Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites

Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we el...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nucleic acids research Ročník 37; číslo 11; s. 3723 - 3738
Hlavní autori: Altmeyer, Matthias, Messner, Simon, Hassa, Paul O, Fey, Monika, Hottiger, Michael O
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 01.06.2009
Oxford Publishing Limited (England)
Predmet:
ISSN:0305-1048, 1362-4962, 1362-4962
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased Vmax and decreased the Km for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members.
AbstractList Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased V max and decreased the K m for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members.
Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased Vmax and decreased the Km for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members.
Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased V(max) and decreased the K(m) for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members.
Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased V[sub]max and decreased the K[sub]m for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members.
Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased V(max) and decreased the K(m) for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members.Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased V(max) and decreased the K(m) for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members.
Author Hottiger, Michael O.
Messner, Simon
Fey, Monika
Hassa, Paul O.
Altmeyer, Matthias
AuthorAffiliation 1 Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland, 2 Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and 3 European Molecular Biology Laboratory (EMBL), Gene Expression Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
AuthorAffiliation_xml – name: 1 Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland, 2 Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and 3 European Molecular Biology Laboratory (EMBL), Gene Expression Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
Author_xml – sequence: 1
  fullname: Altmeyer, Matthias
– sequence: 2
  fullname: Messner, Simon
– sequence: 3
  fullname: Hassa, Paul O
– sequence: 4
  fullname: Fey, Monika
– sequence: 5
  fullname: Hottiger, Michael O
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19372272$$D View this record in MEDLINE/PubMed
BookMark eNqF0l1rFDEUBuAgFbut3vgDNAiKCmNPPiazcyMsrXaFFRfdongTspnMNu1sMiYz4vx7U6cuWsRe5SLPeck5OQdoz3lnEHpI4BWBkh05FY42ly2l5R00IUzQjJeC7qEJMMgzAny6jw5ivAAgnOT8HtonJSsoLegEDe99Y3TfqIC3Rp8rZ-MW-xq3vhmez06WWbBrH4fmheqsd3g94OXs45Jg5SpsK-M6W1s93qWqZojWGRxMtFVvIlYR7zIMVlqbtvMBR9uZeB_drVUTzYPr8xCdvX2zOp5niw-n745ni0wLyrqshlpxNqViWhFeamZYyZVgBug0LyotGDE1iCKvC80IUZRSBczknJS6Ehwqdohej7ltv96aSqc3B9XINtitCoP0ysq_b5w9lxv_XVJRljnhKeDZdUDw31JXndzaqE3TKGd8H6UoOIFcTG-FXLD0UhC3QgpQCAoswSc34IXvg0vjujIipyUhCT36s8FdZ78_OQEYgQ4-xmBqqW33689Sv7aRBOTVHsm0R3Lco1Ty8kbJLvVf-OmIfd_-32Wjs7EzP3ZShcs0Q1bkcv7lq1x9ntPVyelCrpJ_PPpaeak2wUZ59okCYUAEL9Iw2U81-O8g
CODEN NARHAD
CitedBy_id crossref_primary_10_1016_j_chembiol_2018_09_008
crossref_primary_10_3390_cancers12071813
crossref_primary_10_1089_ars_2017_7269
crossref_primary_10_1038_s41467_017_02253_1
crossref_primary_10_1002_ange_202200977
crossref_primary_10_1002_cbic_202400440
crossref_primary_10_1038_ncomms2672
crossref_primary_10_1038_nsmb_2523
crossref_primary_10_1093_nar_gkv1383
crossref_primary_10_1021_jasms_0c00040
crossref_primary_10_1016_j_mrrev_2017_09_004
crossref_primary_10_1002_med_21442
crossref_primary_10_1186_s12929_022_00870_7
crossref_primary_10_1016_j_molcel_2010_06_017
crossref_primary_10_1016_j_cell_2024_01_015
crossref_primary_10_1016_j_molcel_2013_08_025
crossref_primary_10_1016_j_molcel_2013_08_026
crossref_primary_10_1515_hsz_2021_0382
crossref_primary_10_1038_nrm3376
crossref_primary_10_1016_j_bbapap_2014_07_012
crossref_primary_10_1016_j_mam_2013_01_005
crossref_primary_10_1016_j_mam_2013_01_004
crossref_primary_10_3390_cancers13246385
crossref_primary_10_1016_j_mam_2013_01_007
crossref_primary_10_1016_j_dnarep_2022_103382
crossref_primary_10_1017_erm_2024_14
crossref_primary_10_1002_ange_202313317
crossref_primary_10_1096_fj_202001759R
crossref_primary_10_1038_ncomms12917
crossref_primary_10_1155_2014_917605
crossref_primary_10_1042_BSR20240986
crossref_primary_10_1186_1477_7827_7_143
crossref_primary_10_1111_febs_12315
crossref_primary_10_1016_j_bbcan_2025_189282
crossref_primary_10_1016_j_molcel_2016_11_015
crossref_primary_10_1016_j_arr_2023_102078
crossref_primary_10_1074_jbc_M112_397067
crossref_primary_10_1096_fj_09_137695
crossref_primary_10_1016_j_ejmech_2020_112570
crossref_primary_10_1016_j_bcp_2018_09_028
crossref_primary_10_1007_s00018_012_1003_8
crossref_primary_10_1101_gad_183509_111
crossref_primary_10_1080_15257770_2014_984073
crossref_primary_10_1016_j_jmb_2019_05_028
crossref_primary_10_1016_j_cbi_2015_05_019
crossref_primary_10_1016_j_chembiol_2015_03_007
crossref_primary_10_1111_febs_16907
crossref_primary_10_3389_fmicb_2021_811671
crossref_primary_10_15252_embj_2020104542
crossref_primary_10_1016_j_biochi_2015_03_016
crossref_primary_10_1038_nsmb_1664
crossref_primary_10_15252_embj_2018100024
crossref_primary_10_1016_j_semcdb_2018_04_013
crossref_primary_10_1016_j_sbi_2012_08_005
crossref_primary_10_1016_j_molcel_2015_05_007
crossref_primary_10_1038_nrm3601
crossref_primary_10_1016_j_jaut_2009_11_013
crossref_primary_10_1016_j_heliyon_2022_e09600
crossref_primary_10_1016_j_neo_2014_03_002
crossref_primary_10_1134_S0026893316040038
crossref_primary_10_1073_pnas_1405005111
crossref_primary_10_1073_pnas_2107277118
crossref_primary_10_1038_onc_2010_338
crossref_primary_10_1515_hsz_2019_0182
crossref_primary_10_1016_j_molcel_2016_07_006
crossref_primary_10_1134_S0026893315010094
crossref_primary_10_1016_j_bmcl_2013_02_094
crossref_primary_10_1016_j_mam_2013_02_002
crossref_primary_10_3389_fonc_2020_573502
crossref_primary_10_1038_srep34487
crossref_primary_10_1111_febs_15518
crossref_primary_10_1016_j_sbi_2013_01_003
crossref_primary_10_1186_1478_811X_11_5
crossref_primary_10_1186_s12964_022_00932_1
crossref_primary_10_1083_jcb_202101021
crossref_primary_10_1158_0008_5472_CAN_13_1701
crossref_primary_10_1038_nsmb_2335
crossref_primary_10_1038_nrc2812
crossref_primary_10_1007_s00018_017_2717_4
crossref_primary_10_1038_s41467_024_47222_7
crossref_primary_10_1016_j_ab_2012_06_015
crossref_primary_10_1126_science_1221870
crossref_primary_10_1093_nar_gkaa307
crossref_primary_10_1080_10409238_2017_1394265
crossref_primary_10_1042_BJ20141554
crossref_primary_10_1002_mco2_70314
crossref_primary_10_1038_cddis_2016_345
crossref_primary_10_1111_febs_12358
crossref_primary_10_1111_j_1742_4658_2011_08286_x
crossref_primary_10_1158_1078_0432_CCR_10_0523
crossref_primary_10_1002_med_21300
crossref_primary_10_1111_cpr_12268
crossref_primary_10_1074_jbc_M110_202507
crossref_primary_10_1016_j_neuint_2014_07_001
crossref_primary_10_1128_MCB_00827_09
crossref_primary_10_1016_j_tibs_2009_12_003
crossref_primary_10_1007_s00726_010_0676_2
crossref_primary_10_1016_j_plaphy_2011_02_004
crossref_primary_10_1093_nar_gku474
crossref_primary_10_1016_j_freeradbiomed_2016_11_039
crossref_primary_10_1042_BSR20212489
crossref_primary_10_1016_j_biochi_2015_02_010
crossref_primary_10_1016_j_molcel_2015_06_006
crossref_primary_10_1073_pnas_0906753106
crossref_primary_10_1093_nar_gkz120
crossref_primary_10_3389_fphar_2019_00172
crossref_primary_10_1104_pp_109_142786
crossref_primary_10_1038_s41467_019_08530_5
crossref_primary_10_1111_jipb_12530
crossref_primary_10_1016_j_dnarep_2021_103125
crossref_primary_10_1134_S0006297920010095
crossref_primary_10_1093_biolre_iox137
crossref_primary_10_1371_journal_pbio_1000428
crossref_primary_10_1016_j_ijbiomac_2024_139046
crossref_primary_10_1016_j_molcel_2015_06_012
crossref_primary_10_1093_nar_gku288
crossref_primary_10_1146_annurev_biochem_061809_174504
crossref_primary_10_1074_jbc_M110_175190
crossref_primary_10_1111_febs_12298
crossref_primary_10_1016_j_jplph_2016_03_020
crossref_primary_10_1080_17460794_2025_2465178
crossref_primary_10_1111_j_1349_7006_2011_02152_x
crossref_primary_10_1038_s41598_024_58076_w
crossref_primary_10_1016_j_bbamcr_2016_09_019
crossref_primary_10_3390_challe9010024
crossref_primary_10_1186_s12870_019_1958_9
crossref_primary_10_1586_epr_11_63
crossref_primary_10_1002_cmdc_201500391
crossref_primary_10_1016_j_bcp_2010_04_022
crossref_primary_10_1093_nar_gkx446
crossref_primary_10_1038_ncomms5426
crossref_primary_10_3390_cancers14174162
crossref_primary_10_1093_nar_gkx565
crossref_primary_10_1016_j_bbrc_2022_06_070
crossref_primary_10_1128_MCB_00196_15
crossref_primary_10_1038_nchembio_2568
crossref_primary_10_1016_j_semcdb_2016_09_011
crossref_primary_10_1038_s41598_019_39542_2
crossref_primary_10_1016_j_febslet_2011_03_031
crossref_primary_10_3390_biom3010001
crossref_primary_10_1007_s10482_017_0951_2
crossref_primary_10_1093_nar_gkq463
crossref_primary_10_1016_j_cell_2010_08_016
crossref_primary_10_1038_cddis_2016_58
crossref_primary_10_1093_toxsci_kfab110
crossref_primary_10_1093_nar_gkw442
crossref_primary_10_1016_j_jmb_2009_09_032
crossref_primary_10_1038_s41388_018_0615_3
crossref_primary_10_1016_j_bcp_2024_116045
crossref_primary_10_1038_s42003_022_04241_8
crossref_primary_10_1016_j_ejmech_2020_112712
crossref_primary_10_1016_j_str_2012_12_019
crossref_primary_10_1002_em_22623
crossref_primary_10_3390_cells8121625
crossref_primary_10_1186_1472_6807_11_37
crossref_primary_10_1002_1878_0261_12390
crossref_primary_10_1016_j_gde_2010_06_001
crossref_primary_10_1016_j_isci_2023_107917
crossref_primary_10_1042_BST20180418
crossref_primary_10_3389_fphys_2017_00916
crossref_primary_10_1016_j_ajpath_2010_12_004
crossref_primary_10_3389_fonc_2020_00570
crossref_primary_10_3390_cells11233853
crossref_primary_10_3390_medicines7090054
crossref_primary_10_1016_j_dnarep_2014_03_005
crossref_primary_10_1042_BCJ20230230
crossref_primary_10_1002_biof_1688
crossref_primary_10_1016_j_molcel_2021_11_014
crossref_primary_10_1073_pnas_1713912115
crossref_primary_10_1016_j_celrep_2025_115737
crossref_primary_10_1016_j_bcp_2019_03_037
crossref_primary_10_1016_j_dnarep_2025_103845
crossref_primary_10_1146_annurev_biochem_060614_034506
crossref_primary_10_1016_j_mrfmmm_2011_10_012
crossref_primary_10_3390_ijms24108766
crossref_primary_10_1016_j_jmb_2011_01_034
crossref_primary_10_1021_ja906135d
crossref_primary_10_1128_MMBR_00038_18
crossref_primary_10_3390_v14092049
crossref_primary_10_1016_j_pharmthera_2021_107968
crossref_primary_10_1074_jbc_M109_077834
crossref_primary_10_3389_fphar_2025_1578342
crossref_primary_10_1016_j_mrfmmm_2013_07_001
crossref_primary_10_1074_jbc_M115_646638
crossref_primary_10_1016_j_jmb_2019_12_019
crossref_primary_10_1155_2012_321653
crossref_primary_10_1016_j_dnarep_2014_09_004
crossref_primary_10_1016_j_mam_2012_12_005
crossref_primary_10_1134_S0006297922140048
crossref_primary_10_3390_cancers11101493
crossref_primary_10_1021_acschembio_4c00582
crossref_primary_10_1002_anie_202313317
crossref_primary_10_3389_fphar_2020_00170
crossref_primary_10_1016_j_ejmech_2019_01_024
crossref_primary_10_3390_ijms20122999
crossref_primary_10_3892_ol_2017_6771
crossref_primary_10_1093_nar_gkw710
crossref_primary_10_1098_rsob_120173
crossref_primary_10_1016_j_arr_2024_102206
crossref_primary_10_1016_j_dnarep_2025_103841
crossref_primary_10_1016_j_dnarep_2015_02_004
crossref_primary_10_1016_j_ejmech_2012_02_001
crossref_primary_10_1126_science_1216338
crossref_primary_10_1038_nrc3748
crossref_primary_10_1016_j_mad_2015_04_001
crossref_primary_10_2147_CMAR_S346052
crossref_primary_10_1158_1541_7786_MCR_20_0839
crossref_primary_10_3390_cells10030599
crossref_primary_10_1074_jbc_M110_105668
crossref_primary_10_1016_j_molcel_2015_10_013
crossref_primary_10_1002_jcb_26585
crossref_primary_10_1016_j_tcb_2011_06_001
crossref_primary_10_1016_j_mrfmmm_2012_06_003
crossref_primary_10_1038_s41598_018_26450_0
crossref_primary_10_1038_emboj_2013_83
crossref_primary_10_1158_0008_5472_CAN_10_0528
crossref_primary_10_1111_pbi_13490
crossref_primary_10_1371_journal_pone_0037287
crossref_primary_10_1038_s41419_023_05968_w
crossref_primary_10_1126_science_1202723
crossref_primary_10_3389_fphar_2024_1421816
crossref_primary_10_1002_anie_202200977
crossref_primary_10_1016_j_ab_2012_10_029
crossref_primary_10_1016_j_leukres_2016_03_007
crossref_primary_10_1093_nar_gkae756
crossref_primary_10_1016_j_jmb_2023_168207
crossref_primary_10_1016_j_dnarep_2010_02_011
crossref_primary_10_1093_nar_gkaa718
crossref_primary_10_1016_j_chembiol_2017_08_027
crossref_primary_10_3389_fmicb_2024_1397688
crossref_primary_10_1016_j_lfs_2021_119556
crossref_primary_10_1016_j_dnarep_2013_07_001
crossref_primary_10_3390_biology10020163
Cites_doi 10.1016/0006-291X(87)90543-2
10.1242/jcs.00341
10.1016/j.jmb.2003.11.055
10.1074/jbc.M202390200
10.1016/j.biocel.2008.03.008
10.1074/jbc.271.18.10461
10.2741/2909
10.1016/S0968-0004(99)01537-6
10.1016/j.cell.2007.07.035
10.1126/science.1069300
10.1016/S0021-9258(19)68788-0
10.1111/j.1432-1033.1987.tb13621.x
10.1016/0006-291X(77)91431-0
10.1016/0167-4838(91)99007-F
10.1074/jbc.M106528200
10.1021/bi982148p
10.1016/0006-291X(63)90024-X
10.1073/pnas.0609211104
10.1074/jbc.M307957200
10.1016/0022-2836(89)90302-1
10.1016/S0076-6879(97)80119-X
10.1016/S0021-9258(17)43555-1
10.1016/S0021-9258(17)35726-5
10.1128/MMBR.00040-05
10.1038/nrm1963
10.1093/nar/gkm944
10.1021/bi00311a024
10.1021/bi00311a023
10.1002/j.1460-2075.1992.tb05404.x
10.1021/bi050755o
10.2307/3576299
10.1016/j.molmed.2008.02.003
10.1021/bi800018a
10.1073/pnas.93.15.7481
10.1073/pnas.87.8.2990
10.1093/nar/gkh215
10.1074/jbc.M507553200
10.1074/jbc.M708558200
10.1006/bbrc.1994.2012
10.1016/S0006-291X(72)80169-4
10.1021/bi00057a017
10.1042/0264-6021:3420249
10.1016/S0021-9258(19)38671-5
10.1016/S0021-9258(18)45824-3
10.1073/pnas.84.23.8370
10.1021/bi00186a018
10.1016/S0021-9258(19)43873-8
10.1073/pnas.1633591100
ContentType Journal Article
Copyright 2009 The Author(s) 2009
2009 The Author(s)
Copyright_xml – notice: 2009 The Author(s) 2009
– notice: 2009 The Author(s)
DBID FBQ
BSCLL
TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1093/nar/gkp229
DatabaseName AGRIS
Istex
Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

MEDLINE
AGRICOLA
Virology and AIDS Abstracts
MEDLINE - Academic
Genetics Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Open Access: Oxford University Press Open Journals
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 3738
ExternalDocumentID PMC2699514
1762353241
19372272
10_1093_nar_gkp229
10.1093/nar/gkp229
ark_67375_HXZ_TWH2TDGL_T
US201301647630
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AEKPW
AENEX
AENZO
AEQTP
AFFNX
AFPKN
AFRAH
AFULF
AFYAG
AGKRT
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FBQ
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KC5
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OJZSN
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XFK
XSB
XSW
YSK
ZA5
ZKX
ZXP
~91
~D7
~KM
0R~
AAHBH
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABXVV
ABZEO
ACUKT
ACVCV
ACZBC
AEHUL
AFSHK
AGMDO
AGQPQ
AMNDL
APJGH
BSCLL
OVT
ACMRT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c623t-f0fa438268d149c3e394a63e02857dc631ef0675f7c311a222a03e5419cd640d3
IEDL.DBID TOX
ISICitedReferencesCount 293
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000267441800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-1048
1362-4962
IngestDate Tue Sep 30 15:53:14 EDT 2025
Fri Sep 05 11:23:19 EDT 2025
Fri Sep 05 10:01:44 EDT 2025
Mon Sep 08 01:56:14 EDT 2025
Mon Oct 06 17:13:32 EDT 2025
Mon Jul 21 05:16:15 EDT 2025
Sat Nov 29 02:59:01 EST 2025
Tue Nov 18 20:25:58 EST 2025
Wed Aug 28 03:25:05 EDT 2024
Sat Sep 20 11:01:55 EDT 2025
Wed Dec 27 19:25:52 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://creativecommons.org/licenses/by-nc/2.0/uk
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c623t-f0fa438268d149c3e394a63e02857dc631ef0675f7c311a222a03e5419cd640d3
Notes istex:19E8DAED79BE8D943A743A42A05C8FB1259128F8
ark:/67375/HXZ-TWH2TDGL-T
ArticleID:gkp229
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/nar/gkp229
PMID 19372272
PQID 200652911
PQPubID 36121
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2699514
proquest_miscellaneous_67410568
proquest_miscellaneous_46306706
proquest_miscellaneous_20076203
proquest_journals_200652911
pubmed_primary_19372272
crossref_citationtrail_10_1093_nar_gkp229
crossref_primary_10_1093_nar_gkp229
oup_primary_10_1093_nar_gkp229
istex_primary_ark_67375_HXZ_TWH2TDGL_T
fao_agris_US201301647630
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2009
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Chambon ( key 20170510092824_B7) 1963; 11
Rosenthal ( key 20170510092824_B32) 1994; 202
Suzuki ( key 20170510092824_B3) 1987; 146
Fjeld ( key 20170510092824_B38) 2003; 100
Berger ( key 20170510092824_B6) 1985; 101
Kawaichi ( key 20170510092824_B23) 1981; 256
D’Amours ( key 20170510092824_B9) 1999; 342 (Pt 2)
Zhang ( key 20170510092824_B37) 2002; 295
Yelamos ( key 20170510092824_B18) 2008; 14
Simonin ( key 20170510092824_B28) 1993; 268
Pion ( key 20170510092824_B13) 2005; 44
Fahrer ( key 20170510092824_B27) 2007; 35
Malik ( key 20170510092824_B46) 1984; 23
Gradwohl ( key 20170510092824_B35) 1990; 87
Kameshita ( key 20170510092824_B5) 1986; 261
Wong ( key 20170510092824_B45) 1984; 23
Cervantes-Laurean ( key 20170510092824_B41) 1993; 32
Menissier-de Murcia ( key 20170510092824_B34) 1989; 210
Berger ( key 20170510092824_B39) 2007; 104
Cervantes-Laurean ( key 20170510092824_B30) 1996; 271
Ogata ( key 20170510092824_B24) 1980; 255
Hassa ( key 20170510092824_B25) 2003; 278
Cervantes-Laurean ( key 20170510092824_B40) 1997; 280
Hassa ( key 20170510092824_B47) 2001; 276
Mendoza-Alvarez ( key 20170510092824_B29) 2004; 336
Adamietz ( key 20170510092824_B49) 1987; 169
Haenni ( key 20170510092824_B44) 2008; 40
Urbanek ( key 20170510092824_B20) 2002; 48
Desmarais ( key 20170510092824_B14) 1991; 1078
Cherney ( key 20170510092824_B4) 1987; 84
Ruf ( key 20170510092824_B8) 1996; 93
Schreiber ( key 20170510092824_B16) 2006; 7
Tao ( key 20170510092824_B10) 2008; 47
Langelier ( key 20170510092824_B11) 2008; 283
Yang ( key 20170510092824_B36) 2007; 130
Ueda ( key 20170510092824_B42) 1972; 46
Schreiber ( key 20170510092824_B12) 1992; 11
Mendoza-Alvarez ( key 20170510092824_B22) 1999; 38
Hassa ( key 20170510092824_B26) 2005; 280
Hassa ( key 20170510092824_B1) 2008; 13
Aravind ( key 20170510092824_B17) 2000; 25
Hassa ( key 20170510092824_B2) 2006; 70
Oka ( key 20170510092824_B43) 1984; 259
Oliver ( key 20170510092824_B21) 2004; 32
Smulson ( key 20170510092824_B31) 1994; 33
Schreiber ( key 20170510092824_B15) 2002; 277
Yoshihara ( key 20170510092824_B48) 1977; 78
Ikejima ( key 20170510092824_B33) 1990; 265
Augustin ( key 20170510092824_B19) 2003; 116
2511329 - J Mol Biol. 1989 Nov 5;210(1):229-33
200230 - Biochem Biophys Res Commun. 1977 Oct 24;78(4):1281-8
6693407 - J Biol Chem. 1984 Jan 25;259(2):986-95
11590148 - J Biol Chem. 2001 Dec 7;276(49):45588-97
18055453 - J Biol Chem. 2008 Feb 15;283(7):4105-14
1648406 - Biochim Biophys Acta. 1991 Jun 24;1078(2):179-86
16959969 - Microbiol Mol Biol Rev. 2006 Sep;70(3):789-829
12448766 - Folia Biol (Praha). 2002;48(5):182-91
6270088 - J Biol Chem. 1981 Sep 25;256(18):9483-9
9211323 - Methods Enzymol. 1997;280:275-87
6089879 - Biochemistry. 1984 Jul 31;23(16):3721-5
2891139 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8370-4
17360427 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3765-70
3121314 - Eur J Biochem. 1987 Dec 1;169(2):365-72
18353725 - Trends Mol Med. 2008 Apr;14(4):169-78
3155867 - Radiat Res. 1985 Jan;101(1):4-15
2109322 - Proc Natl Acad Sci U S A. 1990 Apr;87(8):2990-4
17889652 - Cell. 2007 Sep 21;130(6):1095-107
12960163 - J Biol Chem. 2003 Nov 14;278(46):45145-53
8431431 - Biochemistry. 1993 Feb 16;32(6):1528-34
8631841 - J Biol Chem. 1996 May 3;271(18):10461-9
3113420 - Biochem Biophys Res Commun. 1987 Jul 31;146(2):403-9
8193132 - Biochemistry. 1994 May 24;33(20):6186-91
18452307 - Biochemistry. 2008 May 27;47(21):5804-13
17991682 - Nucleic Acids Res. 2007;35(21):e143
11847309 - Science. 2002 Mar 8;295(5561):1895-7
8048960 - Biochem Biophys Res Commun. 1994 Jul 29;202(2):880-7
10455009 - Biochem J. 1999 Sep 1;342 ( Pt 2):249-68
10194306 - Biochemistry. 1999 Mar 30;38(13):3948-53
18436469 - Int J Biochem Cell Biol. 2008;40(10):2274-83
16262266 - Biochemistry. 2005 Nov 8;44(44):14670-81
14741207 - J Mol Biol. 2004 Feb 6;336(1):105-14
8390463 - J Biol Chem. 1993 Jun 25;268(18):13454-61
16204234 - J Biol Chem. 2005 Dec 9;280(49):40450-64
12872005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9202-7
4333419 - Biochem Biophys Res Commun. 1972 Jan 31;46(2):516-23
12640039 - J Cell Sci. 2003 Apr 15;116(Pt 8):1551-62
16829982 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):517-28
14739238 - Nucleic Acids Res. 2004;32(2):456-64
14019961 - Biochem Biophys Res Commun. 1963 Apr 2;11:39-43
11948190 - J Biol Chem. 2002 Jun 21;277(25):23028-36
1505517 - EMBO J. 1992 Sep;11(9):3263-9
3081511 - J Biol Chem. 1986 Mar 15;261(8):3863-8
6477891 - Biochemistry. 1984 Jul 31;23(16):3726-30
10694879 - Trends Biochem Sci. 2000 Mar;25(3):112-4
8755499 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7481-5
2123876 - J Biol Chem. 1990 Dec 15;265(35):21907-13
6772638 - J Biol Chem. 1980 Aug 25;255(16):7616-20
17981777 - Front Biosci. 2008;13:3046-82
References_xml – volume: 146
  start-page: 403
  year: 1987
  ident: key 20170510092824_B3
  article-title: Molecular cloning of cDNA for human poly(ADP-ribose) polymerase and expression of its gene during HL-60 cell differentiation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(87)90543-2
– volume: 116
  start-page: 1551
  year: 2003
  ident: key 20170510092824_B19
  article-title: PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00341
– volume: 336
  start-page: 105
  year: 2004
  ident: key 20170510092824_B29
  article-title: The 40 kDa carboxy-terminal domain of poly(ADP-ribose) polymerase-1 forms catalytically competent homo- and heterodimers in the absence of DNA
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2003.11.055
– volume: 277
  start-page: 23028
  year: 2002
  ident: key 20170510092824_B15
  article-title: Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M202390200
– volume: 40
  start-page: 2274
  year: 2008
  ident: key 20170510092824_B44
  article-title: Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2008.03.008
– volume: 271
  start-page: 10461
  year: 1996
  ident: key 20170510092824_B30
  article-title: Glycation and glycoxidation of histones by ADP-ribose
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.18.10461
– volume: 13
  start-page: 3046
  year: 2008
  ident: key 20170510092824_B1
  article-title: The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases
  publication-title: Front. Biosci.
  doi: 10.2741/2909
– volume: 25
  start-page: 112
  year: 2000
  ident: key 20170510092824_B17
  article-title: SAP – a putative DNA-binding motif involved in chromosomal organization
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(99)01537-6
– volume: 130
  start-page: 1095
  year: 2007
  ident: key 20170510092824_B36
  article-title: Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
  publication-title: Cell
  doi: 10.1016/j.cell.2007.07.035
– volume: 295
  start-page: 1895
  year: 2002
  ident: key 20170510092824_B37
  article-title: Regulation of corepressor function by nuclear NADH
  publication-title: Science
  doi: 10.1126/science.1069300
– volume: 256
  start-page: 9483
  year: 1981
  ident: key 20170510092824_B23
  article-title: Multiple autopoly(ADP-ribosyl)ation of rat liver poly(ADP-ribose) synthetase. Mode of modification and properties of automodified synthetase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)68788-0
– volume: 169
  start-page: 365
  year: 1987
  ident: key 20170510092824_B49
  article-title: Poly(ADP-ribose) synthase is the major endogenous nonhistone acceptor for poly(ADP-ribose) in alkylated rat hepatoma cells
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1987.tb13621.x
– volume: 78
  start-page: 1281
  year: 1977
  ident: key 20170510092824_B48
  article-title: Enzyme-bound early product of purified poly(ADP-ribose) polymerase
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(77)91431-0
– volume: 1078
  start-page: 179
  year: 1991
  ident: key 20170510092824_B14
  article-title: Enzymological properties of poly(ADP-ribose)polymerase: characterization of automodification sites and NADase activity
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/0167-4838(91)99007-F
– volume: 276
  start-page: 45588
  year: 2001
  ident: key 20170510092824_B47
  article-title: The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M106528200
– volume: 38
  start-page: 3948
  year: 1999
  ident: key 20170510092824_B22
  article-title: Biochemical characterization of mono(ADP-ribosyl)ated poly(ADP-ribose) polymerase
  publication-title: Biochemistry
  doi: 10.1021/bi982148p
– volume: 11
  start-page: 39
  year: 1963
  ident: key 20170510092824_B7
  article-title: Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(63)90024-X
– volume: 104
  start-page: 3765
  year: 2007
  ident: key 20170510092824_B39
  article-title: Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0609211104
– volume: 278
  start-page: 45145
  year: 2003
  ident: key 20170510092824_B25
  article-title: Transcriptional coactivation of nuclear factor-kappaB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M307957200
– volume: 210
  start-page: 229
  year: 1989
  ident: key 20170510092824_B34
  article-title: Zinc-binding domain of poly(ADP-ribose)polymerase participates in the recognition of single strand breaks on DNA
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(89)90302-1
– volume: 280
  start-page: 275
  year: 1997
  ident: key 20170510092824_B40
  article-title: Preparation of low molecular weight model conjugates for ADP-ribose linkages to protein
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(97)80119-X
– volume: 259
  start-page: 986
  year: 1984
  ident: key 20170510092824_B43
  article-title: ADP-ribosyl protein lyase. Purification, properties, and identification of the product
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)43555-1
– volume: 261
  start-page: 3863
  year: 1986
  ident: key 20170510092824_B5
  article-title: Reconstitution and poly(ADP-ribosyl)ation of proteolytically fragmented poly(ADP-ribose) synthetase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)35726-5
– volume: 70
  start-page: 789
  year: 2006
  ident: key 20170510092824_B2
  article-title: Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00040-05
– volume: 7
  start-page: 517
  year: 2006
  ident: key 20170510092824_B16
  article-title: Poly(ADP-ribose): novel functions for an old molecule
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1963
– volume: 35
  start-page: e143
  year: 2007
  ident: key 20170510092824_B27
  article-title: Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm944
– volume: 23
  start-page: 3726
  year: 1984
  ident: key 20170510092824_B45
  article-title: A relationship between nuclear poly(adenosine diphosphate ribosylation) and acetylation posttranslational modifications. 2. Histone studies
  publication-title: Biochemistry
  doi: 10.1021/bi00311a024
– volume: 48
  start-page: 182
  year: 2002
  ident: key 20170510092824_B20
  article-title: Cloning and expression of PARP-3 (Adprt3) and U3-55k, two genes closely linked on mouse chromosome 9
  publication-title: Folia Biol. (Praha)
– volume: 23
  start-page: 3721
  year: 1984
  ident: key 20170510092824_B46
  article-title: A relationship between nuclear poly(adenosine diphosphate ribosylation) and acetylation posttranslational modifications. 1. Nucleosome studies
  publication-title: Biochemistry
  doi: 10.1021/bi00311a023
– volume: 11
  start-page: 3263
  year: 1992
  ident: key 20170510092824_B12
  article-title: The human poly(ADP-ribose) polymerase nuclear localization signal is a bipartite element functionally separate from DNA binding and catalytic activity
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05404.x
– volume: 44
  start-page: 14670
  year: 2005
  ident: key 20170510092824_B13
  article-title: DNA-induced dimerization of poly(ADP-ribose) polymerase-1 triggers its activation
  publication-title: Biochemistry
  doi: 10.1021/bi050755o
– volume: 101
  start-page: 4
  year: 1985
  ident: key 20170510092824_B6
  article-title: Poly(ADP-ribose) in the cellular response to DNA damage
  publication-title: Radiat. Res.
  doi: 10.2307/3576299
– volume: 14
  start-page: 169
  year: 2008
  ident: key 20170510092824_B18
  article-title: Toward specific functions of poly(ADP-ribose) polymerase-2
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2008.02.003
– volume: 47
  start-page: 5804
  year: 2008
  ident: key 20170510092824_B10
  article-title: Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif
  publication-title: Biochemistry
  doi: 10.1021/bi800018a
– volume: 93
  start-page: 7481
  year: 1996
  ident: key 20170510092824_B8
  article-title: Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.15.7481
– volume: 87
  start-page: 2990
  year: 1990
  ident: key 20170510092824_B35
  article-title: The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.87.8.2990
– volume: 32
  start-page: 456
  year: 2004
  ident: key 20170510092824_B21
  article-title: Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh215
– volume: 280
  start-page: 40450
  year: 2005
  ident: key 20170510092824_B26
  article-title: Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M507553200
– volume: 283
  start-page: 4105
  year: 2008
  ident: key 20170510092824_B11
  article-title: A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M708558200
– volume: 202
  start-page: 880
  year: 1994
  ident: key 20170510092824_B32
  article-title: Expression and characterization of a fusion protein between the catalytic domain of poly(ADP-ribose) polymerase and the DNA binding domain of the glucocorticoid receptor
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1994.2012
– volume: 46
  start-page: 516
  year: 1972
  ident: key 20170510092824_B42
  article-title: Poly ADP-ribose glycohydrolase from rat liver nuclei, a novel enzyme degrading the polymer
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(72)80169-4
– volume: 32
  start-page: 1528
  year: 1993
  ident: key 20170510092824_B41
  article-title: Protein glycation by ADP-ribose: studies of model conjugates
  publication-title: Biochemistry
  doi: 10.1021/bi00057a017
– volume: 342 (Pt 2)
  start-page: 249
  year: 1999
  ident: key 20170510092824_B9
  article-title: Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions
  publication-title: Biochem. J.
  doi: 10.1042/0264-6021:3420249
– volume: 268
  start-page: 13454
  year: 1993
  ident: key 20170510092824_B28
  article-title: The carboxyl-terminal domain of human poly(ADP-ribose) polymerase. Overproduction in Escherichia coli, large scale purification, and characterization
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)38671-5
– volume: 265
  start-page: 21907
  year: 1990
  ident: key 20170510092824_B33
  article-title: The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. Other structures recognize intact DNA
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)45824-3
– volume: 84
  start-page: 8370
  year: 1987
  ident: key 20170510092824_B4
  article-title: cDNA sequence, protein structure, and chromosomal location of the human gene for poly(ADP-ribose) polymerase
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.84.23.8370
– volume: 33
  start-page: 6186
  year: 1994
  ident: key 20170510092824_B31
  article-title: Deletion mutants of poly(ADP-ribose) polymerase support a model of cyclic association and dissociation of enzyme from DNA ends during DNA repair
  publication-title: Biochemistry
  doi: 10.1021/bi00186a018
– volume: 255
  start-page: 7616
  year: 1980
  ident: key 20170510092824_B24
  article-title: ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)43873-8
– volume: 100
  start-page: 9202
  year: 2003
  ident: key 20170510092824_B38
  article-title: Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1633591100
– reference: 2109322 - Proc Natl Acad Sci U S A. 1990 Apr;87(8):2990-4
– reference: 17889652 - Cell. 2007 Sep 21;130(6):1095-107
– reference: 6693407 - J Biol Chem. 1984 Jan 25;259(2):986-95
– reference: 18436469 - Int J Biochem Cell Biol. 2008;40(10):2274-83
– reference: 8193132 - Biochemistry. 1994 May 24;33(20):6186-91
– reference: 6477891 - Biochemistry. 1984 Jul 31;23(16):3726-30
– reference: 16204234 - J Biol Chem. 2005 Dec 9;280(49):40450-64
– reference: 16959969 - Microbiol Mol Biol Rev. 2006 Sep;70(3):789-829
– reference: 18055453 - J Biol Chem. 2008 Feb 15;283(7):4105-14
– reference: 8631841 - J Biol Chem. 1996 May 3;271(18):10461-9
– reference: 6270088 - J Biol Chem. 1981 Sep 25;256(18):9483-9
– reference: 18452307 - Biochemistry. 2008 May 27;47(21):5804-13
– reference: 17991682 - Nucleic Acids Res. 2007;35(21):e143
– reference: 12448766 - Folia Biol (Praha). 2002;48(5):182-91
– reference: 11590148 - J Biol Chem. 2001 Dec 7;276(49):45588-97
– reference: 10194306 - Biochemistry. 1999 Mar 30;38(13):3948-53
– reference: 6772638 - J Biol Chem. 1980 Aug 25;255(16):7616-20
– reference: 1505517 - EMBO J. 1992 Sep;11(9):3263-9
– reference: 14019961 - Biochem Biophys Res Commun. 1963 Apr 2;11:39-43
– reference: 200230 - Biochem Biophys Res Commun. 1977 Oct 24;78(4):1281-8
– reference: 8755499 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7481-5
– reference: 14739238 - Nucleic Acids Res. 2004;32(2):456-64
– reference: 12872005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9202-7
– reference: 2123876 - J Biol Chem. 1990 Dec 15;265(35):21907-13
– reference: 11847309 - Science. 2002 Mar 8;295(5561):1895-7
– reference: 8390463 - J Biol Chem. 1993 Jun 25;268(18):13454-61
– reference: 16829982 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):517-28
– reference: 14741207 - J Mol Biol. 2004 Feb 6;336(1):105-14
– reference: 4333419 - Biochem Biophys Res Commun. 1972 Jan 31;46(2):516-23
– reference: 2511329 - J Mol Biol. 1989 Nov 5;210(1):229-33
– reference: 16262266 - Biochemistry. 2005 Nov 8;44(44):14670-81
– reference: 17981777 - Front Biosci. 2008;13:3046-82
– reference: 12640039 - J Cell Sci. 2003 Apr 15;116(Pt 8):1551-62
– reference: 9211323 - Methods Enzymol. 1997;280:275-87
– reference: 17360427 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3765-70
– reference: 8431431 - Biochemistry. 1993 Feb 16;32(6):1528-34
– reference: 12960163 - J Biol Chem. 2003 Nov 14;278(46):45145-53
– reference: 3155867 - Radiat Res. 1985 Jan;101(1):4-15
– reference: 3081511 - J Biol Chem. 1986 Mar 15;261(8):3863-8
– reference: 3113420 - Biochem Biophys Res Commun. 1987 Jul 31;146(2):403-9
– reference: 10694879 - Trends Biochem Sci. 2000 Mar;25(3):112-4
– reference: 8048960 - Biochem Biophys Res Commun. 1994 Jul 29;202(2):880-7
– reference: 10455009 - Biochem J. 1999 Sep 1;342 ( Pt 2):249-68
– reference: 6089879 - Biochemistry. 1984 Jul 31;23(16):3721-5
– reference: 1648406 - Biochim Biophys Acta. 1991 Jun 24;1078(2):179-86
– reference: 18353725 - Trends Mol Med. 2008 Apr;14(4):169-78
– reference: 3121314 - Eur J Biochem. 1987 Dec 1;169(2):365-72
– reference: 2891139 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8370-4
– reference: 11948190 - J Biol Chem. 2002 Jun 21;277(25):23028-36
SSID ssj0014154
Score 2.4611921
Snippet Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3723
SubjectTerms active sites
Adenosine diphosphate
Catalytic Domain
Cell Cycle Proteins - chemistry
Cell Cycle Proteins - metabolism
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA-binding domains
glutamic acid
Glutamic Acid - metabolism
Humans
lysine
Lysine - metabolism
NAD (coenzyme)
NAD ADP-ribosyltransferase
nucleic acids
Nucleic Acids Enzymes
Poly (ADP-Ribose) Polymerase-1
Poly Adenosine Diphosphate Ribose - metabolism
Poly(ADP-ribose) Polymerases - chemistry
Poly(ADP-ribose) Polymerases - metabolism
Protein Multimerization
Protein Structure, Tertiary
recombinant fusion proteins
Title Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites
URI https://api.istex.fr/ark:/67375/HXZ-TWH2TDGL-T/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/19372272
https://www.proquest.com/docview/200652911
https://www.proquest.com/docview/20076203
https://www.proquest.com/docview/46306706
https://www.proquest.com/docview/67410568
https://pubmed.ncbi.nlm.nih.gov/PMC2699514
Volume 37
WOSCitedRecordID wos000267441800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: 开放获取期刊(Open Access Journals)
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Open Access: Oxford University Press Open Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: TOX
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZohQQXHi20obBYAlX0EDWJYzs5rlrKHkpZQQoRl8hrOyXqbrJKtoj8e8Z50a1a4OxxHp5J5hvP-BuE3jJfkoBDdOIpJWyfp74d-JTahKZOCnhEO037tq-n_OwsiONw2hXRVLek8ENymIvy8OJy6XnmmJ5LA2PN0ad4yBWAC2pJohpOTT_oSUjXpq65nY1UFABGzTr-unGw7Rq-vFkmec3vnDz-zyd-gh51wBKPW0t4iu7pfAttj3MIqhc13sdNqWezh76FHhz1bd62Uf2xb5CLF9ocA86qBS5SvCzm9bvx8dQus1lR1fODRoV4VuPp-PPUxSJXOFNdrVE7BrMMwUmuMcTwmYLXxKLCwzU0FtIU0RQlNinr6hk6P3kfHU3srh-DLQEkrWzQnjB5QxYoiKsk0ST0BSMaIArlSjLi6tQEICmXxHUFIA_hEE19N5SK-Y4iz9FmXuR6F2HiAO6cSUenUhhMFlLiKEmVI0M3hRDLQge9uhLZkZWbnhnzpE2akwTWOGnX2EJvBtllS9Fxq9QuaD0RF_DvTM6_eCZja7jUGIGb7TemMMwW5aWpd-M0mcTfk-jbxIuOP5wmkYVGYCt_vcleb0ZJ9y-oTKNPRj1wKhZ6PYyCkk1mRuS6uGpEwCk55G4Jn5nYzmF3SzBuKnZZYKGd1mz_PCdAUM_jnoX4mkEPAoZifH0kz340VOMeCwGC-y_-9eJ76GGbZjPbUy_R5qq80q_QfflzlVXlCG3wOBg12x2j5tv9DSNMPZs
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+mechanism+of+poly%28ADP-ribosyl%29ation+by+PARP1+and+identification+of+lysine+residues+as+ADP-ribose+acceptor+sites&rft.jtitle=Nucleic+acids+research&rft.au=Altmeyer%2C+Matthias&rft.au=Messner%2C+Simon&rft.au=Hassa%2C+Paul+O.&rft.au=Fey%2C+Monika&rft.date=2009-06-01&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=37&rft.issue=11&rft.spage=3723&rft.epage=3738&rft_id=info:doi/10.1093%2Fnar%2Fgkp229&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_HXZ_TWH2TDGL_T
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon