Noninvasive in vivo monitoring of tissue-specific global gene expression in humans

Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the National Academy of Sciences - PNAS Ročník 111; číslo 20; s. 7361
Hlavní autori: Koh, Winston, Pan, Wenying, Gawad, Charles, Fan, H Christina, Kerchner, Geoffrey A, Wyss-Coray, Tony, Blumenfeld, Yair J, El-Sayed, Yasser Y, Quake, Stephen R
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 20.05.2014
Predmet:
ISSN:1091-6490, 1091-6490
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating RNA in a cohort of human subjects. By focusing on genes whose expression is highly specific to certain tissues, we were able to identify the relative contributions of these tissues to circulating RNA and to monitor changes in tissue development and health. As one application of this approach, we performed a longitudinal study on pregnant women and analyzed their combined cell-free RNA transcriptomes across all three trimesters of pregnancy and after delivery. In addition to the analysis of mRNA, we observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma. We demonstrate that it is possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it is possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample. We also studied the role of neuron-specific transcripts in the blood of healthy adults and those suffering from the neurodegenerative disorder Alzheimer's disease and showed that disease specific neural transcripts are present at increased levels in the blood of affected individuals. Characterization of the cell-free transcriptome in its entirety may thus provide broad insights into human health and development without the need for invasive tissue sampling.
AbstractList Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating RNA in a cohort of human subjects. By focusing on genes whose expression is highly specific to certain tissues, we were able to identify the relative contributions of these tissues to circulating RNA and to monitor changes in tissue development and health. As one application of this approach, we performed a longitudinal study on pregnant women and analyzed their combined cell-free RNA transcriptomes across all three trimesters of pregnancy and after delivery. In addition to the analysis of mRNA, we observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma. We demonstrate that it is possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it is possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample. We also studied the role of neuron-specific transcripts in the blood of healthy adults and those suffering from the neurodegenerative disorder Alzheimer's disease and showed that disease specific neural transcripts are present at increased levels in the blood of affected individuals. Characterization of the cell-free transcriptome in its entirety may thus provide broad insights into human health and development without the need for invasive tissue sampling.Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating RNA in a cohort of human subjects. By focusing on genes whose expression is highly specific to certain tissues, we were able to identify the relative contributions of these tissues to circulating RNA and to monitor changes in tissue development and health. As one application of this approach, we performed a longitudinal study on pregnant women and analyzed their combined cell-free RNA transcriptomes across all three trimesters of pregnancy and after delivery. In addition to the analysis of mRNA, we observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma. We demonstrate that it is possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it is possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample. We also studied the role of neuron-specific transcripts in the blood of healthy adults and those suffering from the neurodegenerative disorder Alzheimer's disease and showed that disease specific neural transcripts are present at increased levels in the blood of affected individuals. Characterization of the cell-free transcriptome in its entirety may thus provide broad insights into human health and development without the need for invasive tissue sampling.
Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating RNA in a cohort of human subjects. By focusing on genes whose expression is highly specific to certain tissues, we were able to identify the relative contributions of these tissues to circulating RNA and to monitor changes in tissue development and health. As one application of this approach, we performed a longitudinal study on pregnant women and analyzed their combined cell-free RNA transcriptomes across all three trimesters of pregnancy and after delivery. In addition to the analysis of mRNA, we observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma. We demonstrate that it is possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it is possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample. We also studied the role of neuron-specific transcripts in the blood of healthy adults and those suffering from the neurodegenerative disorder Alzheimer's disease and showed that disease specific neural transcripts are present at increased levels in the blood of affected individuals. Characterization of the cell-free transcriptome in its entirety may thus provide broad insights into human health and development without the need for invasive tissue sampling.
Author Gawad, Charles
Wyss-Coray, Tony
Kerchner, Geoffrey A
Koh, Winston
Blumenfeld, Yair J
Quake, Stephen R
Pan, Wenying
El-Sayed, Yasser Y
Fan, H Christina
Author_xml – sequence: 1
  givenname: Winston
  surname: Koh
  fullname: Koh, Winston
  organization: Departments of Bioengineering and
– sequence: 2
  givenname: Wenying
  surname: Pan
  fullname: Pan, Wenying
  organization: Departments of Bioengineering and
– sequence: 3
  givenname: Charles
  surname: Gawad
  fullname: Gawad, Charles
  organization: Departments of Bioengineering and
– sequence: 4
  givenname: H Christina
  surname: Fan
  fullname: Fan, H Christina
  organization: Departments of Bioengineering and
– sequence: 5
  givenname: Geoffrey A
  surname: Kerchner
  fullname: Kerchner, Geoffrey A
  organization: Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305; and
– sequence: 6
  givenname: Tony
  surname: Wyss-Coray
  fullname: Wyss-Coray, Tony
  organization: Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305; and
– sequence: 7
  givenname: Yair J
  surname: Blumenfeld
  fullname: Blumenfeld, Yair J
  organization: Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305
– sequence: 8
  givenname: Yasser Y
  surname: El-Sayed
  fullname: El-Sayed, Yasser Y
  organization: Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305
– sequence: 9
  givenname: Stephen R
  surname: Quake
  fullname: Quake, Stephen R
  email: quake@stanford.edu
  organization: Departments of Bioengineering and quake@stanford.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24799715$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1LxDAUxIOsuB969iY5eumalzZNc5TFL1gURM_lbfZ1jbRJbdqi_70rruBphuE3c5g5m_jgibFzEEsQOr1qPcYlZEIpWQDAEZuBMJDkmRGTf37K5jG-CyGMKsQJm8pMG6NBzdjzY_DOjxjdSNx5Prox8Gaf9aFzfsdDxXsX40BJbMm6ylm-q8MGa74jT5w-245idMH_lN-GBn08ZccV1pHODrpgr7c3L6v7ZP1097C6Xic2l2mfbJVMTYXWSAsbEBsJCkih0JKUyTOJRUYSUoFgtdCQY0ZUQG5sgQqNrOSCXf7utl34GCj2ZeOipbpGT2GIJSipU5mrVO_RiwM6bBralm3nGuy-yr8f5Dcj72G9
CitedBy_id crossref_primary_10_1016_j_molcel_2024_04_022
crossref_primary_10_1080_17843286_2019_1671653
crossref_primary_10_1016_j_vph_2018_03_003
crossref_primary_10_1016_j_ebiom_2022_103929
crossref_primary_10_1146_annurev_biodatasci_020722_094144
crossref_primary_10_1016_j_arr_2020_101164
crossref_primary_10_1136_bmjopen_2021_054256
crossref_primary_10_1373_clinchem_2018_295527
crossref_primary_10_1038_s41596_023_00855_2
crossref_primary_10_3390_ijms21082883
crossref_primary_10_1126_scitranslmed_adh8335
crossref_primary_10_3390_toxics13090776
crossref_primary_10_3892_mmr_2020_10992
crossref_primary_10_1093_clinchem_hvab116
crossref_primary_10_1016_j_cell_2023_06_013
crossref_primary_10_1186_s13024_023_00608_5
crossref_primary_10_1038_s41587_021_01188_9
crossref_primary_10_3390_cells12020209
crossref_primary_10_1126_science_aar3819
crossref_primary_10_1186_s12867_015_0039_3
crossref_primary_10_1002_wrna_1294
crossref_primary_10_1111_jog_15516
crossref_primary_10_1080_17501911_2025_2459552
crossref_primary_10_3390_ijms24054571
crossref_primary_10_2147_CMAR_S330228
crossref_primary_10_1017_erm_2024_16
crossref_primary_10_1016_j_clinbiochem_2015_03_004
crossref_primary_10_1016_j_critrevonc_2020_103166
crossref_primary_10_1016_j_lfs_2020_118756
crossref_primary_10_3389_fonc_2020_00184
crossref_primary_10_1038_s41598_020_63040_5
crossref_primary_10_1016_j_ajog_2020_08_104
crossref_primary_10_1038_s41598_017_04520_z
crossref_primary_10_3389_fgene_2021_742496
crossref_primary_10_3389_fonc_2020_00982
crossref_primary_10_1007_s43032_020_00456_4
crossref_primary_10_1261_rna_054809_115
crossref_primary_10_1089_cmb_2021_0592
crossref_primary_10_1093_clinchem_hvaa249
crossref_primary_10_3389_fphar_2020_560537
crossref_primary_10_1007_s00018_017_2688_5
crossref_primary_10_1186_s13059_016_0904_5
crossref_primary_10_1016_j_cell_2017_08_007
crossref_primary_10_1139_cjpp_2018_0505
crossref_primary_10_15252_embj_2019101695
crossref_primary_10_7717_peerj_19241
crossref_primary_10_3390_nu16183147
crossref_primary_10_1159_000503266
crossref_primary_10_1017_erm_2024_12
crossref_primary_10_3389_fped_2020_605219
crossref_primary_10_1007_s00281_019_00772_1
crossref_primary_10_1177_1535370217739859
crossref_primary_10_1016_j_isci_2023_108534
crossref_primary_10_1038_cdd_2017_61
crossref_primary_10_1186_s13059_025_03590_x
crossref_primary_10_1186_s40246_023_00537_w
crossref_primary_10_1016_j_cell_2015_11_050
crossref_primary_10_1016_j_ajog_2016_03_001
crossref_primary_10_1016_j_yjmcc_2016_07_007
crossref_primary_10_1186_s12967_019_1800_z
crossref_primary_10_1096_fj_201601146R
crossref_primary_10_1016_j_bbadis_2016_12_009
crossref_primary_10_1038_s41467_019_14253_4
crossref_primary_10_1038_s41551_023_01081_7
crossref_primary_10_1093_hmg_ddy435
crossref_primary_10_1016_j_placenta_2024_12_005
crossref_primary_10_1186_s12935_019_0995_7
crossref_primary_10_1016_j_molmet_2024_101987
crossref_primary_10_1007_s00281_020_00807_y
crossref_primary_10_1016_j_ajog_2023_05_015
crossref_primary_10_1111_febs_15639
crossref_primary_10_1007_s00383_019_04558_2
crossref_primary_10_3389_fgene_2019_00756
crossref_primary_10_1373_clinchem_2017_273888
crossref_primary_10_1177_1933719116670038
crossref_primary_10_1155_2022_4330681
crossref_primary_10_3390_ijtm5020014
crossref_primary_10_1002_advs_201901819
crossref_primary_10_1038_s41587_022_01222_4
crossref_primary_10_1016_j_ijrobp_2021_02_043
crossref_primary_10_1097_HC9_0000000000000140
crossref_primary_10_1016_j_tig_2015_06_001
crossref_primary_10_1093_hmg_ddu423
crossref_primary_10_1016_j_ygeno_2017_06_005
crossref_primary_10_3390_cancers11060805
crossref_primary_10_1038_s41598_020_79008_4
crossref_primary_10_3390_ijms24044233
crossref_primary_10_1038_s41598_025_16526_z
crossref_primary_10_1016_j_clp_2024_02_008
crossref_primary_10_1007_s12265_019_09912_2
crossref_primary_10_1016_j_heliyon_2023_e13923
crossref_primary_10_1038_s41467_019_11881_8
crossref_primary_10_1016_j_ygeno_2021_04_022
crossref_primary_10_1016_j_clp_2024_02_001
crossref_primary_10_1136_jitc_2022_006284
crossref_primary_10_1093_clinchem_hvae137
crossref_primary_10_1002_pd_4934
crossref_primary_10_1038_s42003_023_05232_z
crossref_primary_10_1016_j_canlet_2020_09_002
crossref_primary_10_3390_ijms23095122
crossref_primary_10_1016_j_ejogrb_2018_09_015
crossref_primary_10_1093_toxsci_kfv188
crossref_primary_10_3390_ijms222413283
crossref_primary_10_1016_j_ajog_2015_07_046
crossref_primary_10_7554_eLife_64356
crossref_primary_10_1007_s11523_020_00717_x
crossref_primary_10_1002_ejhf_801
crossref_primary_10_1016_j_canlet_2017_11_022
crossref_primary_10_3390_ijms22052313
crossref_primary_10_1016_j_ebiom_2022_104242
crossref_primary_10_1016_j_mad_2018_05_001
crossref_primary_10_3892_mmr_2022_12825
crossref_primary_10_3233_NPM_16915052
crossref_primary_10_1007_s00109_017_1582_9
crossref_primary_10_1097_TA_0000000000002681
crossref_primary_10_1007_s10549_015_3431_2
crossref_primary_10_1126_science_1251816
crossref_primary_10_3233_JAD_215217
crossref_primary_10_1373_clinchem_2017_280164
crossref_primary_10_1016_j_clinbiochem_2019_10_012
crossref_primary_10_1016_j_molmed_2014_12_006
crossref_primary_10_1371_journal_pone_0141214
crossref_primary_10_1038_s41698_022_00270_y
crossref_primary_10_1016_j_aca_2024_342331
crossref_primary_10_1038_cr_2017_106
crossref_primary_10_3389_fgene_2023_1138625
crossref_primary_10_1186_s12916_020_01605_x
crossref_primary_10_1073_pnas_1710470114
crossref_primary_10_1186_s10020_021_00359_3
crossref_primary_10_1007_s13311_014_0302_1
crossref_primary_10_1371_journal_pgen_1011484
crossref_primary_10_1002_cam4_1514
crossref_primary_10_1016_j_cca_2018_04_011
crossref_primary_10_1073_pnas_1906320116
crossref_primary_10_3390_cancers13143460
crossref_primary_10_1038_s41598_023_28157_3
crossref_primary_10_1093_hmg_ddx210
crossref_primary_10_3390_cancers15225463
crossref_primary_10_1016_j_addr_2015_05_012
crossref_primary_10_1002_ctm2_987
crossref_primary_10_3390_genes10010032
crossref_primary_10_3390_genes14020498
crossref_primary_10_3390_diagnostics14101045
crossref_primary_10_3390_diagnostics12081834
crossref_primary_10_1007_s12265_015_9640_6
crossref_primary_10_2217_epi_2019_0404
crossref_primary_10_1038_ng_3686
crossref_primary_10_1136_postgradmedj_2019_137178
crossref_primary_10_1007_s00432_021_03640_4
crossref_primary_10_1038_s41598_020_73350_3
crossref_primary_10_1126_scitranslmed_aaz0131
crossref_primary_10_3390_genes8120366
crossref_primary_10_1038_s41467_019_12714_4
crossref_primary_10_1038_s41576_018_0071_5
crossref_primary_10_1097_GCO_0000000000000252
crossref_primary_10_1038_542156a
crossref_primary_10_1016_j_nbd_2023_106245
crossref_primary_10_7554_eLife_60743
crossref_primary_10_1007_s12094_021_02639_0
crossref_primary_10_1017_thg_2017_11
crossref_primary_10_1038_d41586_021_03801_y
crossref_primary_10_3390_ijms25189982
crossref_primary_10_1038_aps_2017_196
crossref_primary_10_3390_genes12081247
crossref_primary_10_59717_j_xinn_med_2024_100081
crossref_primary_10_1016_j_cell_2020_05_002
crossref_primary_10_1016_j_chemosphere_2018_02_140
crossref_primary_10_1038_s41551_021_00760_7
crossref_primary_10_1016_j_cca_2018_02_019
crossref_primary_10_1038_srep28400
crossref_primary_10_1146_annurev_med_091014_115715
crossref_primary_10_1186_s13045_020_00976_1
crossref_primary_10_1038_s41569_019_0185_2
crossref_primary_10_1038_s41574_024_01005_8
crossref_primary_10_1093_bib_bby006
crossref_primary_10_1073_pnas_1508736112
crossref_primary_10_1146_annurev_bioeng_110222_111259
crossref_primary_10_3390_biom12010039
crossref_primary_10_1093_biomet_asz011
crossref_primary_10_3390_metabo12080708
crossref_primary_10_1093_clinchem_hvaf070
crossref_primary_10_1038_srep13885
crossref_primary_10_3402_jev_v4_26533
crossref_primary_10_3390_ijms21186827
crossref_primary_10_1038_s41586_022_04410_z
crossref_primary_10_1371_journal_pcbi_1005420
crossref_primary_10_1002_ctm2_818
crossref_primary_10_1093_biolre_ioab197
crossref_primary_10_1093_biolre_ioad103
crossref_primary_10_1134_S1068162017020133
crossref_primary_10_1016_j_placenta_2019_05_001
crossref_primary_10_1073_pnas_1610547113
crossref_primary_10_1007_s12031_024_02285_5
crossref_primary_10_1016_j_omtn_2019_04_011
crossref_primary_10_1016_j_molmed_2021_06_001
crossref_primary_10_14348_molcells_2023_2170
crossref_primary_10_1016_j_cois_2014_08_005
crossref_primary_10_3171_2016_2_FOCUS161
crossref_primary_10_3390_cancers11060887
crossref_primary_10_1038_ng_3648
crossref_primary_10_3389_fgene_2021_721832
crossref_primary_10_1016_j_jhep_2019_04_003
crossref_primary_10_1038_nrg_2016_10
crossref_primary_10_1186_s12916_017_0840_6
crossref_primary_10_1016_j_humimm_2021_03_003
crossref_primary_10_1186_s13578_018_0259_6
crossref_primary_10_1096_fj_201902507R
crossref_primary_10_3389_fimmu_2023_1154025
crossref_primary_10_1016_j_brainresbull_2017_03_010
crossref_primary_10_3389_fimmu_2023_1271800
crossref_primary_10_1002_wrna_1791
crossref_primary_10_1038_nature_2015_17017
crossref_primary_10_1371_journal_pone_0145204
crossref_primary_10_1109_TCYB_2020_3022852
crossref_primary_10_1002_pd_5618
crossref_primary_10_1002_jcp_28403
crossref_primary_10_1007_s10741_019_09908_9
crossref_primary_10_3390_cancers10080258
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1405528111
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 24799715
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG045034
– fundername: NHLBI NIH HHS
  grantid: U01 HL099999
– fundername: NHLBI NIH HHS
  grantid: U01 HL099995
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c623t-d5239fac92c1b10b2151e5a072e59642a84e2130a1c70716a4ee8169c8a5a92f2
IEDL.DBID 7X8
ISICitedReferencesCount 249
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336168100048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Oct 02 04:47:10 EDT 2025
Thu Apr 03 07:04:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords cell-free nucleic acids
genomics
noninvasive diagnostics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c623t-d5239fac92c1b10b2151e5a072e59642a84e2130a1c70716a4ee8169c8a5a92f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/111/20/7361.full.pdf
PMID 24799715
PQID 1527326537
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1527326537
pubmed_primary_24799715
PublicationCentury 2000
PublicationDate 2014-05-20
PublicationDateYYYYMMDD 2014-05-20
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
References 23197571 - Sci Transl Med. 2012 Nov 28;4(162):162ra154
22095278 - Cell Death Differ. 2012 Apr;19(4):692-702
22183218 - Obstet Gynecol. 2012 Jan;119(1):111-8
22319583 - PLoS One. 2012;7(2):e30733
5665998 - Enzymologia. 1968 Jul 15;34(5):317-21
23249747 - RNA. 2013 Feb;19(2):141-57
12324479 - Clin Chem. 2002 Oct;48(10):1647-53
12644709 - Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4748-53
11468248 - Clin Chem. 2001 Aug;47(8):1488-9
18546601 - Nat Protoc. 2008;3(6):1101-8
12895444 - Exp Neurol. 2003 Aug;182(2):335-45
12857956 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8817-22
23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53
10506932 - Histol Histopathol. 1999 Oct;14(4):1159-64
12015526 - Am J Obstet Gynecol. 2002 May;186(5):990-6
24382791 - Prenat Diagn. 2014 Jan;34(1):1-5
12168954 - DNA Res. 2002 Jun 30;9(3):99-106
18571142 - Am J Hum Genet. 2008 Jul;83(1):89-93
22377693 - Fetal Diagn Ther. 2012;31(2):109-14
9315895 - J Neurosci. 1997 Oct 15;17(20):7736-45
10231032 - DNA Res. 1999 Feb 26;6(1):63-70
12709362 - Clin Chem. 2003 May;49(5):727-31
11051224 - Clin Cancer Res. 2000 Oct;6(10):3823-6
14634580 - Am J Obstet Gynecol. 2003 Nov;189(5):1418-22
11511684 - J Histochem Cytochem. 2001 Sep;49(9):1155-64
17554801 - Prenat Diagn. 2007 Aug;27(8):772-7
11394202 - Semin Reprod Med. 2001;19(1):37-47
14751233 - Biochem Biophys Res Commun. 2004 Feb 20;314(4):1008-13
2235914 - Placenta. 1990 Jul-Aug;11(4):319-27
22763444 - Nature. 2012 Jul 19;487(7407):320-4
26923099 - BJOG. 2016 Dec;123(13):2119
18301740 - PLoS One. 2008;3(2):e1662
18791734 - Virchows Arch. 2008 Oct;453(4):387-400
7696596 - Neuroreport. 1994 Dec 20;5(18):2529-33
11253364 - Nat Rev Mol Cell Biol. 2000 Nov;1(2):120-9
17531276 - Physiol Behav. 2007 Jul 24;91(4):413-23
18838674 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16266-71
23446348 - Nature. 2013 Mar 21;495(7441):333-8
17885688 - J Clin Invest. 2007 Oct;117(10):3007-19
9354798 - Nat Genet. 1997 Nov;17(3):324-6
14704420 - Science. 2004 Jan 2;303(5654):56-9
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11223
18191324 - Eur Urol. 2008 Mar;53(3):478-96
18670422 - Nat Med. 2008 Sep;14(9):985-90
21444804 - Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6229-34
1277131 - Cancer Res. 1976 Jul;36(7 PT 1):2268-73
9846581 - Nat Med. 1998 Dec;4(12):1421-4
17235524 - Diabetologia. 2007 Mar;50(3):682-9
16709596 - Mol Hum Reprod. 2006 Jul;12(7):427-33
11067820 - Clin Chem. 2000 Nov;46(11):1832-4
18875018 - C R Seances Soc Biol Fil. 1948 Feb;142(3-4):241-3
17206148 - Nat Med. 2007 Feb;13(2):218-23
22729990 - Mol Reprod Dev. 2012 Aug;79(8):564-72
10430801 - Clin Chem. 1999 Aug;45(8 Pt 1):1292-4
7631677 - Am J Obstet Gynecol. 1995 Jul;173(1):181-6
4135842 - Transplant Rev. 1974;20(0):38-60
11274013 - Clin Chem. 2001 Apr;47(4):645-53
10473072 - Clin Cancer Res. 1999 Aug;5(8):1961-5
17586478 - Brain Res. 2007 Aug 3;1161:116-23
15662668 - Prenat Diagn. 2005 Jan;25(1):45-6
10075695 - J Biol Chem. 1999 Mar 19;274(12):7975-81
18342566 - Int J Biochem Cell Biol. 2008;40(9):1685-702
16533649 - Semin Perinatol. 2005 Dec;29(6):367-75
19131956 - Nat Protoc. 2009;4(1):44-57
References_xml – reference: 17235524 - Diabetologia. 2007 Mar;50(3):682-9
– reference: 22729990 - Mol Reprod Dev. 2012 Aug;79(8):564-72
– reference: 17206148 - Nat Med. 2007 Feb;13(2):218-23
– reference: 10430801 - Clin Chem. 1999 Aug;45(8 Pt 1):1292-4
– reference: 10506932 - Histol Histopathol. 1999 Oct;14(4):1159-64
– reference: 11253364 - Nat Rev Mol Cell Biol. 2000 Nov;1(2):120-9
– reference: 12709362 - Clin Chem. 2003 May;49(5):727-31
– reference: 4135842 - Transplant Rev. 1974;20(0):38-60
– reference: 11051224 - Clin Cancer Res. 2000 Oct;6(10):3823-6
– reference: 11468248 - Clin Chem. 2001 Aug;47(8):1488-9
– reference: 22095278 - Cell Death Differ. 2012 Apr;19(4):692-702
– reference: 23446348 - Nature. 2013 Mar 21;495(7441):333-8
– reference: 11067820 - Clin Chem. 2000 Nov;46(11):1832-4
– reference: 9315895 - J Neurosci. 1997 Oct 15;17(20):7736-45
– reference: 2235914 - Placenta. 1990 Jul-Aug;11(4):319-27
– reference: 11394202 - Semin Reprod Med. 2001;19(1):37-47
– reference: 15662668 - Prenat Diagn. 2005 Jan;25(1):45-6
– reference: 12015526 - Am J Obstet Gynecol. 2002 May;186(5):990-6
– reference: 10473072 - Clin Cancer Res. 1999 Aug;5(8):1961-5
– reference: 18670422 - Nat Med. 2008 Sep;14(9):985-90
– reference: 22763444 - Nature. 2012 Jul 19;487(7407):320-4
– reference: 18191324 - Eur Urol. 2008 Mar;53(3):478-96
– reference: 23197571 - Sci Transl Med. 2012 Nov 28;4(162):162ra154
– reference: 14704420 - Science. 2004 Jan 2;303(5654):56-9
– reference: 16533649 - Semin Perinatol. 2005 Dec;29(6):367-75
– reference: 26923099 - BJOG. 2016 Dec;123(13):2119
– reference: 12168954 - DNA Res. 2002 Jun 30;9(3):99-106
– reference: 17586478 - Brain Res. 2007 Aug 3;1161:116-23
– reference: 24382791 - Prenat Diagn. 2014 Jan;34(1):1-5
– reference: - Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11223
– reference: 18875018 - C R Seances Soc Biol Fil. 1948 Feb;142(3-4):241-3
– reference: 22183218 - Obstet Gynecol. 2012 Jan;119(1):111-8
– reference: 17554801 - Prenat Diagn. 2007 Aug;27(8):772-7
– reference: 18301740 - PLoS One. 2008;3(2):e1662
– reference: 18791734 - Virchows Arch. 2008 Oct;453(4):387-400
– reference: 23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53
– reference: 1277131 - Cancer Res. 1976 Jul;36(7 PT 1):2268-73
– reference: 17531276 - Physiol Behav. 2007 Jul 24;91(4):413-23
– reference: 12644709 - Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4748-53
– reference: 12324479 - Clin Chem. 2002 Oct;48(10):1647-53
– reference: 23249747 - RNA. 2013 Feb;19(2):141-57
– reference: 21444804 - Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6229-34
– reference: 19131956 - Nat Protoc. 2009;4(1):44-57
– reference: 9846581 - Nat Med. 1998 Dec;4(12):1421-4
– reference: 18571142 - Am J Hum Genet. 2008 Jul;83(1):89-93
– reference: 18546601 - Nat Protoc. 2008;3(6):1101-8
– reference: 5665998 - Enzymologia. 1968 Jul 15;34(5):317-21
– reference: 10231032 - DNA Res. 1999 Feb 26;6(1):63-70
– reference: 17885688 - J Clin Invest. 2007 Oct;117(10):3007-19
– reference: 14751233 - Biochem Biophys Res Commun. 2004 Feb 20;314(4):1008-13
– reference: 14634580 - Am J Obstet Gynecol. 2003 Nov;189(5):1418-22
– reference: 12895444 - Exp Neurol. 2003 Aug;182(2):335-45
– reference: 22377693 - Fetal Diagn Ther. 2012;31(2):109-14
– reference: 22319583 - PLoS One. 2012;7(2):e30733
– reference: 11274013 - Clin Chem. 2001 Apr;47(4):645-53
– reference: 9354798 - Nat Genet. 1997 Nov;17(3):324-6
– reference: 11511684 - J Histochem Cytochem. 2001 Sep;49(9):1155-64
– reference: 16709596 - Mol Hum Reprod. 2006 Jul;12(7):427-33
– reference: 10075695 - J Biol Chem. 1999 Mar 19;274(12):7975-81
– reference: 18342566 - Int J Biochem Cell Biol. 2008;40(9):1685-702
– reference: 18838674 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16266-71
– reference: 7696596 - Neuroreport. 1994 Dec 20;5(18):2529-33
– reference: 12857956 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8817-22
– reference: 7631677 - Am J Obstet Gynecol. 1995 Jul;173(1):181-6
SSID ssj0009580
Score 2.571856
Snippet Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 7361
SubjectTerms Adult
Alzheimer Disease - blood
Apoptosis
Brain - embryology
Brain - metabolism
Female
Gene Expression Profiling - methods
Gene Expression Regulation, Developmental
Genomics - methods
High-Throughput Nucleotide Sequencing - methods
Humans
Neurodegenerative Diseases - physiopathology
Neurons - metabolism
Oligonucleotide Array Sequence Analysis
Pregnancy
RNA - blood
Time Factors
Transcriptome
Title Noninvasive in vivo monitoring of tissue-specific global gene expression in humans
URI https://www.ncbi.nlm.nih.gov/pubmed/24799715
https://www.proquest.com/docview/1527326537
Volume 111
WOSCitedRecordID wos000336168100048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPegjbpGnTnETExYOWRRT2VtJsCnuwXe1a_PnOtFn0Ighechsok3l8M5l-Q8gF1jkFtwXLQyuZnOYcXCqWTISAjeHCIQW1lPkPKk2TyUSPfcOt9mOVy5jYBuppZbFHPsT1qwA1olBdz98Ybo3C11W_QmOV9EKAMmjVapL8IN1NOjYCzVksdbCk9lHhcF6aGqJEEEUi4Zz_ji_bPDPa-u8XbpNNjzDpTWcSfbLiyh3S9z5c00tPNH21S55S7MU2BifY6aykzayp6Gvr5Njto1VBF-29MPwfE2eKaMcfQsHqHHWffoi2ROF22V-9R15Gd8-398zvWGAWgM-CTaEQ1YWxWlie8yBHBOAiEyjhIg21iUmkE5DnDLcK0EhspHMJj7VNTGS0KMQ-WSur0h0Sal1gcxcXtoCq0UhtOBwgJg2mSe0G5HyptwxsGB8mTOmqjzr71tyAHHTKz-Yd2UYmpNJa8ejoD9LHZAPwjMTHfRGckF4BHuxOybptQFvvZ61xwJmOH78ABmzDfg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+in+vivo+monitoring+of+tissue-specific+global+gene+expression+in+humans&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Koh%2C+Winston&rft.au=Pan%2C+Wenying&rft.au=Gawad%2C+Charles&rft.au=Fan%2C+H+Christina&rft.date=2014-05-20&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=20&rft.spage=7361&rft_id=info:doi/10.1073%2Fpnas.1405528111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon