Spectral methods for graph clustering – A survey

Graph clustering is an area in cluster analysis that looks for groups of related vertices in a graph. Due to its large applicability, several graph clustering algorithms have been proposed in the last years. A particular class of graph clustering algorithms is known as spectral clustering algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 211; H. 2; S. 221 - 231
Hauptverfasser: Nascimento, Mariá C.V., de Carvalho, André C.P.L.F.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.06.2011
Elsevier
Elsevier Sequoia S.A
Schriftenreihe:European Journal of Operational Research
Schlagworte:
ISSN:0377-2217, 1872-6860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Graph clustering is an area in cluster analysis that looks for groups of related vertices in a graph. Due to its large applicability, several graph clustering algorithms have been proposed in the last years. A particular class of graph clustering algorithms is known as spectral clustering algorithms. These algorithms are mostly based on the eigen-decomposition of Laplacian matrices of either weighted or unweighted graphs. This survey presents different graph clustering formulations, most of which based on graph cut and partitioning problems, and describes the main spectral clustering algorithms found in literature that solve these problems.
AbstractList Graph clustering is an area in cluster analysis that looks for groups of related vertices in a graph. Due to its large applicability, several graph clustering algorithms have been proposed in the last years. A particular class of graph clustering algorithms is known as spectral clustering algorithms. These algorithms are mostly based on the eigen-decomposition of Laplacian matrices of either weighted or unweighted graphs. This survey presents different graph clustering formulations, most of which based on graph cut and partitioning problems, and describes the main spectral clustering algorithms found in literature that solve these problems. [PUBLICATION ABSTRACT]
Graph clustering is an area in cluster analysis that looks for groups of related vertices in a graph. Due to its large applicability, several graph clustering algorithms have been proposed in the last years. A particular class of graph clustering algorithms is known as spectral clustering algorithms. These algorithms are mostly based on the eigen-decomposition of Laplacian matrices of either weighted or unweighted graphs. This survey presents different graph clustering formulations, most of which based on graph cut and partitioning problems, and describes the main spectral clustering algorithms found in literature that solve these problems.
Author Nascimento, Mariá C.V.
de Carvalho, André C.P.L.F.
Author_xml – sequence: 1
  givenname: Mariá C.V.
  surname: Nascimento
  fullname: Nascimento, Mariá C.V.
  email: mariah@icmc.usp.br
– sequence: 2
  givenname: André C.P.L.F.
  surname: de Carvalho
  fullname: de Carvalho, André C.P.L.F.
  email: andre@icmc.usp.br
BackLink http://www.econis.eu/PPNSET?PPN=654683395$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23897471$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeejores/v_3a211_3ay_3a2011_3ai_3a2_3ap_3a221-231.htm$$DView record in RePEc
BookMark eNp9ks2KFDEQx4Os4OzqC3ixEQQvPSaVzkeDl2VxVVzwoJ5DJl29k6an0ybdA3Pbd_ANfZJNO6PIHjaQVBF-__pI5ZycDWFAQl4yumaUyXfdGrsQ10DzBdVryuAJWTGtoJRa0jOyolypEoCpZ-Q8pY5SygQTKwLfRnRTtH2xw2kbmlS0IRa30Y7bwvVzmjD64bb4fferuCzSHPd4eE6etrZP-OJkL8iP6w_frz6VN18_fr66vCmdBD6VG76pnagcFxaUs9zyFhgVqDjnTa1cRVHV0mJrEVBJRRsL9WajLdKWITh-Qd4e444x_JwxTWbnk8O-twOGOZnceC1rJiqW0dcP0C7MccjVGS1ACglsgb4coYi5ZzNGv7PxYDCv_HaYzN5wm8F8HhaP_nH94uY9LhaYAc7MdtrlaG9OKW1ytm-jHZxP_6IC17Wq1JL11ZFDF4b_ACkqqTmvRSb0kXAxpBSxNc5PdvJhyHPxfe5zaVWazix1mmXGhmqTZ5yl8ED6N_yjovenivLw9h6jSc7j4LDxMf8F0wT_mPwe_Z-_aw
CODEN EJORDT
CitedBy_id crossref_primary_10_1109_LES_2022_3209137
crossref_primary_10_1371_journal_pone_0300358
crossref_primary_10_1038_s41598_018_21532_5
crossref_primary_10_4028_www_scientific_net_AMR_1037_422
crossref_primary_10_1111_mice_13203
crossref_primary_10_1002_sim_7928
crossref_primary_10_1007_s10115_012_0547_0
crossref_primary_10_1109_ACCESS_2017_2769484
crossref_primary_10_1109_TSP_2014_2314063
crossref_primary_10_3389_fimag_2024_1443142
crossref_primary_10_3390_math11030720
crossref_primary_10_1007_s10587_016_0281_y
crossref_primary_10_1093_comnet_cnab016
crossref_primary_10_1109_TPAMI_2021_3056510
crossref_primary_10_1109_TQE_2021_3140190
crossref_primary_10_1016_j_knosys_2018_09_001
crossref_primary_10_1109_TGRS_2019_2913004
crossref_primary_10_3390_pr9030439
crossref_primary_10_1080_0740817X_2014_1001927
crossref_primary_10_1016_j_ijar_2024_109169
crossref_primary_10_1016_j_patrec_2015_11_006
crossref_primary_10_1109_TEM_2019_2939398
crossref_primary_10_1007_s10044_015_0447_5
crossref_primary_10_1109_ACCESS_2023_3331592
crossref_primary_10_3390_app12010298
crossref_primary_10_1007_s44163_024_00102_x
crossref_primary_10_1016_j_dajour_2022_100027
crossref_primary_10_1016_j_eswa_2024_125418
crossref_primary_10_1016_j_autcon_2023_104755
crossref_primary_10_1109_ACCESS_2023_3252374
crossref_primary_10_1016_j_socnet_2019_08_001
crossref_primary_10_1109_TCE_2023_3279836
crossref_primary_10_1016_j_ejor_2021_12_034
crossref_primary_10_1109_TBME_2015_2415733
crossref_primary_10_1016_j_ejor_2017_03_056
crossref_primary_10_1016_j_ejor_2023_07_011
crossref_primary_10_1186_s12859_016_1223_2
crossref_primary_10_1016_j_amc_2023_127904
crossref_primary_10_1016_j_measurement_2025_117209
crossref_primary_10_1002_sta4_70098
crossref_primary_10_1145_3653298
crossref_primary_10_1016_j_comcom_2016_12_020
crossref_primary_10_1007_s00521_012_1101_4
crossref_primary_10_1016_j_engappai_2024_109249
crossref_primary_10_1016_j_physrep_2013_08_002
crossref_primary_10_1007_s41870_022_01028_2
crossref_primary_10_1016_j_ejor_2013_04_027
crossref_primary_10_1186_s13673_017_0103_8
crossref_primary_10_3390_app131810362
crossref_primary_10_1109_TSIPN_2023_3276687
crossref_primary_10_32604_cmes_2023_026083
crossref_primary_10_2118_212833_PA
crossref_primary_10_1109_TCYB_2025_3526176
crossref_primary_10_1109_ACCESS_2025_3600986
crossref_primary_10_1111_itor_13062
crossref_primary_10_1016_j_eswa_2021_115108
crossref_primary_10_1002_qute_201900029
crossref_primary_10_2333_bhmk_40_85
crossref_primary_10_1002_cmm4_1020
crossref_primary_10_1371_journal_pone_0210236
crossref_primary_10_1016_j_knosys_2018_11_007
crossref_primary_10_1109_JSEN_2020_2981976
crossref_primary_10_1016_j_eswa_2014_03_008
crossref_primary_10_1109_TPAMI_2020_2974475
crossref_primary_10_1109_TKDE_2025_3569681
crossref_primary_10_1038_s41598_022_25411_y
crossref_primary_10_1080_21680566_2023_2240961
crossref_primary_10_1109_TMC_2020_2999852
crossref_primary_10_1007_s43441_024_00705_7
crossref_primary_10_1016_j_jmsy_2025_04_011
crossref_primary_10_1016_j_engappai_2024_108215
crossref_primary_10_3389_fncir_2021_662882
crossref_primary_10_1007_s10586_021_03430_0
crossref_primary_10_1109_LGRS_2024_3407949
crossref_primary_10_7717_peerj_cs_1621
crossref_primary_10_1007_s10844_024_00897_2
crossref_primary_10_1002_gepi_22164
crossref_primary_10_1007_s00521_014_1628_7
crossref_primary_10_1111_jace_20128
crossref_primary_10_1007_s10044_025_01432_x
crossref_primary_10_1109_ACCESS_2019_2929948
crossref_primary_10_1007_s11760_019_01419_2
crossref_primary_10_1007_s10878_020_00574_4
crossref_primary_10_1016_j_eswa_2022_119099
crossref_primary_10_1007_s12293_022_00365_w
crossref_primary_10_1109_LSP_2020_3023587
crossref_primary_10_1109_ACCESS_2025_3553056
crossref_primary_10_1016_j_aca_2019_10_071
crossref_primary_10_1155_2024_5555191
crossref_primary_10_1111_mice_13466
crossref_primary_10_1007_s00521_017_3036_2
crossref_primary_10_1016_j_laa_2011_11_032
crossref_primary_10_1007_s10586_017_1472_5
crossref_primary_10_1016_j_patcog_2012_01_005
crossref_primary_10_1155_2015_170138
crossref_primary_10_1049_iet_cvi_2014_0131
crossref_primary_10_1080_10106049_2024_2326008
crossref_primary_10_1155_2022_8153249
crossref_primary_10_1007_s10479_024_05868_y
crossref_primary_10_1007_s11042_023_17909_y
crossref_primary_10_1007_s44336_024_00008_3
crossref_primary_10_1016_j_cam_2020_112795
crossref_primary_10_1109_TSG_2016_2602480
crossref_primary_10_1016_j_eswa_2021_116475
crossref_primary_10_1186_s12938_016_0154_5
crossref_primary_10_1016_j_dam_2021_02_040
crossref_primary_10_1016_j_eswa_2015_07_074
crossref_primary_10_1016_j_jmsy_2016_09_007
crossref_primary_10_1155_cplx_6950334
crossref_primary_10_1016_j_eswa_2015_05_009
crossref_primary_10_1016_j_ijpe_2021_108272
crossref_primary_10_1109_TNNLS_2023_3243914
crossref_primary_10_1371_journal_pone_0304716
crossref_primary_10_1016_j_ejor_2011_10_013
crossref_primary_10_1007_s00521_013_1439_2
crossref_primary_10_1007_s41060_017_0069_7
crossref_primary_10_1371_journal_pone_0169355
crossref_primary_10_1111_risa_13795
Cites_doi 10.1109/34.868688
10.1086/170483
10.1109/SFCS.1988.21958
10.1007/s00265-003-0651-y
10.1145/196244.196603
10.1109/34.244673
10.1103/PhysRevE.74.036104
10.1186/1471-2105-8-250
10.1007/978-3-540-30115-8_35
10.1007/BF02614317
10.1007/s11222-007-9033-z
10.1016/j.physrep.2005.10.009
10.1214/009053607000000640
10.1109/ICCV.2003.1238361
10.1016/S0166-218X(98)00083-3
10.1002/prot.20147
10.1109/TPAMI.2004.1262185
10.1103/PhysRevE.69.026113
10.1287/mnsc.17.3.219
10.2307/2344237
10.1109/43.159993
10.1186/1471-2105-6-260
10.1109/SUPERC.1990.129995
10.1109/43.310898
10.21136/CMJ.1975.101357
10.1006/jmbi.1999.3058
10.1016/j.patcog.2007.05.018
10.1142/S0219525903001067
10.1016/j.patcog.2006.05.021
10.1086/jar.33.4.3629752
10.1147/rd.175.0420
10.1016/S0031-3203(03)00084-0
10.1109/ICDM.2001.989507
10.1016/j.cosrev.2007.05.001
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Jun 1, 2011
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Jun 1, 2011
DBID AAYXX
CITATION
OQ6
IQODW
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
DOI 10.1016/j.ejor.2010.08.012
DatabaseName CrossRef
ECONIS
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Materials Business File
Materials Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
Materials Business File
DatabaseTitleList Technology Research Database
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1872-6860
EndPage 231
ExternalDocumentID 2270514311
eeeejores_v_3a211_3ay_3a2011_3ai_3a2_3ap_3a221_231_htm
23897471
654683395
10_1016_j_ejor_2010_08_012
S0377221710005497
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
OQ6
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
ID FETCH-LOGICAL-c623t-b3b9c54c35a27ca3a3f2105e7333d97c40e796aefae2e7670da29bb8ae0f1e2c3
ISICitedReferencesCount 162
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288308800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Wed Oct 01 14:28:15 EDT 2025
Sun Nov 09 08:14:53 EST 2025
Wed Aug 18 03:50:56 EDT 2021
Mon Jul 21 09:13:46 EDT 2025
Sat Mar 08 16:11:55 EST 2025
Sat Nov 29 07:22:30 EST 2025
Tue Nov 18 22:35:30 EST 2025
Fri Feb 23 02:32:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Spectral clustering
Ratio cut
Modularity
Min-cut
ncut
Cluster analysis
Spectral method
Modular system
Graph theory
Data mining
Weighted graph
Laplacian
Graph decomposition
Graph cut
Classification
Graph method
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-b3b9c54c35a27ca3a3f2105e7333d97c40e796aefae2e7670da29bb8ae0f1e2c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink http://doi.org/10.1016/j.ejor.2010.08.012
PQID 852656211
PQPubID 45678
PageCount 11
ParticipantIDs proquest_miscellaneous_1019691541
proquest_journals_852656211
repec_primary_eeeejores_v_3a211_3ay_3a2011_3ai_3a2_3ap_3a221_231_htm
pascalfrancis_primary_23897471
econis_primary_654683395
crossref_citationtrail_10_1016_j_ejor_2010_08_012
crossref_primary_10_1016_j_ejor_2010_08_012
elsevier_sciencedirect_doi_10_1016_j_ejor_2010_08_012
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Cvetković, Doob, Sachs (b0050) 1979
Singh, Mukherjee, Peng, Xu (b0235) 2008; vol. 20
Meilă, M., Xu, L., 2004. Multiway Cuts and Spectral Clustering, Technical Report. 442, University of Washington.
Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., Mckenney, A., Sorensen, D., 1990. LAPACK: A Portable Linear Algebra Library for High-Performance Computers, Technical Report CS-90-105, Computer Science Department, University of Tennessee, Knoxville, TN.
Chan, Schlag, Zien (b0035) 1994; 13
Stewart, Sun (b0240) 1990
Hagen, Kahng (b0120) 1992; 11
Schrijver (b0220) 2003; vol. B
Ding, He, Meraz, Holbrook (b0070) 2004; 57
Zha, H., Ding, C., Gu, M., He, X., Simon, H., 2002. Spectral relaxation for
Kim, Choi (b0150) 2006; 39
Alpert, Kahng, Yao (b0010) 1999; 90
Luo, Wilson, Hancock (b0165) 2003; 36
Ushioda, A., Kawasaki, J., 1996. Hierarchical clustering of words and application to nlp tasks. In: Ejerhed, E., Dagan, I. (Eds.), Fourth Workshop on Very Large Corpora. Association for Computational Linguistics, Somerset, New Jersey. pp. 28–41.
Gu, M., Zha, H., Ding, C., He, X., Simon, H., 2001. Spectral Relaxation Models and Structure Analysis for
Venables, W.N., Smith, D.M., 2010. An Introduction to R. R Development Core Team, The R Foundation for Statistical Computing, version 2.11.1.
Meilă, M., Shi, J., 2001. A random walks view of spectral segmentation. In: Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics.
Zachary (b0290) 1977; 33
Kannan, Vishveshwara (b0145) 1999; 292
Leighton, T., Rao, S., 1988. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In: Annual IEEE Symposium on Foundations of Computer Science, pp. 422–431.
Xing, E., Jordan, M., 2003. On semidefinite relaxation for normalized
Hall (b0125) 1970; 17
way Graph Clustering and Bi-clustering, Technical Report. CSE-01-007, The Pennsylvania State University.
Kulis, B., Surendran, A.C., Platt, J.C., 2007. Fast low-rank semidefinite programming for embedding and clustering. In: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics.
Gleiser, Danon (b0110) 2003; 6
Lusseau, Schneider, Boisseau, Haase, Slooten, Dawson (b0170) 2003; 54
Von Luxburg (b0255) 2007; 17
Hansen, Jaumard (b0130) 1997; 79
Newman (b0195) 2006; 74
Huttenhower, Flamholz, Landis, Sahi, Myers, Olszewski, Hibbs, Siemers, Troyanskaya, Coller (b0140) 2007; 8
Ding, C., He, X., Zha, H., Gu, M., Simon, H., 2001. A min–max cut algorithm for graph partitioning and data clustering. In: Proceedings of the IEEE International Conference on Data Mining, ICDM 2001, pp. 107–114.
Ford, Fulkerson (b0095) 1962
Maier, M., von Luxburg, U., Hein, M., 2009. Influence of graph construction on graph-based clustering measures. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., Curran, Hook, R. (Eds.), Advances in Neural Information Processing Systems, vol. 21, pp. 1025–1032.
Zelnik-Manor, Perona (b0295) 2004; vol. 17
Forman, Clemons, Schreiber, Haggarty (b0100) 2005; 6
Shi, Malik (b0230) 2000; 22
Hückel (b0135) 1931; 72
Donath, Hoffman (b0080) 1973; 17
means clustering. In: Advances in Neural Information Processing Systems, vol. 14. pp. 1057–1064.
Filippone, Camastra, Masulli, Rovetta (b0090) 2008; 41
Alpert, C.J., Kahng, A.B., 1994. Multi-way partitioning via spacefilling curves and dynamic programming. In: Proceeding of the 31st ACM/IEEE Design Automation Conference, pp. 652–657.
Newman, Girvan (b0200) 2004; 69
Von Luxburg, Belkin, Bousquet (b0260) 2008; 36
De Bie, Cristianini (b0055) 2006; 7
Saerens, M., Fouss, F., Yen, L., Dupont, P., 2004. The principal components analysis of a graph, and its relationships to spectral clustering. In: Machine Learning: ECML 2004, Lecture Notes in Computer Science, vol. 3201, pp. 371–383.
Mohar (b0190) 1991; 2
Bach, Jordan (b0020) 2004; vol. 16
Wu, Leahy (b0275) 1993; 15
Ding, He, Simon (b0075) 2005
Cormack (b0045) 1971; 134
Schaeffer (b0215) 2007; 1
Diestel (b0060) 2005; vol. 173
Chung (b0040) 1994
Boccaletti, Latora, Moreno, Chavez, Hwang (b0025) 2006; 424
Brand, M., Huang, K., 2003. A unifying theorem for spectral embedding and clustering. In: Bishop, C., Frey, B. (Eds.), Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics.
Fiedler (b0085) 1975; 25
White, Frenk (b0270) 1991; 379
Yu, S.X., Shi, J., 2003. Multiclass spectral clustering. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 313–319.
cut and connections to spectral clustering, Technical Report. CSD-03-1265, University of California, Berkeley.
Wei, Y. C., Cheng, C. K., 1989. Towards efficient hierarchical designs by ratio cut partitioning. In: Proceedings of the IEEE International Conference on Computer-Aided Design. pp. 298–301.
Fowlkes, Belongie, Chung, Malik (b0105) 2004; 26
Ng, Jordan, Weiss (b0205) 2002; vol. 14
Shi, J., Malik, J., 1997. Normalized cuts and image segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 731–737.
10.1016/j.ejor.2010.08.012_b0185
Diestel (10.1016/j.ejor.2010.08.012_b0060) 2005; vol. 173
Hagen (10.1016/j.ejor.2010.08.012_b0120) 1992; 11
Schrijver (10.1016/j.ejor.2010.08.012_b0220) 2003; vol. B
10.1016/j.ejor.2010.08.012_b0180
Ng (10.1016/j.ejor.2010.08.012_b0205) 2002; vol. 14
10.1016/j.ejor.2010.08.012_b0300
10.1016/j.ejor.2010.08.012_b0225
10.1016/j.ejor.2010.08.012_b0065
Fowlkes (10.1016/j.ejor.2010.08.012_b0105) 2004; 26
Lusseau (10.1016/j.ejor.2010.08.012_b0170) 2003; 54
10.1016/j.ejor.2010.08.012_b0265
Fiedler (10.1016/j.ejor.2010.08.012_b0085) 1975; 25
Huttenhower (10.1016/j.ejor.2010.08.012_b0140) 2007; 8
Von Luxburg (10.1016/j.ejor.2010.08.012_b0255) 2007; 17
Cvetković (10.1016/j.ejor.2010.08.012_b0050) 1979
Kannan (10.1016/j.ejor.2010.08.012_b0145) 1999; 292
Donath (10.1016/j.ejor.2010.08.012_b0080) 1973; 17
Kim (10.1016/j.ejor.2010.08.012_b0150) 2006; 39
10.1016/j.ejor.2010.08.012_b0250
Gleiser (10.1016/j.ejor.2010.08.012_b0110) 2003; 6
10.1016/j.ejor.2010.08.012_b0015
10.1016/j.ejor.2010.08.012_b0175
Filippone (10.1016/j.ejor.2010.08.012_b0090) 2008; 41
10.1016/j.ejor.2010.08.012_b0210
Alpert (10.1016/j.ejor.2010.08.012_b0010) 1999; 90
Singh (10.1016/j.ejor.2010.08.012_b0235) 2008; vol. 20
Mohar (10.1016/j.ejor.2010.08.012_b0190) 1991; 2
Zachary (10.1016/j.ejor.2010.08.012_b0290) 1977; 33
Zelnik-Manor (10.1016/j.ejor.2010.08.012_b0295) 2004; vol. 17
10.1016/j.ejor.2010.08.012_b0160
Schaeffer (10.1016/j.ejor.2010.08.012_b0215) 2007; 1
Hückel (10.1016/j.ejor.2010.08.012_b0135) 1931; 72
10.1016/j.ejor.2010.08.012_b0280
10.1016/j.ejor.2010.08.012_b0245
Hall (10.1016/j.ejor.2010.08.012_b0125) 1970; 17
10.1016/j.ejor.2010.08.012_b0005
Newman (10.1016/j.ejor.2010.08.012_b0195) 2006; 74
10.1016/j.ejor.2010.08.012_b0285
Ding (10.1016/j.ejor.2010.08.012_b0070) 2004; 57
Bach (10.1016/j.ejor.2010.08.012_b0020) 2004; vol. 16
Cormack (10.1016/j.ejor.2010.08.012_b0045) 1971; 134
Newman (10.1016/j.ejor.2010.08.012_b0200) 2004; 69
Hansen (10.1016/j.ejor.2010.08.012_b0130) 1997; 79
White (10.1016/j.ejor.2010.08.012_b0270) 1991; 379
Chung (10.1016/j.ejor.2010.08.012_b0040) 1994
Shi (10.1016/j.ejor.2010.08.012_b0230) 2000; 22
Luo (10.1016/j.ejor.2010.08.012_b0165) 2003; 36
10.1016/j.ejor.2010.08.012_b0030
De Bie (10.1016/j.ejor.2010.08.012_b0055) 2006; 7
Ford (10.1016/j.ejor.2010.08.012_b0095) 1962
Boccaletti (10.1016/j.ejor.2010.08.012_b0025) 2006; 424
Chan (10.1016/j.ejor.2010.08.012_b0035) 1994; 13
Ding (10.1016/j.ejor.2010.08.012_b0075) 2005
10.1016/j.ejor.2010.08.012_b0115
Wu (10.1016/j.ejor.2010.08.012_b0275) 1993; 15
10.1016/j.ejor.2010.08.012_b0155
Forman (10.1016/j.ejor.2010.08.012_b0100) 2005; 6
Stewart (10.1016/j.ejor.2010.08.012_b0240) 1990
Von Luxburg (10.1016/j.ejor.2010.08.012_b0260) 2008; 36
References_xml – reference: Meilă, M., Shi, J., 2001. A random walks view of spectral segmentation. In: Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics.
– start-page: 530
  year: 2005
  end-page: 538
  ident: b0075
  article-title: Nonnegative Lagrangian relaxation of
  publication-title: Machine Learning: ECML 2005
– reference: Shi, J., Malik, J., 1997. Normalized cuts and image segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 731–737.
– volume: 13
  start-page: 1088
  year: 1994
  end-page: 1096
  ident: b0035
  article-title: Spectral k-way ratio-cut partitioning and clustering
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
– volume: 7
  start-page: 1409
  year: 2006
  end-page: 1436
  ident: b0055
  article-title: Fast SDP relaxations of graph cut clustering, transduction, and other combinatorial problems
  publication-title: Journal of Machine Learning Research
– reference: Yu, S.X., Shi, J., 2003. Multiclass spectral clustering. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 313–319.
– volume: 17
  start-page: 420
  year: 1973
  end-page: 425
  ident: b0080
  article-title: Lower bounds for the partitioning of graphs
  publication-title: IBM Journal Research and Development
– reference: Venables, W.N., Smith, D.M., 2010. An Introduction to R. R Development Core Team, The R Foundation for Statistical Computing, version 2.11.1.
– reference: Gu, M., Zha, H., Ding, C., He, X., Simon, H., 2001. Spectral Relaxation Models and Structure Analysis for
– volume: 2
  start-page: 871
  year: 1991
  end-page: 898
  ident: b0190
  article-title: The Laplacian spectrum of graphs
  publication-title: Graph Theory, Combinatorics, and Applications
– volume: 25
  start-page: 619
  year: 1975
  end-page: 633
  ident: b0085
  article-title: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory
  publication-title: Czechoslovak Mathematical Journal
– reference: Ushioda, A., Kawasaki, J., 1996. Hierarchical clustering of words and application to nlp tasks. In: Ejerhed, E., Dagan, I. (Eds.), Fourth Workshop on Very Large Corpora. Association for Computational Linguistics, Somerset, New Jersey. pp. 28–41.
– reference: -means clustering. In: Advances in Neural Information Processing Systems, vol. 14. pp. 1057–1064.
– volume: vol. 20
  start-page: 1353
  year: 2008
  end-page: 1360
  ident: b0235
  article-title: Ensemble clustering using semidefinite programming
  publication-title: Advances in Neural Information Processing Systems
– volume: 6
  start-page: 565
  year: 2003
  end-page: 573
  ident: b0110
  article-title: Community structure in jazz
  publication-title: Advances in Complex Systems
– reference: Ding, C., He, X., Zha, H., Gu, M., Simon, H., 2001. A min–max cut algorithm for graph partitioning and data clustering. In: Proceedings of the IEEE International Conference on Data Mining, ICDM 2001, pp. 107–114.
– reference: Alpert, C.J., Kahng, A.B., 1994. Multi-way partitioning via spacefilling curves and dynamic programming. In: Proceeding of the 31st ACM/IEEE Design Automation Conference, pp. 652–657.
– volume: 26
  start-page: 214
  year: 2004
  end-page: 225
  ident: b0105
  article-title: Spectral grouping using the Nyström method
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Maier, M., von Luxburg, U., Hein, M., 2009. Influence of graph construction on graph-based clustering measures. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., Curran, Hook, R. (Eds.), Advances in Neural Information Processing Systems, vol. 21, pp. 1025–1032.
– reference: Zha, H., Ding, C., Gu, M., He, X., Simon, H., 2002. Spectral relaxation for
– volume: 72
  start-page: 310
  year: 1931
  end-page: 337
  ident: b0135
  article-title: Quantentheoretische Beiträge zum Benzolproblem
  publication-title: Zeitschrift füur Physik a Hadrons and Nuclei
– reference: Brand, M., Huang, K., 2003. A unifying theorem for spectral embedding and clustering. In: Bishop, C., Frey, B. (Eds.), Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics.
– volume: 8
  start-page: 250
  year: 2007
  ident: b0140
  article-title: Nearest neighbor networks: Clustering expression data based on gene neighborhoods
  publication-title: BMC Bioinformatics
– volume: 57
  start-page: 99
  year: 2004
  end-page: 108
  ident: b0070
  article-title: A unified representation of multiprotein complex data for modeling interaction networks
  publication-title: Proteins: Structure, Function, and Bioinformatics
– volume: 36
  start-page: 2213
  year: 2003
  end-page: 2230
  ident: b0165
  article-title: Spectral embedding of graphs
  publication-title: Pattern Recognition
– volume: 292
  start-page: 441
  year: 1999
  end-page: 464
  ident: b0145
  article-title: Identification of side-chain clusters in protein structures by a graph spectral method
  publication-title: Journal of Molecular Biology
– year: 1962
  ident: b0095
  article-title: Flows in Networks
– volume: 134
  start-page: 321
  year: 1971
  end-page: 367
  ident: b0045
  article-title: A review of classification
  publication-title: Journal of the Royal Statistical Society
– year: 1979
  ident: b0050
  article-title: Spectra of Graphs: Theory and Application
– volume: 17
  start-page: 219
  year: 1970
  end-page: 229
  ident: b0125
  article-title: An r-dimensional quadratic placement algorithm
  publication-title: Management Science
– volume: 6
  start-page: 260
  year: 2005
  ident: b0100
  article-title: SpectralNET – An application for spectral graph analysis and visualization
  publication-title: BMC Bioinformatics
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: b0230
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: vol. B
  year: 2003
  ident: b0220
  article-title: Combinatorial Optimization
  publication-title: Polyhedra and Efficiency
– volume: 33
  start-page: 452
  year: 1977
  end-page: 473
  ident: b0290
  article-title: An information flow model for conflict and fission in small groups
  publication-title: Journal of Anthropological Research
– year: 1990
  ident: b0240
  article-title: Matrix Perturbation Theory
  publication-title: Computer Science and Scientific Computing
– volume: 69
  start-page: 026113
  year: 2004
  ident: b0200
  article-title: Finding and evaluating community structure in networks
  publication-title: Physical Review E
– reference: Meilă, M., Xu, L., 2004. Multiway Cuts and Spectral Clustering, Technical Report. 442, University of Washington.
– volume: 74
  start-page: 036
  year: 2006
  end-page: 104
  ident: b0195
  article-title: Finding community structure in networks using the eigenvectors of matrices
  publication-title: Physical Review E
– volume: 41
  start-page: 176
  year: 2008
  end-page: 190
  ident: b0090
  article-title: A survey of kernel and spectral methods for clustering
  publication-title: Pattern Recognition
– volume: 11
  start-page: 1074
  year: 1992
  end-page: 1088
  ident: b0120
  article-title: New spectral methods for ratio cut partitioning and clustering
  publication-title: IEEE Transactions on Computer-Aided Design
– volume: 1
  start-page: 27
  year: 2007
  end-page: 64
  ident: b0215
  article-title: Graph clustering
  publication-title: Computer Science Review
– reference: Xing, E., Jordan, M., 2003. On semidefinite relaxation for normalized
– volume: 54
  start-page: 396
  year: 2003
  end-page: 405
  ident: b0170
  article-title: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations
  publication-title: Behavioral Ecology and Sociobiology
– reference: Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., Mckenney, A., Sorensen, D., 1990. LAPACK: A Portable Linear Algebra Library for High-Performance Computers, Technical Report CS-90-105, Computer Science Department, University of Tennessee, Knoxville, TN.
– reference: Wei, Y. C., Cheng, C. K., 1989. Towards efficient hierarchical designs by ratio cut partitioning. In: Proceedings of the IEEE International Conference on Computer-Aided Design. pp. 298–301.
– volume: 79
  start-page: 191
  year: 1997
  end-page: 215
  ident: b0130
  article-title: Cluster analysis and mathematical programming
  publication-title: Mathematical Programming
– reference: Saerens, M., Fouss, F., Yen, L., Dupont, P., 2004. The principal components analysis of a graph, and its relationships to spectral clustering. In: Machine Learning: ECML 2004, Lecture Notes in Computer Science, vol. 3201, pp. 371–383.
– year: 1994
  ident: b0040
  article-title: Spectral graph theory
  publication-title: No. 92 in CBMS Regional Conference Series in Mathematics
– volume: 36
  start-page: 555
  year: 2008
  end-page: 586
  ident: b0260
  article-title: Consistency of spectral clustering
  publication-title: The Annals of Statistics
– reference: Kulis, B., Surendran, A.C., Platt, J.C., 2007. Fast low-rank semidefinite programming for embedding and clustering. In: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics.
– volume: vol. 17
  start-page: 1601
  year: 2004
  end-page: 1608
  ident: b0295
  article-title: Self-tuning spectral clustering
  publication-title: Advances in Neural Information Processing Systems
– reference: Leighton, T., Rao, S., 1988. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In: Annual IEEE Symposium on Foundations of Computer Science, pp. 422–431.
– volume: vol. 173
  year: 2005
  ident: b0060
  article-title: Graph theory
  publication-title: Graduate Texts in Mathematics
– volume: vol. 16
  start-page: 305
  year: 2004
  end-page: 312
  ident: b0020
  article-title: Learning spectral clustering
  publication-title: Advances in Neural Information Processing Systems
– volume: 379
  start-page: 52
  year: 1991
  end-page: 79
  ident: b0270
  article-title: Galaxy formation through hierarchical clustering
  publication-title: Astrophysical Journal
– reference: -way Graph Clustering and Bi-clustering, Technical Report. CSE-01-007, The Pennsylvania State University.
– reference: -cut and connections to spectral clustering, Technical Report. CSD-03-1265, University of California, Berkeley.
– volume: 424
  start-page: 175
  year: 2006
  end-page: 308
  ident: b0025
  article-title: Complex networks: Structure and dynamics
  publication-title: Physics Reports
– volume: 90
  start-page: 3
  year: 1999
  end-page: 26
  ident: b0010
  article-title: Spectral partitioning with multiple eigenvectors
  publication-title: Discrete Applied Mathematics
– volume: 15
  start-page: 1101
  year: 1993
  end-page: 1113
  ident: b0275
  article-title: An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 39
  start-page: 2025
  year: 2006
  end-page: 2035
  ident: b0150
  article-title: Semidefinite spectral clustering
  publication-title: Pattern Recognition
– volume: vol. 14
  start-page: 849
  year: 2002
  end-page: 856
  ident: b0205
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Advances in Neural Information Processing Systems
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: b0255
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
– volume: 72
  start-page: 310
  year: 1931
  ident: 10.1016/j.ejor.2010.08.012_b0135
  article-title: Quantentheoretische Beiträge zum Benzolproblem
  publication-title: Zeitschrift füur Physik a Hadrons and Nuclei
– volume: 22
  start-page: 888
  year: 2000
  ident: 10.1016/j.ejor.2010.08.012_b0230
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.868688
– volume: 379
  start-page: 52
  issue: Part 1
  year: 1991
  ident: 10.1016/j.ejor.2010.08.012_b0270
  article-title: Galaxy formation through hierarchical clustering
  publication-title: Astrophysical Journal
  doi: 10.1086/170483
– volume: 7
  start-page: 1409
  year: 2006
  ident: 10.1016/j.ejor.2010.08.012_b0055
  article-title: Fast SDP relaxations of graph cut clustering, transduction, and other combinatorial problems
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.ejor.2010.08.012_b0160
  doi: 10.1109/SFCS.1988.21958
– volume: 54
  start-page: 396
  year: 2003
  ident: 10.1016/j.ejor.2010.08.012_b0170
  article-title: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations
  publication-title: Behavioral Ecology and Sociobiology
  doi: 10.1007/s00265-003-0651-y
– volume: vol. 17
  start-page: 1601
  year: 2004
  ident: 10.1016/j.ejor.2010.08.012_b0295
  article-title: Self-tuning spectral clustering
– volume: vol. 173
  year: 2005
  ident: 10.1016/j.ejor.2010.08.012_b0060
  article-title: Graph theory
– volume: vol. 20
  start-page: 1353
  year: 2008
  ident: 10.1016/j.ejor.2010.08.012_b0235
  article-title: Ensemble clustering using semidefinite programming
– ident: 10.1016/j.ejor.2010.08.012_b0115
– ident: 10.1016/j.ejor.2010.08.012_b0005
  doi: 10.1145/196244.196603
– volume: vol. 16
  start-page: 305
  year: 2004
  ident: 10.1016/j.ejor.2010.08.012_b0020
  article-title: Learning spectral clustering
– volume: 15
  start-page: 1101
  issue: 11
  year: 1993
  ident: 10.1016/j.ejor.2010.08.012_b0275
  article-title: An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.244673
– volume: 74
  start-page: 036
  year: 2006
  ident: 10.1016/j.ejor.2010.08.012_b0195
  article-title: Finding community structure in networks using the eigenvectors of matrices
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.74.036104
– ident: 10.1016/j.ejor.2010.08.012_b0300
– ident: 10.1016/j.ejor.2010.08.012_b0265
– volume: 8
  start-page: 250
  year: 2007
  ident: 10.1016/j.ejor.2010.08.012_b0140
  article-title: Nearest neighbor networks: Clustering expression data based on gene neighborhoods
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-250
– ident: 10.1016/j.ejor.2010.08.012_b0210
  doi: 10.1007/978-3-540-30115-8_35
– volume: 79
  start-page: 191
  year: 1997
  ident: 10.1016/j.ejor.2010.08.012_b0130
  article-title: Cluster analysis and mathematical programming
  publication-title: Mathematical Programming
  doi: 10.1007/BF02614317
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 10.1016/j.ejor.2010.08.012_b0255
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9033-z
– volume: 424
  start-page: 175
  year: 2006
  ident: 10.1016/j.ejor.2010.08.012_b0025
  article-title: Complex networks: Structure and dynamics
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2005.10.009
– volume: 36
  start-page: 555
  year: 2008
  ident: 10.1016/j.ejor.2010.08.012_b0260
  article-title: Consistency of spectral clustering
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000640
– ident: 10.1016/j.ejor.2010.08.012_b0285
  doi: 10.1109/ICCV.2003.1238361
– volume: 90
  start-page: 3
  year: 1999
  ident: 10.1016/j.ejor.2010.08.012_b0010
  article-title: Spectral partitioning with multiple eigenvectors
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/S0166-218X(98)00083-3
– volume: 57
  start-page: 99
  year: 2004
  ident: 10.1016/j.ejor.2010.08.012_b0070
  article-title: A unified representation of multiprotein complex data for modeling interaction networks
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.20147
– volume: 26
  start-page: 214
  year: 2004
  ident: 10.1016/j.ejor.2010.08.012_b0105
  article-title: Spectral grouping using the Nyström method
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.1262185
– volume: 69
  start-page: 026113
  year: 2004
  ident: 10.1016/j.ejor.2010.08.012_b0200
  article-title: Finding and evaluating community structure in networks
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.69.026113
– year: 1979
  ident: 10.1016/j.ejor.2010.08.012_b0050
– volume: 17
  start-page: 219
  year: 1970
  ident: 10.1016/j.ejor.2010.08.012_b0125
  article-title: An r-dimensional quadratic placement algorithm
  publication-title: Management Science
  doi: 10.1287/mnsc.17.3.219
– volume: 134
  start-page: 321
  year: 1971
  ident: 10.1016/j.ejor.2010.08.012_b0045
  article-title: A review of classification
  publication-title: Journal of the Royal Statistical Society
  doi: 10.2307/2344237
– volume: 11
  start-page: 1074
  year: 1992
  ident: 10.1016/j.ejor.2010.08.012_b0120
  article-title: New spectral methods for ratio cut partitioning and clustering
  publication-title: IEEE Transactions on Computer-Aided Design
  doi: 10.1109/43.159993
– volume: vol. B
  year: 2003
  ident: 10.1016/j.ejor.2010.08.012_b0220
  article-title: Combinatorial Optimization
– volume: 6
  start-page: 260
  year: 2005
  ident: 10.1016/j.ejor.2010.08.012_b0100
  article-title: SpectralNET – An application for spectral graph analysis and visualization
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-260
– ident: 10.1016/j.ejor.2010.08.012_b0015
  doi: 10.1109/SUPERC.1990.129995
– year: 1994
  ident: 10.1016/j.ejor.2010.08.012_b0040
  article-title: Spectral graph theory
– volume: 2
  start-page: 871
  year: 1991
  ident: 10.1016/j.ejor.2010.08.012_b0190
  article-title: The Laplacian spectrum of graphs
  publication-title: Graph Theory, Combinatorics, and Applications
– volume: 13
  start-page: 1088
  year: 1994
  ident: 10.1016/j.ejor.2010.08.012_b0035
  article-title: Spectral k-way ratio-cut partitioning and clustering
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  doi: 10.1109/43.310898
– volume: 25
  start-page: 619
  year: 1975
  ident: 10.1016/j.ejor.2010.08.012_b0085
  article-title: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory
  publication-title: Czechoslovak Mathematical Journal
  doi: 10.21136/CMJ.1975.101357
– ident: 10.1016/j.ejor.2010.08.012_b0245
– volume: 292
  start-page: 441
  year: 1999
  ident: 10.1016/j.ejor.2010.08.012_b0145
  article-title: Identification of side-chain clusters in protein structures by a graph spectral method
  publication-title: Journal of Molecular Biology
  doi: 10.1006/jmbi.1999.3058
– volume: 41
  start-page: 176
  year: 2008
  ident: 10.1016/j.ejor.2010.08.012_b0090
  article-title: A survey of kernel and spectral methods for clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2007.05.018
– volume: 6
  start-page: 565
  year: 2003
  ident: 10.1016/j.ejor.2010.08.012_b0110
  article-title: Community structure in jazz
  publication-title: Advances in Complex Systems
  doi: 10.1142/S0219525903001067
– ident: 10.1016/j.ejor.2010.08.012_b0180
– ident: 10.1016/j.ejor.2010.08.012_b0250
– ident: 10.1016/j.ejor.2010.08.012_b0155
– volume: 39
  start-page: 2025
  issue: 11
  year: 2006
  ident: 10.1016/j.ejor.2010.08.012_b0150
  article-title: Semidefinite spectral clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.05.021
– ident: 10.1016/j.ejor.2010.08.012_b0030
– volume: vol. 14
  start-page: 849
  year: 2002
  ident: 10.1016/j.ejor.2010.08.012_b0205
  article-title: On spectral clustering: Analysis and an algorithm
– year: 1962
  ident: 10.1016/j.ejor.2010.08.012_b0095
– start-page: 530
  year: 2005
  ident: 10.1016/j.ejor.2010.08.012_b0075
  article-title: Nonnegative Lagrangian relaxation of k-means and spectral clustering
– ident: 10.1016/j.ejor.2010.08.012_b0185
– ident: 10.1016/j.ejor.2010.08.012_b0280
– volume: 33
  start-page: 452
  year: 1977
  ident: 10.1016/j.ejor.2010.08.012_b0290
  article-title: An information flow model for conflict and fission in small groups
  publication-title: Journal of Anthropological Research
  doi: 10.1086/jar.33.4.3629752
– year: 1990
  ident: 10.1016/j.ejor.2010.08.012_b0240
  article-title: Matrix Perturbation Theory
– volume: 17
  start-page: 420
  issue: 5
  year: 1973
  ident: 10.1016/j.ejor.2010.08.012_b0080
  article-title: Lower bounds for the partitioning of graphs
  publication-title: IBM Journal Research and Development
  doi: 10.1147/rd.175.0420
– ident: 10.1016/j.ejor.2010.08.012_b0225
– volume: 36
  start-page: 2213
  year: 2003
  ident: 10.1016/j.ejor.2010.08.012_b0165
  article-title: Spectral embedding of graphs
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(03)00084-0
– ident: 10.1016/j.ejor.2010.08.012_b0175
– ident: 10.1016/j.ejor.2010.08.012_b0065
  doi: 10.1109/ICDM.2001.989507
– volume: 1
  start-page: 27
  year: 2007
  ident: 10.1016/j.ejor.2010.08.012_b0215
  article-title: Graph clustering
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2007.05.001
SSID ssj0001515
Score 2.4888122
Snippet Graph clustering is an area in cluster analysis that looks for groups of related vertices in a graph. Due to its large applicability, several graph clustering...
SourceID proquest
repec
pascalfrancis
econis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 221
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Cluster analysis
Clustering
Computer science; control theory; systems
Cutting stock problem
Data processing. List processing. Character string processing
Exact sciences and technology
Graph algorithms
Graphs
Information retrieval. Graph
Laplace transforms
Mathematical analysis
Matrix
Memory organisation. Data processing
Min-cut
Modularity
ncut
Operational research
Partitioning
Ratio cut
Software
Spectra
Spectral clustering
Spectral clustering Min-cut Ratio cut ncut Modularity
Spectral methods
Studies
Theoretical computing
Title Spectral methods for graph clustering – A survey
URI https://dx.doi.org/10.1016/j.ejor.2010.08.012
http://www.econis.eu/PPNSET?PPN=654683395
http://econpapers.repec.org/article/eeeejores/v_3a211_3ay_3a2011_3ai_3a2_3ap_3a221-231.htm
https://www.proquest.com/docview/852656211
https://www.proquest.com/docview/1019691541
Volume 211
WOSCitedRecordID wos000288308800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0IJ2QiDExwCtDKYgwVOUKrGTOH6cyibgYdrDkPpmOamjpSpJlbTT-PfcxU6a8jHBA5XqWq7ruL7z3fl8H4S8T0WcpEoEsNN46IVsgUYAlHlZzjEclsp9ZpJN8IuLZD4Xl9bjumnTCfCyTG5vxfq_ghraANjoOvsP4O4HhQaoA9ChBLBD-VeAx4zyqL6wyaHbeAtuG5fazVZbjIvQcavfKeStcAoNdacmtPGAdnpjBWwTlYqVdfYp2tv2wJ1NdyazM8w5tLquOqNJcyGP9iWrqnEv0VnSXaA3EWDfua5rXdRqqIEIBpZSRi1mefiAcjHOPUqNU2ZHZqklqsXguGuJpvGRtvyXGq7wC2k3WoblVC-r2prkJVPf2mDvh8xGB62EMRHdJ2PKI5GMyPj089n8S8-jUYxr75fsRK07lbH8-_kJeyLLAeopimZPdnm8hoVXq9ykQtk7q4xrDVAfiCxXz8gTe9ZwTg2OPCf3dHlIHnSuDofkaZfSw7EU_pA8GsSnfEE-dLjkWFxyAJecFpecHS69JF_Pz65mnzybV8PLQNjdeClLRRaFGYsU5ZliiuVw8I80Z4wtBM9CX3MRK50rTTWPub9QVKRporSfB5pm7BUZlVWpj4iTqwTkzTgMwiAJQy7UIoPljJimKk38WExI0C2dzGzQecx9spKddeFS4nJLXG6JCVEDOiFu_5u1CblyZ-8jA5G-bw_9CYk6GEkrTxo5UQJO3TnkyR5A-5FBvMXjdzAhxx2Epd2ajUww0UQMWD4h7_pvgVbjBZwqdbVt8HkiFnBogT4fW8Toh9bwgmnoRt5IpmAUKL9jzW-rBVbhvcZPGsBMAnm9-fb6z3_-mDzc7dU3ZLSpt_otOchuNkVTn9j98AMvBMQa
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+methods+for+graph+clustering&rft.jtitle=European+journal+of+operational+research&rft.au=Nascimento%2C+Mari%C3%A1+C.+V&rft.au=Carvalho%2C+Andr%C3%A9+Carlos+Ponce+de+Leon+Ferreira&rft.date=2011-06-01&rft.pub=Elsevier&rft.issn=0377-2217&rft.volume=211&rft.issue=2&rft.spage=221&rft.epage=231&rft_id=info:doi/10.1016%2Fj.ejor.2010.08.012&rft.externalDocID=654683395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon