Noninvasive in vivo monitoring of tissue-specific global gene expression in humans
Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating...
Uložené v:
| Vydané v: | Proceedings of the National Academy of Sciences - PNAS Ročník 111; číslo 20; s. 7361 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
20.05.2014
|
| Predmet: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating RNA in a cohort of human subjects. By focusing on genes whose expression is highly specific to certain tissues, we were able to identify the relative contributions of these tissues to circulating RNA and to monitor changes in tissue development and health. As one application of this approach, we performed a longitudinal study on pregnant women and analyzed their combined cell-free RNA transcriptomes across all three trimesters of pregnancy and after delivery. In addition to the analysis of mRNA, we observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma. We demonstrate that it is possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it is possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample. We also studied the role of neuron-specific transcripts in the blood of healthy adults and those suffering from the neurodegenerative disorder Alzheimer's disease and showed that disease specific neural transcripts are present at increased levels in the blood of affected individuals. Characterization of the cell-free transcriptome in its entirety may thus provide broad insights into human health and development without the need for invasive tissue sampling. |
|---|---|
| AbstractList | Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating RNA in a cohort of human subjects. By focusing on genes whose expression is highly specific to certain tissues, we were able to identify the relative contributions of these tissues to circulating RNA and to monitor changes in tissue development and health. As one application of this approach, we performed a longitudinal study on pregnant women and analyzed their combined cell-free RNA transcriptomes across all three trimesters of pregnancy and after delivery. In addition to the analysis of mRNA, we observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma. We demonstrate that it is possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it is possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample. We also studied the role of neuron-specific transcripts in the blood of healthy adults and those suffering from the neurodegenerative disorder Alzheimer's disease and showed that disease specific neural transcripts are present at increased levels in the blood of affected individuals. Characterization of the cell-free transcriptome in its entirety may thus provide broad insights into human health and development without the need for invasive tissue sampling.Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating RNA in a cohort of human subjects. By focusing on genes whose expression is highly specific to certain tissues, we were able to identify the relative contributions of these tissues to circulating RNA and to monitor changes in tissue development and health. As one application of this approach, we performed a longitudinal study on pregnant women and analyzed their combined cell-free RNA transcriptomes across all three trimesters of pregnancy and after delivery. In addition to the analysis of mRNA, we observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma. We demonstrate that it is possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it is possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample. We also studied the role of neuron-specific transcripts in the blood of healthy adults and those suffering from the neurodegenerative disorder Alzheimer's disease and showed that disease specific neural transcripts are present at increased levels in the blood of affected individuals. Characterization of the cell-free transcriptome in its entirety may thus provide broad insights into human health and development without the need for invasive tissue sampling. Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating RNA in a cohort of human subjects. By focusing on genes whose expression is highly specific to certain tissues, we were able to identify the relative contributions of these tissues to circulating RNA and to monitor changes in tissue development and health. As one application of this approach, we performed a longitudinal study on pregnant women and analyzed their combined cell-free RNA transcriptomes across all three trimesters of pregnancy and after delivery. In addition to the analysis of mRNA, we observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma. We demonstrate that it is possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it is possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample. We also studied the role of neuron-specific transcripts in the blood of healthy adults and those suffering from the neurodegenerative disorder Alzheimer's disease and showed that disease specific neural transcripts are present at increased levels in the blood of affected individuals. Characterization of the cell-free transcriptome in its entirety may thus provide broad insights into human health and development without the need for invasive tissue sampling. |
| Author | Gawad, Charles Wyss-Coray, Tony Kerchner, Geoffrey A Koh, Winston Blumenfeld, Yair J Quake, Stephen R Pan, Wenying El-Sayed, Yasser Y Fan, H Christina |
| Author_xml | – sequence: 1 givenname: Winston surname: Koh fullname: Koh, Winston organization: Departments of Bioengineering and – sequence: 2 givenname: Wenying surname: Pan fullname: Pan, Wenying organization: Departments of Bioengineering and – sequence: 3 givenname: Charles surname: Gawad fullname: Gawad, Charles organization: Departments of Bioengineering and – sequence: 4 givenname: H Christina surname: Fan fullname: Fan, H Christina organization: Departments of Bioengineering and – sequence: 5 givenname: Geoffrey A surname: Kerchner fullname: Kerchner, Geoffrey A organization: Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305; and – sequence: 6 givenname: Tony surname: Wyss-Coray fullname: Wyss-Coray, Tony organization: Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305; and – sequence: 7 givenname: Yair J surname: Blumenfeld fullname: Blumenfeld, Yair J organization: Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305 – sequence: 8 givenname: Yasser Y surname: El-Sayed fullname: El-Sayed, Yasser Y organization: Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305 – sequence: 9 givenname: Stephen R surname: Quake fullname: Quake, Stephen R email: quake@stanford.edu organization: Departments of Bioengineering and quake@stanford.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24799715$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1LxDAUxIOsuB969iY5eumalzZNc5TFL1gURM_lbfZ1jbRJbdqi_70rruBphuE3c5g5m_jgibFzEEsQOr1qPcYlZEIpWQDAEZuBMJDkmRGTf37K5jG-CyGMKsQJm8pMG6NBzdjzY_DOjxjdSNx5Prox8Gaf9aFzfsdDxXsX40BJbMm6ylm-q8MGa74jT5w-245idMH_lN-GBn08ZccV1pHODrpgr7c3L6v7ZP1097C6Xic2l2mfbJVMTYXWSAsbEBsJCkih0JKUyTOJRUYSUoFgtdCQY0ZUQG5sgQqNrOSCXf7utl34GCj2ZeOipbpGT2GIJSipU5mrVO_RiwM6bBralm3nGuy-yr8f5Dcj72G9 |
| CitedBy_id | crossref_primary_10_1016_j_molcel_2024_04_022 crossref_primary_10_1080_17843286_2019_1671653 crossref_primary_10_1016_j_vph_2018_03_003 crossref_primary_10_1016_j_ebiom_2022_103929 crossref_primary_10_1146_annurev_biodatasci_020722_094144 crossref_primary_10_1016_j_arr_2020_101164 crossref_primary_10_1136_bmjopen_2021_054256 crossref_primary_10_1373_clinchem_2018_295527 crossref_primary_10_1038_s41596_023_00855_2 crossref_primary_10_3390_ijms21082883 crossref_primary_10_1126_scitranslmed_adh8335 crossref_primary_10_3390_toxics13090776 crossref_primary_10_3892_mmr_2020_10992 crossref_primary_10_1093_clinchem_hvab116 crossref_primary_10_1016_j_cell_2023_06_013 crossref_primary_10_1186_s13024_023_00608_5 crossref_primary_10_1038_s41587_021_01188_9 crossref_primary_10_3390_cells12020209 crossref_primary_10_1126_science_aar3819 crossref_primary_10_1186_s12867_015_0039_3 crossref_primary_10_1002_wrna_1294 crossref_primary_10_1111_jog_15516 crossref_primary_10_1080_17501911_2025_2459552 crossref_primary_10_3390_ijms24054571 crossref_primary_10_2147_CMAR_S330228 crossref_primary_10_1017_erm_2024_16 crossref_primary_10_1016_j_clinbiochem_2015_03_004 crossref_primary_10_1016_j_critrevonc_2020_103166 crossref_primary_10_1016_j_lfs_2020_118756 crossref_primary_10_3389_fonc_2020_00184 crossref_primary_10_1038_s41598_020_63040_5 crossref_primary_10_1016_j_ajog_2020_08_104 crossref_primary_10_1038_s41598_017_04520_z crossref_primary_10_3389_fgene_2021_742496 crossref_primary_10_3389_fonc_2020_00982 crossref_primary_10_1007_s43032_020_00456_4 crossref_primary_10_1261_rna_054809_115 crossref_primary_10_1089_cmb_2021_0592 crossref_primary_10_1093_clinchem_hvaa249 crossref_primary_10_3389_fphar_2020_560537 crossref_primary_10_1007_s00018_017_2688_5 crossref_primary_10_1186_s13059_016_0904_5 crossref_primary_10_1016_j_cell_2017_08_007 crossref_primary_10_1139_cjpp_2018_0505 crossref_primary_10_15252_embj_2019101695 crossref_primary_10_7717_peerj_19241 crossref_primary_10_3390_nu16183147 crossref_primary_10_1159_000503266 crossref_primary_10_1017_erm_2024_12 crossref_primary_10_3389_fped_2020_605219 crossref_primary_10_1007_s00281_019_00772_1 crossref_primary_10_1177_1535370217739859 crossref_primary_10_1016_j_isci_2023_108534 crossref_primary_10_1038_cdd_2017_61 crossref_primary_10_1186_s13059_025_03590_x crossref_primary_10_1186_s40246_023_00537_w crossref_primary_10_1016_j_cell_2015_11_050 crossref_primary_10_1016_j_ajog_2016_03_001 crossref_primary_10_1016_j_yjmcc_2016_07_007 crossref_primary_10_1186_s12967_019_1800_z crossref_primary_10_1096_fj_201601146R crossref_primary_10_1016_j_bbadis_2016_12_009 crossref_primary_10_1038_s41467_019_14253_4 crossref_primary_10_1038_s41551_023_01081_7 crossref_primary_10_1093_hmg_ddy435 crossref_primary_10_1016_j_placenta_2024_12_005 crossref_primary_10_1186_s12935_019_0995_7 crossref_primary_10_1016_j_molmet_2024_101987 crossref_primary_10_1007_s00281_020_00807_y crossref_primary_10_1016_j_ajog_2023_05_015 crossref_primary_10_1111_febs_15639 crossref_primary_10_1007_s00383_019_04558_2 crossref_primary_10_3389_fgene_2019_00756 crossref_primary_10_1373_clinchem_2017_273888 crossref_primary_10_1177_1933719116670038 crossref_primary_10_1155_2022_4330681 crossref_primary_10_3390_ijtm5020014 crossref_primary_10_1002_advs_201901819 crossref_primary_10_1038_s41587_022_01222_4 crossref_primary_10_1016_j_ijrobp_2021_02_043 crossref_primary_10_1097_HC9_0000000000000140 crossref_primary_10_1016_j_tig_2015_06_001 crossref_primary_10_1093_hmg_ddu423 crossref_primary_10_1016_j_ygeno_2017_06_005 crossref_primary_10_3390_cancers11060805 crossref_primary_10_1038_s41598_020_79008_4 crossref_primary_10_3390_ijms24044233 crossref_primary_10_1038_s41598_025_16526_z crossref_primary_10_1016_j_clp_2024_02_008 crossref_primary_10_1007_s12265_019_09912_2 crossref_primary_10_1016_j_heliyon_2023_e13923 crossref_primary_10_1038_s41467_019_11881_8 crossref_primary_10_1016_j_ygeno_2021_04_022 crossref_primary_10_1016_j_clp_2024_02_001 crossref_primary_10_1136_jitc_2022_006284 crossref_primary_10_1093_clinchem_hvae137 crossref_primary_10_1002_pd_4934 crossref_primary_10_1038_s42003_023_05232_z crossref_primary_10_1016_j_canlet_2020_09_002 crossref_primary_10_3390_ijms23095122 crossref_primary_10_1016_j_ejogrb_2018_09_015 crossref_primary_10_1093_toxsci_kfv188 crossref_primary_10_3390_ijms222413283 crossref_primary_10_1016_j_ajog_2015_07_046 crossref_primary_10_7554_eLife_64356 crossref_primary_10_1007_s11523_020_00717_x crossref_primary_10_1002_ejhf_801 crossref_primary_10_1016_j_canlet_2017_11_022 crossref_primary_10_3390_ijms22052313 crossref_primary_10_1016_j_ebiom_2022_104242 crossref_primary_10_1016_j_mad_2018_05_001 crossref_primary_10_3892_mmr_2022_12825 crossref_primary_10_3233_NPM_16915052 crossref_primary_10_1007_s00109_017_1582_9 crossref_primary_10_1097_TA_0000000000002681 crossref_primary_10_1007_s10549_015_3431_2 crossref_primary_10_1126_science_1251816 crossref_primary_10_3233_JAD_215217 crossref_primary_10_1373_clinchem_2017_280164 crossref_primary_10_1016_j_clinbiochem_2019_10_012 crossref_primary_10_1016_j_molmed_2014_12_006 crossref_primary_10_1371_journal_pone_0141214 crossref_primary_10_1038_s41698_022_00270_y crossref_primary_10_1016_j_aca_2024_342331 crossref_primary_10_1038_cr_2017_106 crossref_primary_10_3389_fgene_2023_1138625 crossref_primary_10_1186_s12916_020_01605_x crossref_primary_10_1073_pnas_1710470114 crossref_primary_10_1186_s10020_021_00359_3 crossref_primary_10_1007_s13311_014_0302_1 crossref_primary_10_1371_journal_pgen_1011484 crossref_primary_10_1002_cam4_1514 crossref_primary_10_1016_j_cca_2018_04_011 crossref_primary_10_1073_pnas_1906320116 crossref_primary_10_3390_cancers13143460 crossref_primary_10_1038_s41598_023_28157_3 crossref_primary_10_1093_hmg_ddx210 crossref_primary_10_3390_cancers15225463 crossref_primary_10_1016_j_addr_2015_05_012 crossref_primary_10_1002_ctm2_987 crossref_primary_10_3390_genes10010032 crossref_primary_10_3390_genes14020498 crossref_primary_10_3390_diagnostics14101045 crossref_primary_10_3390_diagnostics12081834 crossref_primary_10_1007_s12265_015_9640_6 crossref_primary_10_2217_epi_2019_0404 crossref_primary_10_1038_ng_3686 crossref_primary_10_1136_postgradmedj_2019_137178 crossref_primary_10_1007_s00432_021_03640_4 crossref_primary_10_1038_s41598_020_73350_3 crossref_primary_10_1126_scitranslmed_aaz0131 crossref_primary_10_3390_genes8120366 crossref_primary_10_1038_s41467_019_12714_4 crossref_primary_10_1038_s41576_018_0071_5 crossref_primary_10_1097_GCO_0000000000000252 crossref_primary_10_1038_542156a crossref_primary_10_1016_j_nbd_2023_106245 crossref_primary_10_7554_eLife_60743 crossref_primary_10_1007_s12094_021_02639_0 crossref_primary_10_1017_thg_2017_11 crossref_primary_10_1038_d41586_021_03801_y crossref_primary_10_3390_ijms25189982 crossref_primary_10_1038_aps_2017_196 crossref_primary_10_3390_genes12081247 crossref_primary_10_59717_j_xinn_med_2024_100081 crossref_primary_10_1016_j_cell_2020_05_002 crossref_primary_10_1016_j_chemosphere_2018_02_140 crossref_primary_10_1038_s41551_021_00760_7 crossref_primary_10_1016_j_cca_2018_02_019 crossref_primary_10_1038_srep28400 crossref_primary_10_1146_annurev_med_091014_115715 crossref_primary_10_1186_s13045_020_00976_1 crossref_primary_10_1038_s41569_019_0185_2 crossref_primary_10_1038_s41574_024_01005_8 crossref_primary_10_1093_bib_bby006 crossref_primary_10_1073_pnas_1508736112 crossref_primary_10_1146_annurev_bioeng_110222_111259 crossref_primary_10_3390_biom12010039 crossref_primary_10_1093_biomet_asz011 crossref_primary_10_3390_metabo12080708 crossref_primary_10_1093_clinchem_hvaf070 crossref_primary_10_1038_srep13885 crossref_primary_10_3402_jev_v4_26533 crossref_primary_10_3390_ijms21186827 crossref_primary_10_1038_s41586_022_04410_z crossref_primary_10_1371_journal_pcbi_1005420 crossref_primary_10_1002_ctm2_818 crossref_primary_10_1093_biolre_ioab197 crossref_primary_10_1093_biolre_ioad103 crossref_primary_10_1134_S1068162017020133 crossref_primary_10_1016_j_placenta_2019_05_001 crossref_primary_10_1073_pnas_1610547113 crossref_primary_10_1007_s12031_024_02285_5 crossref_primary_10_1016_j_omtn_2019_04_011 crossref_primary_10_1016_j_molmed_2021_06_001 crossref_primary_10_14348_molcells_2023_2170 crossref_primary_10_1016_j_cois_2014_08_005 crossref_primary_10_3171_2016_2_FOCUS161 crossref_primary_10_3390_cancers11060887 crossref_primary_10_1038_ng_3648 crossref_primary_10_3389_fgene_2021_721832 crossref_primary_10_1016_j_jhep_2019_04_003 crossref_primary_10_1038_nrg_2016_10 crossref_primary_10_1186_s12916_017_0840_6 crossref_primary_10_1016_j_humimm_2021_03_003 crossref_primary_10_1186_s13578_018_0259_6 crossref_primary_10_1096_fj_201902507R crossref_primary_10_3389_fimmu_2023_1154025 crossref_primary_10_1016_j_brainresbull_2017_03_010 crossref_primary_10_3389_fimmu_2023_1271800 crossref_primary_10_1002_wrna_1791 crossref_primary_10_1038_nature_2015_17017 crossref_primary_10_1371_journal_pone_0145204 crossref_primary_10_1109_TCYB_2020_3022852 crossref_primary_10_1002_pd_5618 crossref_primary_10_1002_jcp_28403 crossref_primary_10_1007_s10741_019_09908_9 crossref_primary_10_3390_cancers10080258 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1405528111 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 24799715 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG045034 – fundername: NHLBI NIH HHS grantid: U01 HL099999 – fundername: NHLBI NIH HHS grantid: U01 HL099995 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c623t-d5239fac92c1b10b2151e5a072e59642a84e2130a1c70716a4ee8169c8a5a92f2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 249 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336168100048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Oct 02 04:47:10 EDT 2025 Thu Apr 03 07:04:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | cell-free nucleic acids genomics noninvasive diagnostics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c623t-d5239fac92c1b10b2151e5a072e59642a84e2130a1c70716a4ee8169c8a5a92f2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/111/20/7361.full.pdf |
| PMID | 24799715 |
| PQID | 1527326537 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1527326537 pubmed_primary_24799715 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-05-20 |
| PublicationDateYYYYMMDD | 2014-05-20 |
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2014 |
| References | 23197571 - Sci Transl Med. 2012 Nov 28;4(162):162ra154 22095278 - Cell Death Differ. 2012 Apr;19(4):692-702 22183218 - Obstet Gynecol. 2012 Jan;119(1):111-8 22319583 - PLoS One. 2012;7(2):e30733 5665998 - Enzymologia. 1968 Jul 15;34(5):317-21 23249747 - RNA. 2013 Feb;19(2):141-57 12324479 - Clin Chem. 2002 Oct;48(10):1647-53 12644709 - Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4748-53 11468248 - Clin Chem. 2001 Aug;47(8):1488-9 18546601 - Nat Protoc. 2008;3(6):1101-8 12895444 - Exp Neurol. 2003 Aug;182(2):335-45 12857956 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8817-22 23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53 10506932 - Histol Histopathol. 1999 Oct;14(4):1159-64 12015526 - Am J Obstet Gynecol. 2002 May;186(5):990-6 24382791 - Prenat Diagn. 2014 Jan;34(1):1-5 12168954 - DNA Res. 2002 Jun 30;9(3):99-106 18571142 - Am J Hum Genet. 2008 Jul;83(1):89-93 22377693 - Fetal Diagn Ther. 2012;31(2):109-14 9315895 - J Neurosci. 1997 Oct 15;17(20):7736-45 10231032 - DNA Res. 1999 Feb 26;6(1):63-70 12709362 - Clin Chem. 2003 May;49(5):727-31 11051224 - Clin Cancer Res. 2000 Oct;6(10):3823-6 14634580 - Am J Obstet Gynecol. 2003 Nov;189(5):1418-22 11511684 - J Histochem Cytochem. 2001 Sep;49(9):1155-64 17554801 - Prenat Diagn. 2007 Aug;27(8):772-7 11394202 - Semin Reprod Med. 2001;19(1):37-47 14751233 - Biochem Biophys Res Commun. 2004 Feb 20;314(4):1008-13 2235914 - Placenta. 1990 Jul-Aug;11(4):319-27 22763444 - Nature. 2012 Jul 19;487(7407):320-4 26923099 - BJOG. 2016 Dec;123(13):2119 18301740 - PLoS One. 2008;3(2):e1662 18791734 - Virchows Arch. 2008 Oct;453(4):387-400 7696596 - Neuroreport. 1994 Dec 20;5(18):2529-33 11253364 - Nat Rev Mol Cell Biol. 2000 Nov;1(2):120-9 17531276 - Physiol Behav. 2007 Jul 24;91(4):413-23 18838674 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16266-71 23446348 - Nature. 2013 Mar 21;495(7441):333-8 17885688 - J Clin Invest. 2007 Oct;117(10):3007-19 9354798 - Nat Genet. 1997 Nov;17(3):324-6 14704420 - Science. 2004 Jan 2;303(5654):56-9 Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11223 18191324 - Eur Urol. 2008 Mar;53(3):478-96 18670422 - Nat Med. 2008 Sep;14(9):985-90 21444804 - Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6229-34 1277131 - Cancer Res. 1976 Jul;36(7 PT 1):2268-73 9846581 - Nat Med. 1998 Dec;4(12):1421-4 17235524 - Diabetologia. 2007 Mar;50(3):682-9 16709596 - Mol Hum Reprod. 2006 Jul;12(7):427-33 11067820 - Clin Chem. 2000 Nov;46(11):1832-4 18875018 - C R Seances Soc Biol Fil. 1948 Feb;142(3-4):241-3 17206148 - Nat Med. 2007 Feb;13(2):218-23 22729990 - Mol Reprod Dev. 2012 Aug;79(8):564-72 10430801 - Clin Chem. 1999 Aug;45(8 Pt 1):1292-4 7631677 - Am J Obstet Gynecol. 1995 Jul;173(1):181-6 4135842 - Transplant Rev. 1974;20(0):38-60 11274013 - Clin Chem. 2001 Apr;47(4):645-53 10473072 - Clin Cancer Res. 1999 Aug;5(8):1961-5 17586478 - Brain Res. 2007 Aug 3;1161:116-23 15662668 - Prenat Diagn. 2005 Jan;25(1):45-6 10075695 - J Biol Chem. 1999 Mar 19;274(12):7975-81 18342566 - Int J Biochem Cell Biol. 2008;40(9):1685-702 16533649 - Semin Perinatol. 2005 Dec;29(6):367-75 19131956 - Nat Protoc. 2009;4(1):44-57 |
| References_xml | – reference: 17235524 - Diabetologia. 2007 Mar;50(3):682-9 – reference: 22729990 - Mol Reprod Dev. 2012 Aug;79(8):564-72 – reference: 17206148 - Nat Med. 2007 Feb;13(2):218-23 – reference: 10430801 - Clin Chem. 1999 Aug;45(8 Pt 1):1292-4 – reference: 10506932 - Histol Histopathol. 1999 Oct;14(4):1159-64 – reference: 11253364 - Nat Rev Mol Cell Biol. 2000 Nov;1(2):120-9 – reference: 12709362 - Clin Chem. 2003 May;49(5):727-31 – reference: 4135842 - Transplant Rev. 1974;20(0):38-60 – reference: 11051224 - Clin Cancer Res. 2000 Oct;6(10):3823-6 – reference: 11468248 - Clin Chem. 2001 Aug;47(8):1488-9 – reference: 22095278 - Cell Death Differ. 2012 Apr;19(4):692-702 – reference: 23446348 - Nature. 2013 Mar 21;495(7441):333-8 – reference: 11067820 - Clin Chem. 2000 Nov;46(11):1832-4 – reference: 9315895 - J Neurosci. 1997 Oct 15;17(20):7736-45 – reference: 2235914 - Placenta. 1990 Jul-Aug;11(4):319-27 – reference: 11394202 - Semin Reprod Med. 2001;19(1):37-47 – reference: 15662668 - Prenat Diagn. 2005 Jan;25(1):45-6 – reference: 12015526 - Am J Obstet Gynecol. 2002 May;186(5):990-6 – reference: 10473072 - Clin Cancer Res. 1999 Aug;5(8):1961-5 – reference: 18670422 - Nat Med. 2008 Sep;14(9):985-90 – reference: 22763444 - Nature. 2012 Jul 19;487(7407):320-4 – reference: 18191324 - Eur Urol. 2008 Mar;53(3):478-96 – reference: 23197571 - Sci Transl Med. 2012 Nov 28;4(162):162ra154 – reference: 14704420 - Science. 2004 Jan 2;303(5654):56-9 – reference: 16533649 - Semin Perinatol. 2005 Dec;29(6):367-75 – reference: 26923099 - BJOG. 2016 Dec;123(13):2119 – reference: 12168954 - DNA Res. 2002 Jun 30;9(3):99-106 – reference: 17586478 - Brain Res. 2007 Aug 3;1161:116-23 – reference: 24382791 - Prenat Diagn. 2014 Jan;34(1):1-5 – reference: - Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11223 – reference: 18875018 - C R Seances Soc Biol Fil. 1948 Feb;142(3-4):241-3 – reference: 22183218 - Obstet Gynecol. 2012 Jan;119(1):111-8 – reference: 17554801 - Prenat Diagn. 2007 Aug;27(8):772-7 – reference: 18301740 - PLoS One. 2008;3(2):e1662 – reference: 18791734 - Virchows Arch. 2008 Oct;453(4):387-400 – reference: 23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53 – reference: 1277131 - Cancer Res. 1976 Jul;36(7 PT 1):2268-73 – reference: 17531276 - Physiol Behav. 2007 Jul 24;91(4):413-23 – reference: 12644709 - Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4748-53 – reference: 12324479 - Clin Chem. 2002 Oct;48(10):1647-53 – reference: 23249747 - RNA. 2013 Feb;19(2):141-57 – reference: 21444804 - Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6229-34 – reference: 19131956 - Nat Protoc. 2009;4(1):44-57 – reference: 9846581 - Nat Med. 1998 Dec;4(12):1421-4 – reference: 18571142 - Am J Hum Genet. 2008 Jul;83(1):89-93 – reference: 18546601 - Nat Protoc. 2008;3(6):1101-8 – reference: 5665998 - Enzymologia. 1968 Jul 15;34(5):317-21 – reference: 10231032 - DNA Res. 1999 Feb 26;6(1):63-70 – reference: 17885688 - J Clin Invest. 2007 Oct;117(10):3007-19 – reference: 14751233 - Biochem Biophys Res Commun. 2004 Feb 20;314(4):1008-13 – reference: 14634580 - Am J Obstet Gynecol. 2003 Nov;189(5):1418-22 – reference: 12895444 - Exp Neurol. 2003 Aug;182(2):335-45 – reference: 22377693 - Fetal Diagn Ther. 2012;31(2):109-14 – reference: 22319583 - PLoS One. 2012;7(2):e30733 – reference: 11274013 - Clin Chem. 2001 Apr;47(4):645-53 – reference: 9354798 - Nat Genet. 1997 Nov;17(3):324-6 – reference: 11511684 - J Histochem Cytochem. 2001 Sep;49(9):1155-64 – reference: 16709596 - Mol Hum Reprod. 2006 Jul;12(7):427-33 – reference: 10075695 - J Biol Chem. 1999 Mar 19;274(12):7975-81 – reference: 18342566 - Int J Biochem Cell Biol. 2008;40(9):1685-702 – reference: 18838674 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16266-71 – reference: 7696596 - Neuroreport. 1994 Dec 20;5(18):2529-33 – reference: 12857956 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8817-22 – reference: 7631677 - Am J Obstet Gynecol. 1995 Jul;173(1):181-6 |
| SSID | ssj0009580 |
| Score | 2.571856 |
| Snippet | Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 7361 |
| SubjectTerms | Adult Alzheimer Disease - blood Apoptosis Brain - embryology Brain - metabolism Female Gene Expression Profiling - methods Gene Expression Regulation, Developmental Genomics - methods High-Throughput Nucleotide Sequencing - methods Humans Neurodegenerative Diseases - physiopathology Neurons - metabolism Oligonucleotide Array Sequence Analysis Pregnancy RNA - blood Time Factors Transcriptome |
| Title | Noninvasive in vivo monitoring of tissue-specific global gene expression in humans |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24799715 https://www.proquest.com/docview/1527326537 |
| Volume | 111 |
| WOSCitedRecordID | wos000336168100048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPegjbpGnTnETExYOWRRT2VtJsCnuwXe1a_PnOtFn0Ighechsok3l8M5l-Q8gF1jkFtwXLQyuZnOYcXCqWTISAjeHCIQW1lPkPKk2TyUSPfcOt9mOVy5jYBuppZbFHPsT1qwA1olBdz98Ybo3C11W_QmOV9EKAMmjVapL8IN1NOjYCzVksdbCk9lHhcF6aGqJEEEUi4Zz_ji_bPDPa-u8XbpNNjzDpTWcSfbLiyh3S9z5c00tPNH21S55S7MU2BifY6aykzayp6Gvr5Njto1VBF-29MPwfE2eKaMcfQsHqHHWffoi2ROF22V-9R15Gd8-398zvWGAWgM-CTaEQ1YWxWlie8yBHBOAiEyjhIg21iUmkE5DnDLcK0EhspHMJj7VNTGS0KMQ-WSur0h0Sal1gcxcXtoCq0UhtOBwgJg2mSe0G5HyptwxsGB8mTOmqjzr71tyAHHTKz-Yd2UYmpNJa8ejoD9LHZAPwjMTHfRGckF4BHuxOybptQFvvZ61xwJmOH78ABmzDfg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+in+vivo+monitoring+of+tissue-specific+global+gene+expression+in+humans&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Koh%2C+Winston&rft.au=Pan%2C+Wenying&rft.au=Gawad%2C+Charles&rft.au=Fan%2C+H+Christina&rft.date=2014-05-20&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=20&rft.spage=7361&rft_id=info:doi/10.1073%2Fpnas.1405528111&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |