092824_B28 article-title: The carboxyl-terminal domain of human poly(ADP-ribose) polymerase. Overproduction in Escherichia coli, large scale purification, and characterization publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)38671-5 – volume: 265 start-page: 21907 year: 1990 ident: key 20170510092824_B33 article-title: The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. Other structures recognize intact DNA publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)45824-3 – volume: 84 start-page: 8370 year: 1987 ident: key 20170510092824_B4 article-title: cDNA sequence, protein structure, and chromosomal location of the human gene for poly(ADP-ribose) polymerase publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.84.23.8370 – volume: 33 start-page: 6186 year: 1994 ident: key 20170510092824_B31 article-title: Deletion mutants of poly(ADP-ribose) polymerase support a model of cyclic association and dissociation of enzyme from DNA ends during DNA repair publication-title: Biochemistry doi: 10.1021/bi00186a018 – volume: 255 start-page: 7616 year: 1980 ident: key 20170510092824_B24 article-title: ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)43873-8 – volume: 100 start-page: 9202 year: 2003 ident: key 20170510092824_B38 article-title: Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1633591100 – reference: 2109322 - Proc Natl Acad Sci U S A. 1990 Apr;87(8):2990-4 – reference: 17889652 - Cell. 2007 Sep 21;130(6):1095-107 – reference: 6693407 - J Biol Chem. 1984 Jan 25;259(2):986-95 – reference: 18436469 - Int J Biochem Cell Biol. 2008;40(10):2274-83 – reference: 8193132 - Biochemistry. 1994 May 24;33(20):6186-91 – reference: 6477891 - Biochemistry. 1984 Jul 31;23(16):3726-30 – reference: 16204234 - J Biol Chem. 2005 Dec 9;280(49):40450-64 – reference: 16959969 - Microbiol Mol Biol Rev. 2006 Sep;70(3):789-829 – reference: 18055453 - J Biol Chem. 2008 Feb 15;283(7):4105-14 – reference: 8631841 - J Biol Chem. 1996 May 3;271(18):10461-9 – reference: 6270088 - J Biol Chem. 1981 Sep 25;256(18):9483-9 – reference: 18452307 - Biochemistry. 2008 May 27;47(21):5804-13 – reference: 17991682 - Nucleic Acids Res. 2007;35(21):e143 – reference: 12448766 - Folia Biol (Praha). 2002;48(5):182-91 – reference: 11590148 - J Biol Chem. 2001 Dec 7;276(49):45588-97 – reference: 10194306 - Biochemistry. 1999 Mar 30;38(13):3948-53 – reference: 6772638 - J Biol Chem. 1980 Aug 25;255(16):7616-20 – reference: 1505517 - EMBO J. 1992 Sep;11(9):3263-9 – reference: 14019961 - Biochem Biophys Res Commun. 1963 Apr 2;11:39-43 – reference: 200230 - Biochem Biophys Res Commun. 1977 Oct 24;78(4):1281-8 – reference: 8755499 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7481-5 – reference: 14739238 - Nucleic Acids Res. 2004;32(2):456-64 – reference: 12872005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9202-7 – reference: 2123876 - J Biol Chem. 1990 Dec 15;265(35):21907-13 – reference: 11847309 - Science. 2002 Mar 8;295(5561):1895-7 – reference: 8390463 - J Biol Chem. 1993 Jun 25;268(18):13454-61 – reference: 16829982 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):517-28 – reference: 14741207 - J Mol Biol. 2004 Feb 6;336(1):105-14 – reference: 4333419 - Biochem Biophys Res Commun. 1972 Jan 31;46(2):516-23 – reference: 2511329 - J Mol Biol. 1989 Nov 5;210(1):229-33 – reference: 16262266 - Biochemistry. 2005 Nov 8;44(44):14670-81 – reference: 17981777 - Front Biosci. 2008;13:3046-82 – reference: 12640039 - J Cell Sci. 2003 Apr 15;116(Pt 8):1551-62 – reference: 9211323 - Methods Enzymol. 1997;280:275-87 – reference: 17360427 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3765-70 – reference: 8431431 - Biochemistry. 1993 Feb 16;32(6):1528-34 – reference: 12960163 - J Biol Chem. 2003 Nov 14;278(46):45145-53 – reference: 3155867 - Radiat Res. 1985 Jan;101(1):4-15 – reference: 3081511 - J Biol Chem. 1986 Mar 15;261(8):3863-8 – reference: 3113420 - Biochem Biophys Res Commun. 1987 Jul 31;146(2):403-9 – reference: 10694879 - Trends Biochem Sci. 2000 Mar;25(3):112-4 – reference: 8048960 - Biochem Biophys Res Commun. 1994 Jul 29;202(2):880-7 – reference: 10455009 - Biochem J. 1999 Sep 1;342 ( Pt 2):249-68 – reference: 6089879 - Biochemistry. 1984 Jul 31;23(16):3721-5 – reference: 1648406 - Biochim Biophys Acta. 1991 Jun 24;1078(2):179-86 – reference: 18353725 - Trends Mol Med. 2008 Apr;14(4):169-78 – reference: 3121314 - Eur J Biochem. 1987 Dec 1;169(2):365-72 – reference: 2891139 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8370-4 – reference: 11948190 - J Biol Chem. 2002 Jun 21;277(25):23028-36 |
| SSID | ssj0014154 |
| Score | 2.4611921 |
| Snippet | Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive... |
| SourceID | pubmedcentral proquest pubmed crossref oup istex fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3723 |
| SubjectTerms | active sites Adenosine diphosphate Catalytic Domain Cell Cycle Proteins - chemistry Cell Cycle Proteins - metabolism Deoxyribonucleic acid DNA DNA - metabolism DNA-binding domains glutamic acid Glutamic Acid - metabolism Humans lysine Lysine - metabolism NAD (coenzyme) NAD ADP-ribosyltransferase nucleic acids Nucleic Acids Enzymes Poly (ADP-Ribose) Polymerase-1 Poly Adenosine Diphosphate Ribose - metabolism Poly(ADP-ribose) Polymerases - chemistry Poly(ADP-ribose) Polymerases - metabolism Protein Multimerization Protein Structure, Tertiary recombinant fusion proteins |
| Title | Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites |
| URI | https://api.istex.fr/ark:/67375/HXZ-TWH2TDGL-T/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/19372272 https://www.proquest.com/docview/200652911 https://www.proquest.com/docview/20076203 https://www.proquest.com/docview/46306706 https://www.proquest.com/docview/67410568 https://pubmed.ncbi.nlm.nih.gov/PMC2699514 |
| Volume | 37 |
| WOSCitedRecordID | wos000267441800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: 开放获取期刊(Open Access Journals) customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Open Access: Oxford University Press Open Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: TOX dateStart: 19960101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZohQQXHi20obBYAlX0EDWJYzs5rlrKHkpZQQoRl8hrOyXqbrJKtoj8e8Z50a1a4OxxHp5J5hvP-BuE3jJfkoBDdOIpJWyfp74d-JTahKZOCnhEO037tq-n_OwsiONw2hXRVLek8ENymIvy8OJy6XnmmJ5LA2PN0ad4yBWAC2pJohpOTT_oSUjXpq65nY1UFABGzTr-unGw7Rq-vFkmec3vnDz-zyd-gh51wBKPW0t4iu7pfAttj3MIqhc13sdNqWezh76FHhz1bd62Uf2xb5CLF9ocA86qBS5SvCzm9bvx8dQus1lR1fODRoV4VuPp-PPUxSJXOFNdrVE7BrMMwUmuMcTwmYLXxKLCwzU0FtIU0RQlNinr6hk6P3kfHU3srh-DLQEkrWzQnjB5QxYoiKsk0ST0BSMaIArlSjLi6tQEICmXxHUFIA_hEE19N5SK-Y4iz9FmXuR6F2HiAO6cSUenUhhMFlLiKEmVI0M3hRDLQge9uhLZkZWbnhnzpE2akwTWOGnX2EJvBtllS9Fxq9QuaD0RF_DvTM6_eCZja7jUGIGb7TemMMwW5aWpd-M0mcTfk-jbxIuOP5wmkYVGYCt_vcleb0ZJ9y-oTKNPRj1wKhZ6PYyCkk1mRuS6uGpEwCk55G4Jn5nYzmF3SzBuKnZZYKGd1mz_PCdAUM_jnoX4mkEPAoZifH0kz340VOMeCwGC-y_-9eJ76GGbZjPbUy_R5qq80q_QfflzlVXlCG3wOBg12x2j5tv9DSNMPZs |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+mechanism+of+poly%28ADP-ribosyl%29ation+by+PARP1+and+identification+of+lysine+residues+as+ADP-ribose+acceptor+sites&rft.jtitle=Nucleic+acids+research&rft.au=Altmeyer%2C+Matthias&rft.au=Messner%2C+Simon&rft.au=Hassa%2C+Paul+O.&rft.au=Fey%2C+Monika&rft.date=2009-06-01&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=37&rft.issue=11&rft.spage=3723&rft.epage=3738&rft_id=info:doi/10.1093%2Fnar%2Fgkp229&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_HXZ_TWH2TDGL_T |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |