Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes

Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a sizable reservoir of tumor-infiltrating monocytes in the spleen. However, the influence of the spleen on tumor development and the extent to...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 21; p. 7771
Main Authors: Shand, Francis H W, Ueha, Satoshi, Otsuji, Mikiya, Koid, Suang Suang, Shichino, Shigeyuki, Tsukui, Tatsuya, Kosugi-Kanaya, Mizuha, Abe, Jun, Tomura, Michio, Ziogas, James, Matsushima, Kouji
Format: Journal Article
Language:English
Published: United States 27.05.2014
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a sizable reservoir of tumor-infiltrating monocytes in the spleen. However, the influence of the spleen on tumor development and the extent to which spleen monocytes populate the tumor relative to bone marrow (BM) monocytes remain controversial. Here, we used mice expressing the photoconvertible protein Kikume Green-Red to track the redistribution of monocytes from the BM and spleen, and mice expressing fluorescent ubiquitination-based cell-cycle indicator proteins to monitor active hematopoiesis in these tissues. In mice bearing late-stage tumors, the BM, besides being the major site of monocyte production, supplied the expansion of the spleen reservoir, replacing 9% of spleen monocytes every hour. Deployment of monocytes was equally rapid from the BM and the spleen. However, BM monocytes were younger than those in the spleen and were 2.7 times more likely to migrate into the tumor from the circulation. Partly as a result of this intrinsic difference in migration potential, spleen monocytes made only a minor contribution to the tumor-infiltrating monocyte population. At least 27% of tumor monocytes had traveled from the BM in the last 24 h, compared with only 2% from the spleen. These observations highlight the importance of the BM as the primary hematopoietic tissue and monocyte reservoir in tumor-bearing mice, despite the changes that occur in the spleen monocyte reservoir during tumor development.
AbstractList Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a sizable reservoir of tumor-infiltrating monocytes in the spleen. However, the influence of the spleen on tumor development and the extent to which spleen monocytes populate the tumor relative to bone marrow (BM) monocytes remain controversial. Here, we used mice expressing the photoconvertible protein Kikume Green-Red to track the redistribution of monocytes from the BM and spleen, and mice expressing fluorescent ubiquitination-based cell-cycle indicator proteins to monitor active hematopoiesis in these tissues. In mice bearing late-stage tumors, the BM, besides being the major site of monocyte production, supplied the expansion of the spleen reservoir, replacing 9% of spleen monocytes every hour. Deployment of monocytes was equally rapid from the BM and the spleen. However, BM monocytes were younger than those in the spleen and were 2.7 times more likely to migrate into the tumor from the circulation. Partly as a result of this intrinsic difference in migration potential, spleen monocytes made only a minor contribution to the tumor-infiltrating monocyte population. At least 27% of tumor monocytes had traveled from the BM in the last 24 h, compared with only 2% from the spleen. These observations highlight the importance of the BM as the primary hematopoietic tissue and monocyte reservoir in tumor-bearing mice, despite the changes that occur in the spleen monocyte reservoir during tumor development.
Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a sizable reservoir of tumor-infiltrating monocytes in the spleen. However, the influence of the spleen on tumor development and the extent to which spleen monocytes populate the tumor relative to bone marrow (BM) monocytes remain controversial. Here, we used mice expressing the photoconvertible protein Kikume Green-Red to track the redistribution of monocytes from the BM and spleen, and mice expressing fluorescent ubiquitination-based cell-cycle indicator proteins to monitor active hematopoiesis in these tissues. In mice bearing late-stage tumors, the BM, besides being the major site of monocyte production, supplied the expansion of the spleen reservoir, replacing 9% of spleen monocytes every hour. Deployment of monocytes was equally rapid from the BM and the spleen. However, BM monocytes were younger than those in the spleen and were 2.7 times more likely to migrate into the tumor from the circulation. Partly as a result of this intrinsic difference in migration potential, spleen monocytes made only a minor contribution to the tumor-infiltrating monocyte population. At least 27% of tumor monocytes had traveled from the BM in the last 24 h, compared with only 2% from the spleen. These observations highlight the importance of the BM as the primary hematopoietic tissue and monocyte reservoir in tumor-bearing mice, despite the changes that occur in the spleen monocyte reservoir during tumor development.Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a sizable reservoir of tumor-infiltrating monocytes in the spleen. However, the influence of the spleen on tumor development and the extent to which spleen monocytes populate the tumor relative to bone marrow (BM) monocytes remain controversial. Here, we used mice expressing the photoconvertible protein Kikume Green-Red to track the redistribution of monocytes from the BM and spleen, and mice expressing fluorescent ubiquitination-based cell-cycle indicator proteins to monitor active hematopoiesis in these tissues. In mice bearing late-stage tumors, the BM, besides being the major site of monocyte production, supplied the expansion of the spleen reservoir, replacing 9% of spleen monocytes every hour. Deployment of monocytes was equally rapid from the BM and the spleen. However, BM monocytes were younger than those in the spleen and were 2.7 times more likely to migrate into the tumor from the circulation. Partly as a result of this intrinsic difference in migration potential, spleen monocytes made only a minor contribution to the tumor-infiltrating monocyte population. At least 27% of tumor monocytes had traveled from the BM in the last 24 h, compared with only 2% from the spleen. These observations highlight the importance of the BM as the primary hematopoietic tissue and monocyte reservoir in tumor-bearing mice, despite the changes that occur in the spleen monocyte reservoir during tumor development.
Author Ueha, Satoshi
Ziogas, James
Shichino, Shigeyuki
Shand, Francis H W
Koid, Suang Suang
Tomura, Michio
Kosugi-Kanaya, Mizuha
Otsuji, Mikiya
Tsukui, Tatsuya
Abe, Jun
Matsushima, Kouji
Author_xml – sequence: 1
  givenname: Francis H W
  orcidid: 0000-0002-4222-6564
  surname: Shand
  fullname: Shand, Francis H W
  organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
– sequence: 2
  givenname: Satoshi
  surname: Ueha
  fullname: Ueha, Satoshi
  organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 3
  givenname: Mikiya
  surname: Otsuji
  fullname: Otsuji, Mikiya
  organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 4
  givenname: Suang Suang
  surname: Koid
  fullname: Koid, Suang Suang
  organization: Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia;St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
– sequence: 5
  givenname: Shigeyuki
  surname: Shichino
  fullname: Shichino, Shigeyuki
  organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 6
  givenname: Tatsuya
  surname: Tsukui
  fullname: Tsukui, Tatsuya
  organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 7
  givenname: Mizuha
  surname: Kosugi-Kanaya
  fullname: Kosugi-Kanaya, Mizuha
  organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;Department of Hematology, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan; and
– sequence: 8
  givenname: Jun
  surname: Abe
  fullname: Abe, Jun
  organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 9
  givenname: Michio
  surname: Tomura
  fullname: Tomura, Michio
  organization: Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
– sequence: 10
  givenname: James
  surname: Ziogas
  fullname: Ziogas, James
  organization: Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
– sequence: 11
  givenname: Kouji
  surname: Matsushima
  fullname: Matsushima, Kouji
  email: koujim@m.u-tokyo.ac.jp
  organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; koujim@m.u-tokyo.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24825888$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC0Eoh8ws6GMLCmvHTuxR1TxJVViaefIcd8UQ2IX20HqvycVRWK6k-65G25Gzp13SMgNhQWFqrjfOx0XlANTlFNKz8iUgqJ5yRWc__MTMovxAwCUkHBJJoxLJqSUU7JZB20-rdtlvs2sSxiSjXHArLe7oJP1Lgv4jbqLWXrHzAe7sy4e4TT0PuTWtbZLR3Kc6L3z5pAwXpGLdqzg9UnnZPP0uF6-5Ku359flwyo3JStSrnmjZVOiMC0DA0xDYxgdI90UrQRWKi5lJUtquFRccxTUCFpuVaWBV3zL5uTud3cf_NeAMdW9jQa7Tjv0Q6ypKHilSiH5iN6e0KHpcVvvg-11ONR_V7Af_YBjfw
CitedBy_id crossref_primary_10_2147_CMAR_S292048
crossref_primary_10_1016_j_heliyon_2022_e12130
crossref_primary_10_1172_JCI147614
crossref_primary_10_1016_j_addr_2023_114827
crossref_primary_10_1038_s41392_024_01937_7
crossref_primary_10_3389_fimmu_2022_941721
crossref_primary_10_1016_j_advms_2021_12_005
crossref_primary_10_1038_s41590_022_01321_z
crossref_primary_10_1136_jitc_2021_002548
crossref_primary_10_1172_JCI126089
crossref_primary_10_1002_adhm_202302272
crossref_primary_10_3389_fimmu_2020_01731
crossref_primary_10_1158_0008_5472_CAN_17_2465
crossref_primary_10_1158_0008_5472_CAN_20_2339
crossref_primary_10_3390_cancers11081082
crossref_primary_10_1016_j_bpj_2017_12_041
crossref_primary_10_1096_fj_201800458
crossref_primary_10_3390_ijms25063414
crossref_primary_10_2217_imt_2016_0135
crossref_primary_10_3390_cancers17111804
crossref_primary_10_1016_j_bone_2017_10_020
crossref_primary_10_1016_j_intimp_2025_115009
crossref_primary_10_1182_blood_2016_03_707547
crossref_primary_10_1002_JLB_4RI0818_311R
crossref_primary_10_1097_CCO_0000000000000344
crossref_primary_10_1007_s00018_016_2166_5
crossref_primary_10_3390_cancers13092171
crossref_primary_10_1016_j_immuni_2016_01_014
crossref_primary_10_2217_imt_2018_0006
crossref_primary_10_1111_imr_12214
crossref_primary_10_1210_endrev_bnac017
crossref_primary_10_20538_1682_0363_2019_1_60_75
crossref_primary_10_1007_s00262_018_2200_6
crossref_primary_10_1038_s41467_022_35701_8
crossref_primary_10_3389_fimmu_2023_1264774
crossref_primary_10_3390_life12050626
crossref_primary_10_1158_2326_6066_CIR_14_0225
crossref_primary_10_1172_JCI97973
crossref_primary_10_3389_fimmu_2022_1041010
crossref_primary_10_1084_jem_20151193
crossref_primary_10_1093_neuonc_noy082
crossref_primary_10_1002_ijc_32378
crossref_primary_10_1038_s41392_021_00506_6
crossref_primary_10_3390_cancers13215318
crossref_primary_10_1158_0008_5472_CAN_18_2244
crossref_primary_10_1002_cnr2_2066
crossref_primary_10_3390_biom12010100
crossref_primary_10_4049_jimmunol_1401022
crossref_primary_10_1186_s40425_019_0503_6
crossref_primary_10_1016_j_semcdb_2018_02_018
crossref_primary_10_3109_1061186X_2015_1073295
crossref_primary_10_3389_fonc_2020_01399
crossref_primary_10_12677_TCM_2018_76064
crossref_primary_10_3389_fimmu_2016_00613
crossref_primary_10_1093_infdis_jiv070
crossref_primary_10_1136_jitc_2021_004399
crossref_primary_10_3390_pharmaceutics16070865
crossref_primary_10_3892_ol_2021_13144
crossref_primary_10_1021_jacs_1c09689
crossref_primary_10_1016_j_arr_2017_03_008
crossref_primary_10_3390_ijms22137239
crossref_primary_10_1038_s41586_021_04082_1
crossref_primary_10_3389_fonc_2021_654817
crossref_primary_10_1007_s11010_022_04461_w
crossref_primary_10_3390_jcm8050695
crossref_primary_10_4251_wjgo_v15_i4_596
crossref_primary_10_1186_s13045_019_0760_3
crossref_primary_10_2147_JIR_S493656
crossref_primary_10_1371_journal_pone_0298465
crossref_primary_10_1016_j_pharmthera_2014_11_004
crossref_primary_10_1186_s13046_021_02108_0
crossref_primary_10_1038_nm_3794
crossref_primary_10_1016_j_jconrel_2024_08_003
crossref_primary_10_1002_path_5403
crossref_primary_10_3390_antibiotics10091136
crossref_primary_10_1172_JCI80006
crossref_primary_10_3389_fimmu_2021_609295
crossref_primary_10_1002_cac2_12345
crossref_primary_10_1002_jcp_30906
crossref_primary_10_3390_ijms23179749
crossref_primary_10_1007_s00262_018_2184_2
crossref_primary_10_1007_s00418_016_1406_y
crossref_primary_10_1016_j_jneumeth_2021_109127
crossref_primary_10_1016_j_immuni_2018_10_005
crossref_primary_10_2217_nnm_2021_0255
crossref_primary_10_1038_s41385_022_00490_2
crossref_primary_10_1038_s42003_018_0137_0
crossref_primary_10_1126_sciimmunol_abf1861
crossref_primary_10_1016_j_acthis_2020_151628
crossref_primary_10_1038_s41598_018_31288_7
crossref_primary_10_3389_fimmu_2021_771210
crossref_primary_10_3389_fbioe_2022_1097074
crossref_primary_10_3389_fimmu_2020_01126
crossref_primary_10_1080_03007995_2023_2167440
crossref_primary_10_1038_s41467_020_14338_5
crossref_primary_10_1111_1440_1681_13900
crossref_primary_10_1016_j_coi_2018_03_009
crossref_primary_10_3389_fimmu_2021_633205
crossref_primary_10_1016_j_jnutbio_2024_109647
crossref_primary_10_1016_j_ebiom_2019_01_045
crossref_primary_10_1055_s_0043_1777327
crossref_primary_10_1089_ars_2016_6704
crossref_primary_10_3390_cancers11040521
crossref_primary_10_1158_2326_6066_CIR_14_0190
crossref_primary_10_3390_cancers17101638
crossref_primary_10_2478_ahem_2025_0005
crossref_primary_10_3389_fgene_2018_00526
crossref_primary_10_1016_j_addr_2021_05_027
crossref_primary_10_1155_2016_6058147
crossref_primary_10_1002_JLB_3RI0718_282R
crossref_primary_10_1016_j_coph_2017_05_004
crossref_primary_10_3390_cells10010018
crossref_primary_10_1016_j_celrep_2025_115868
crossref_primary_10_1007_s11701_024_01915_9
crossref_primary_10_1016_j_arcmed_2025_103205
crossref_primary_10_1136_jitc_2020_001341
crossref_primary_10_1084_jem_20150295
crossref_primary_10_1084_jem_20211498
crossref_primary_10_4049_jimmunol_1900692
crossref_primary_10_1189_jlb_1MR1016_434RR
crossref_primary_10_3389_fimmu_2021_746621
crossref_primary_10_3389_fimmu_2019_01817
crossref_primary_10_1038_s41423_025_01267_w
crossref_primary_10_1016_j_smim_2015_07_003
crossref_primary_10_1016_j_celrep_2024_114512
crossref_primary_10_1016_j_immuni_2014_06_010
crossref_primary_10_1016_j_it_2015_02_004
crossref_primary_10_1111_jgh_13388
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1402914111
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 24825888
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ADXHL
ID FETCH-LOGICAL-c623t-a4ba8b6e5cf20c02a0bc21623ab3f802694887861c4894a4e51c516d97a0474d2
IEDL.DBID 7X8
ISICitedReferencesCount 152
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336411300062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Sun Aug 24 03:05:02 EDT 2025
Wed Feb 19 01:55:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords tumor-associated macrophage
KikGR
Fucci
cancer immunity
monocytopoiesis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c623t-a4ba8b6e5cf20c02a0bc21623ab3f802694887861c4894a4e51c516d97a0474d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4222-6564
OpenAccessLink https://www.pnas.org/content/pnas/111/21/7771.full.pdf
PMID 24825888
PQID 1534796584
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1534796584
pubmed_primary_24825888
PublicationCentury 2000
PublicationDate 2014-05-27
PublicationDateYYYYMMDD 2014-05-27
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
References 14708027 - Nat Rev Cancer. 2004 Jan;4(1):71-8
18375791 - Blood. 2008 Jun 15;111(12):5457-66
20179354 - J Clin Invest. 2010 Mar;120(3):883-93
19740427 - BMC Dev Biol. 2009;9:49
20605485 - Immunity. 2010 Jun 25;32(6):790-802
18267078 - Cell. 2008 Feb 8;132(3):487-98
22282679 - J Blood Med. 2010;1:13-9
16462739 - Nat Immunol. 2006 Mar;7(3):311-7
15034056 - J Immunol. 2004 Apr 1;172(7):4410-7
23333075 - Immunity. 2013 Feb 21;38(2):296-308
22763456 - Nature. 2012 Jul 19;487(7407):325-9
5666958 - J Exp Med. 1968 Sep 1;128(3):415-35
11090068 - Blood. 2000 Dec 1;96(12):3838-46
22439926 - Cancer Cell. 2012 Mar 20;21(3):309-22
14008233 - Br J Cancer. 1962 Mar;16:120-30
22234366 - Leukemia. 2012 Jan;26(1):86-90
19644120 - Science. 2009 Jul 31;325(5940):612-6
18663225 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10871-6
2522492 - J Leukoc Biol. 1989 Mar;45(3):262-73
20371344 - Cell. 2010 Apr 2;141(1):39-51
6711557 - Am J Hematol. 1984 Apr;16(3):277-86
24066072 - PLoS One. 2013;8(9):e73801
23325651 - Methods Mol Biol. 2013;961:279-86
16118626 - Mod Pathol. 2005 Dec;18(12):1550-61
23241888 - J Immunol. 2013 Jan 15;190(2):605-12
23812096 - Nat Immunol. 2013 Aug;14(8):821-30
15731765 - EMBO Rep. 2005 Mar;6(3):233-8
23619691 - Nature. 2013 Apr 25;496(7446):445-55
16322423 - Science. 2006 Jan 6;311(5757):83-7
22213805 - J Exp Med. 2012 Jan 16;209(1):123-37
18650914 - Nature. 2008 Jul 24;454(7203):436-44
16423985 - Cancer Res. 2006 Jan 15;66(2):605-12
22308361 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2491-6
22959433 - Cell Rep. 2012 Sep 27;2(3):628-39
21654748 - Nature. 2011 Jul 14;475(7355):222-5
18555776 - Cell. 2008 Jun 13;133(6):994-1005
19596996 - J Immunol. 2009 Aug 1;183(3):1900-10
References_xml – reference: 6711557 - Am J Hematol. 1984 Apr;16(3):277-86
– reference: 23812096 - Nat Immunol. 2013 Aug;14(8):821-30
– reference: 15034056 - J Immunol. 2004 Apr 1;172(7):4410-7
– reference: 20371344 - Cell. 2010 Apr 2;141(1):39-51
– reference: 19644120 - Science. 2009 Jul 31;325(5940):612-6
– reference: 20179354 - J Clin Invest. 2010 Mar;120(3):883-93
– reference: 16423985 - Cancer Res. 2006 Jan 15;66(2):605-12
– reference: 22308361 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2491-6
– reference: 22439926 - Cancer Cell. 2012 Mar 20;21(3):309-22
– reference: 23333075 - Immunity. 2013 Feb 21;38(2):296-308
– reference: 16118626 - Mod Pathol. 2005 Dec;18(12):1550-61
– reference: 19596996 - J Immunol. 2009 Aug 1;183(3):1900-10
– reference: 2522492 - J Leukoc Biol. 1989 Mar;45(3):262-73
– reference: 16322423 - Science. 2006 Jan 6;311(5757):83-7
– reference: 11090068 - Blood. 2000 Dec 1;96(12):3838-46
– reference: 14008233 - Br J Cancer. 1962 Mar;16:120-30
– reference: 22282679 - J Blood Med. 2010;1:13-9
– reference: 18663225 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10871-6
– reference: 22234366 - Leukemia. 2012 Jan;26(1):86-90
– reference: 22213805 - J Exp Med. 2012 Jan 16;209(1):123-37
– reference: 21654748 - Nature. 2011 Jul 14;475(7355):222-5
– reference: 19740427 - BMC Dev Biol. 2009;9:49
– reference: 20605485 - Immunity. 2010 Jun 25;32(6):790-802
– reference: 24066072 - PLoS One. 2013;8(9):e73801
– reference: 23325651 - Methods Mol Biol. 2013;961:279-86
– reference: 22763456 - Nature. 2012 Jul 19;487(7407):325-9
– reference: 23241888 - J Immunol. 2013 Jan 15;190(2):605-12
– reference: 18650914 - Nature. 2008 Jul 24;454(7203):436-44
– reference: 22959433 - Cell Rep. 2012 Sep 27;2(3):628-39
– reference: 23619691 - Nature. 2013 Apr 25;496(7446):445-55
– reference: 18375791 - Blood. 2008 Jun 15;111(12):5457-66
– reference: 14708027 - Nat Rev Cancer. 2004 Jan;4(1):71-8
– reference: 16462739 - Nat Immunol. 2006 Mar;7(3):311-7
– reference: 18267078 - Cell. 2008 Feb 8;132(3):487-98
– reference: 15731765 - EMBO Rep. 2005 Mar;6(3):233-8
– reference: 5666958 - J Exp Med. 1968 Sep 1;128(3):415-35
– reference: 18555776 - Cell. 2008 Jun 13;133(6):994-1005
SSID ssj0009580
Score 2.5123892
Snippet Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 7771
SubjectTerms Analysis of Variance
Animals
Bone Marrow Cells - immunology
Carcinogenesis - immunology
Cell Movement - immunology
Fluorescence
Hematopoiesis - physiology
Male
Mice
Mice, Inbred C57BL
Monocytes - immunology
Spleen - cytology
Spleen - immunology
Title Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes
URI https://www.ncbi.nlm.nih.gov/pubmed/24825888
https://www.proquest.com/docview/1534796584
Volume 111
WOSCitedRecordID wos000336411300062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDBZ2comdCSFExQBVB4q6VbbjoEo0KU2LxL_nnKSCBQmJxUuchy535893vu8IuUgRJDvlYpZkEWcAOCibhUwYoa0v3EyrOu6XR9nrqeEw6TcBt7I5Vrn0iZWjTgvrY-TXaJkgPVMJ3Ezfme8a5bOrTQuNVdIKEcp4w5RD9YN0V9VsBIlgMSR8Se0jw-tprkv0EjxIBAghfseX1TrT3frvF26TzQZh0ttaJdpkxeU7pN3YcEkvG6Lpq10ywIXK-lA5LTI6rk4HVL-BTsavtWJQT_CECkoRJtK6h1bpJ88Xk2LGUDnHbxXtLj4C317YTwSue2TQvX--e2BNmwVmEfvMmQajlYldZLOAWx5obmwg8JI2Yaa4L3VFT6RiYUEloMFFwkYiThOpOUhIg32ylhe5OyQUYjAR7vBU5gykaZSAUXHqDM6SkQTokPOl6Eaoxj43oXNXLMrRt_A65KCW_2ha822MAsBtLO7Uj_5w9zHZQEgDPr8fyBPSylBG7pSs2w-U4Oys0g8ce_2nL5G7xXU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+of+intertissue+migration+reveals+the+origins+of+tumor-infiltrating+monocytes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Shand%2C+Francis+H+W&rft.au=Ueha%2C+Satoshi&rft.au=Otsuji%2C+Mikiya&rft.au=Koid%2C+Suang+Suang&rft.date=2014-05-27&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=21&rft.spage=7771&rft_id=info:doi/10.1073%2Fpnas.1402914111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon