Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes
Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a sizable reservoir of tumor-infiltrating monocytes in the spleen. However, the influence of the spleen on tumor development and the extent to...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 21; p. 7771 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
27.05.2014
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a sizable reservoir of tumor-infiltrating monocytes in the spleen. However, the influence of the spleen on tumor development and the extent to which spleen monocytes populate the tumor relative to bone marrow (BM) monocytes remain controversial. Here, we used mice expressing the photoconvertible protein Kikume Green-Red to track the redistribution of monocytes from the BM and spleen, and mice expressing fluorescent ubiquitination-based cell-cycle indicator proteins to monitor active hematopoiesis in these tissues. In mice bearing late-stage tumors, the BM, besides being the major site of monocyte production, supplied the expansion of the spleen reservoir, replacing 9% of spleen monocytes every hour. Deployment of monocytes was equally rapid from the BM and the spleen. However, BM monocytes were younger than those in the spleen and were 2.7 times more likely to migrate into the tumor from the circulation. Partly as a result of this intrinsic difference in migration potential, spleen monocytes made only a minor contribution to the tumor-infiltrating monocyte population. At least 27% of tumor monocytes had traveled from the BM in the last 24 h, compared with only 2% from the spleen. These observations highlight the importance of the BM as the primary hematopoietic tissue and monocyte reservoir in tumor-bearing mice, despite the changes that occur in the spleen monocyte reservoir during tumor development. |
|---|---|
| AbstractList | Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a sizable reservoir of tumor-infiltrating monocytes in the spleen. However, the influence of the spleen on tumor development and the extent to which spleen monocytes populate the tumor relative to bone marrow (BM) monocytes remain controversial. Here, we used mice expressing the photoconvertible protein Kikume Green-Red to track the redistribution of monocytes from the BM and spleen, and mice expressing fluorescent ubiquitination-based cell-cycle indicator proteins to monitor active hematopoiesis in these tissues. In mice bearing late-stage tumors, the BM, besides being the major site of monocyte production, supplied the expansion of the spleen reservoir, replacing 9% of spleen monocytes every hour. Deployment of monocytes was equally rapid from the BM and the spleen. However, BM monocytes were younger than those in the spleen and were 2.7 times more likely to migrate into the tumor from the circulation. Partly as a result of this intrinsic difference in migration potential, spleen monocytes made only a minor contribution to the tumor-infiltrating monocyte population. At least 27% of tumor monocytes had traveled from the BM in the last 24 h, compared with only 2% from the spleen. These observations highlight the importance of the BM as the primary hematopoietic tissue and monocyte reservoir in tumor-bearing mice, despite the changes that occur in the spleen monocyte reservoir during tumor development. Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a sizable reservoir of tumor-infiltrating monocytes in the spleen. However, the influence of the spleen on tumor development and the extent to which spleen monocytes populate the tumor relative to bone marrow (BM) monocytes remain controversial. Here, we used mice expressing the photoconvertible protein Kikume Green-Red to track the redistribution of monocytes from the BM and spleen, and mice expressing fluorescent ubiquitination-based cell-cycle indicator proteins to monitor active hematopoiesis in these tissues. In mice bearing late-stage tumors, the BM, besides being the major site of monocyte production, supplied the expansion of the spleen reservoir, replacing 9% of spleen monocytes every hour. Deployment of monocytes was equally rapid from the BM and the spleen. However, BM monocytes were younger than those in the spleen and were 2.7 times more likely to migrate into the tumor from the circulation. Partly as a result of this intrinsic difference in migration potential, spleen monocytes made only a minor contribution to the tumor-infiltrating monocyte population. At least 27% of tumor monocytes had traveled from the BM in the last 24 h, compared with only 2% from the spleen. These observations highlight the importance of the BM as the primary hematopoietic tissue and monocyte reservoir in tumor-bearing mice, despite the changes that occur in the spleen monocyte reservoir during tumor development.Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a sizable reservoir of tumor-infiltrating monocytes in the spleen. However, the influence of the spleen on tumor development and the extent to which spleen monocytes populate the tumor relative to bone marrow (BM) monocytes remain controversial. Here, we used mice expressing the photoconvertible protein Kikume Green-Red to track the redistribution of monocytes from the BM and spleen, and mice expressing fluorescent ubiquitination-based cell-cycle indicator proteins to monitor active hematopoiesis in these tissues. In mice bearing late-stage tumors, the BM, besides being the major site of monocyte production, supplied the expansion of the spleen reservoir, replacing 9% of spleen monocytes every hour. Deployment of monocytes was equally rapid from the BM and the spleen. However, BM monocytes were younger than those in the spleen and were 2.7 times more likely to migrate into the tumor from the circulation. Partly as a result of this intrinsic difference in migration potential, spleen monocytes made only a minor contribution to the tumor-infiltrating monocyte population. At least 27% of tumor monocytes had traveled from the BM in the last 24 h, compared with only 2% from the spleen. These observations highlight the importance of the BM as the primary hematopoietic tissue and monocyte reservoir in tumor-bearing mice, despite the changes that occur in the spleen monocyte reservoir during tumor development. |
| Author | Ueha, Satoshi Ziogas, James Shichino, Shigeyuki Shand, Francis H W Koid, Suang Suang Tomura, Michio Kosugi-Kanaya, Mizuha Otsuji, Mikiya Tsukui, Tatsuya Abe, Jun Matsushima, Kouji |
| Author_xml | – sequence: 1 givenname: Francis H W orcidid: 0000-0002-4222-6564 surname: Shand fullname: Shand, Francis H W organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia – sequence: 2 givenname: Satoshi surname: Ueha fullname: Ueha, Satoshi organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 3 givenname: Mikiya surname: Otsuji fullname: Otsuji, Mikiya organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 4 givenname: Suang Suang surname: Koid fullname: Koid, Suang Suang organization: Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia;St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia – sequence: 5 givenname: Shigeyuki surname: Shichino fullname: Shichino, Shigeyuki organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 6 givenname: Tatsuya surname: Tsukui fullname: Tsukui, Tatsuya organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 7 givenname: Mizuha surname: Kosugi-Kanaya fullname: Kosugi-Kanaya, Mizuha organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;Department of Hematology, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan; and – sequence: 8 givenname: Jun surname: Abe fullname: Abe, Jun organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 9 givenname: Michio surname: Tomura fullname: Tomura, Michio organization: Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan – sequence: 10 givenname: James surname: Ziogas fullname: Ziogas, James organization: Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia – sequence: 11 givenname: Kouji surname: Matsushima fullname: Matsushima, Kouji email: koujim@m.u-tokyo.ac.jp organization: Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; koujim@m.u-tokyo.ac.jp |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24825888$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkD1PwzAYhC0Eoh8ws6GMLCmvHTuxR1TxJVViaefIcd8UQ2IX20HqvycVRWK6k-65G25Gzp13SMgNhQWFqrjfOx0XlANTlFNKz8iUgqJ5yRWc__MTMovxAwCUkHBJJoxLJqSUU7JZB20-rdtlvs2sSxiSjXHArLe7oJP1Lgv4jbqLWXrHzAe7sy4e4TT0PuTWtbZLR3Kc6L3z5pAwXpGLdqzg9UnnZPP0uF6-5Ku359flwyo3JStSrnmjZVOiMC0DA0xDYxgdI90UrQRWKi5lJUtquFRccxTUCFpuVaWBV3zL5uTud3cf_NeAMdW9jQa7Tjv0Q6ypKHilSiH5iN6e0KHpcVvvg-11ONR_V7Af_YBjfw |
| CitedBy_id | crossref_primary_10_2147_CMAR_S292048 crossref_primary_10_1016_j_heliyon_2022_e12130 crossref_primary_10_1172_JCI147614 crossref_primary_10_1016_j_addr_2023_114827 crossref_primary_10_1038_s41392_024_01937_7 crossref_primary_10_3389_fimmu_2022_941721 crossref_primary_10_1016_j_advms_2021_12_005 crossref_primary_10_1038_s41590_022_01321_z crossref_primary_10_1136_jitc_2021_002548 crossref_primary_10_1172_JCI126089 crossref_primary_10_1002_adhm_202302272 crossref_primary_10_3389_fimmu_2020_01731 crossref_primary_10_1158_0008_5472_CAN_17_2465 crossref_primary_10_1158_0008_5472_CAN_20_2339 crossref_primary_10_3390_cancers11081082 crossref_primary_10_1016_j_bpj_2017_12_041 crossref_primary_10_1096_fj_201800458 crossref_primary_10_3390_ijms25063414 crossref_primary_10_2217_imt_2016_0135 crossref_primary_10_3390_cancers17111804 crossref_primary_10_1016_j_bone_2017_10_020 crossref_primary_10_1016_j_intimp_2025_115009 crossref_primary_10_1182_blood_2016_03_707547 crossref_primary_10_1002_JLB_4RI0818_311R crossref_primary_10_1097_CCO_0000000000000344 crossref_primary_10_1007_s00018_016_2166_5 crossref_primary_10_3390_cancers13092171 crossref_primary_10_1016_j_immuni_2016_01_014 crossref_primary_10_2217_imt_2018_0006 crossref_primary_10_1111_imr_12214 crossref_primary_10_1210_endrev_bnac017 crossref_primary_10_20538_1682_0363_2019_1_60_75 crossref_primary_10_1007_s00262_018_2200_6 crossref_primary_10_1038_s41467_022_35701_8 crossref_primary_10_3389_fimmu_2023_1264774 crossref_primary_10_3390_life12050626 crossref_primary_10_1158_2326_6066_CIR_14_0225 crossref_primary_10_1172_JCI97973 crossref_primary_10_3389_fimmu_2022_1041010 crossref_primary_10_1084_jem_20151193 crossref_primary_10_1093_neuonc_noy082 crossref_primary_10_1002_ijc_32378 crossref_primary_10_1038_s41392_021_00506_6 crossref_primary_10_3390_cancers13215318 crossref_primary_10_1158_0008_5472_CAN_18_2244 crossref_primary_10_1002_cnr2_2066 crossref_primary_10_3390_biom12010100 crossref_primary_10_4049_jimmunol_1401022 crossref_primary_10_1186_s40425_019_0503_6 crossref_primary_10_1016_j_semcdb_2018_02_018 crossref_primary_10_3109_1061186X_2015_1073295 crossref_primary_10_3389_fonc_2020_01399 crossref_primary_10_12677_TCM_2018_76064 crossref_primary_10_3389_fimmu_2016_00613 crossref_primary_10_1093_infdis_jiv070 crossref_primary_10_1136_jitc_2021_004399 crossref_primary_10_3390_pharmaceutics16070865 crossref_primary_10_3892_ol_2021_13144 crossref_primary_10_1021_jacs_1c09689 crossref_primary_10_1016_j_arr_2017_03_008 crossref_primary_10_3390_ijms22137239 crossref_primary_10_1038_s41586_021_04082_1 crossref_primary_10_3389_fonc_2021_654817 crossref_primary_10_1007_s11010_022_04461_w crossref_primary_10_3390_jcm8050695 crossref_primary_10_4251_wjgo_v15_i4_596 crossref_primary_10_1186_s13045_019_0760_3 crossref_primary_10_2147_JIR_S493656 crossref_primary_10_1371_journal_pone_0298465 crossref_primary_10_1016_j_pharmthera_2014_11_004 crossref_primary_10_1186_s13046_021_02108_0 crossref_primary_10_1038_nm_3794 crossref_primary_10_1016_j_jconrel_2024_08_003 crossref_primary_10_1002_path_5403 crossref_primary_10_3390_antibiotics10091136 crossref_primary_10_1172_JCI80006 crossref_primary_10_3389_fimmu_2021_609295 crossref_primary_10_1002_cac2_12345 crossref_primary_10_1002_jcp_30906 crossref_primary_10_3390_ijms23179749 crossref_primary_10_1007_s00262_018_2184_2 crossref_primary_10_1007_s00418_016_1406_y crossref_primary_10_1016_j_jneumeth_2021_109127 crossref_primary_10_1016_j_immuni_2018_10_005 crossref_primary_10_2217_nnm_2021_0255 crossref_primary_10_1038_s41385_022_00490_2 crossref_primary_10_1038_s42003_018_0137_0 crossref_primary_10_1126_sciimmunol_abf1861 crossref_primary_10_1016_j_acthis_2020_151628 crossref_primary_10_1038_s41598_018_31288_7 crossref_primary_10_3389_fimmu_2021_771210 crossref_primary_10_3389_fbioe_2022_1097074 crossref_primary_10_3389_fimmu_2020_01126 crossref_primary_10_1080_03007995_2023_2167440 crossref_primary_10_1038_s41467_020_14338_5 crossref_primary_10_1111_1440_1681_13900 crossref_primary_10_1016_j_coi_2018_03_009 crossref_primary_10_3389_fimmu_2021_633205 crossref_primary_10_1016_j_jnutbio_2024_109647 crossref_primary_10_1016_j_ebiom_2019_01_045 crossref_primary_10_1055_s_0043_1777327 crossref_primary_10_1089_ars_2016_6704 crossref_primary_10_3390_cancers11040521 crossref_primary_10_1158_2326_6066_CIR_14_0190 crossref_primary_10_3390_cancers17101638 crossref_primary_10_2478_ahem_2025_0005 crossref_primary_10_3389_fgene_2018_00526 crossref_primary_10_1016_j_addr_2021_05_027 crossref_primary_10_1155_2016_6058147 crossref_primary_10_1002_JLB_3RI0718_282R crossref_primary_10_1016_j_coph_2017_05_004 crossref_primary_10_3390_cells10010018 crossref_primary_10_1016_j_celrep_2025_115868 crossref_primary_10_1007_s11701_024_01915_9 crossref_primary_10_1016_j_arcmed_2025_103205 crossref_primary_10_1136_jitc_2020_001341 crossref_primary_10_1084_jem_20150295 crossref_primary_10_1084_jem_20211498 crossref_primary_10_4049_jimmunol_1900692 crossref_primary_10_1189_jlb_1MR1016_434RR crossref_primary_10_3389_fimmu_2021_746621 crossref_primary_10_3389_fimmu_2019_01817 crossref_primary_10_1038_s41423_025_01267_w crossref_primary_10_1016_j_smim_2015_07_003 crossref_primary_10_1016_j_celrep_2024_114512 crossref_primary_10_1016_j_immuni_2014_06_010 crossref_primary_10_1016_j_it_2015_02_004 crossref_primary_10_1111_jgh_13388 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1402914111 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 24825888 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DOOOF DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YIF YIN YKV YSK ZCA ~02 ~KM 7X8 ADQXQ ADXHL |
| ID | FETCH-LOGICAL-c623t-a4ba8b6e5cf20c02a0bc21623ab3f802694887861c4894a4e51c516d97a0474d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 152 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336411300062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Sun Aug 24 03:05:02 EDT 2025 Wed Feb 19 01:55:23 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | tumor-associated macrophage KikGR Fucci cancer immunity monocytopoiesis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c623t-a4ba8b6e5cf20c02a0bc21623ab3f802694887861c4894a4e51c516d97a0474d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4222-6564 |
| OpenAccessLink | https://www.pnas.org/content/pnas/111/21/7771.full.pdf |
| PMID | 24825888 |
| PQID | 1534796584 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1534796584 pubmed_primary_24825888 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-05-27 |
| PublicationDateYYYYMMDD | 2014-05-27 |
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2014 |
| References | 14708027 - Nat Rev Cancer. 2004 Jan;4(1):71-8 18375791 - Blood. 2008 Jun 15;111(12):5457-66 20179354 - J Clin Invest. 2010 Mar;120(3):883-93 19740427 - BMC Dev Biol. 2009;9:49 20605485 - Immunity. 2010 Jun 25;32(6):790-802 18267078 - Cell. 2008 Feb 8;132(3):487-98 22282679 - J Blood Med. 2010;1:13-9 16462739 - Nat Immunol. 2006 Mar;7(3):311-7 15034056 - J Immunol. 2004 Apr 1;172(7):4410-7 23333075 - Immunity. 2013 Feb 21;38(2):296-308 22763456 - Nature. 2012 Jul 19;487(7407):325-9 5666958 - J Exp Med. 1968 Sep 1;128(3):415-35 11090068 - Blood. 2000 Dec 1;96(12):3838-46 22439926 - Cancer Cell. 2012 Mar 20;21(3):309-22 14008233 - Br J Cancer. 1962 Mar;16:120-30 22234366 - Leukemia. 2012 Jan;26(1):86-90 19644120 - Science. 2009 Jul 31;325(5940):612-6 18663225 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10871-6 2522492 - J Leukoc Biol. 1989 Mar;45(3):262-73 20371344 - Cell. 2010 Apr 2;141(1):39-51 6711557 - Am J Hematol. 1984 Apr;16(3):277-86 24066072 - PLoS One. 2013;8(9):e73801 23325651 - Methods Mol Biol. 2013;961:279-86 16118626 - Mod Pathol. 2005 Dec;18(12):1550-61 23241888 - J Immunol. 2013 Jan 15;190(2):605-12 23812096 - Nat Immunol. 2013 Aug;14(8):821-30 15731765 - EMBO Rep. 2005 Mar;6(3):233-8 23619691 - Nature. 2013 Apr 25;496(7446):445-55 16322423 - Science. 2006 Jan 6;311(5757):83-7 22213805 - J Exp Med. 2012 Jan 16;209(1):123-37 18650914 - Nature. 2008 Jul 24;454(7203):436-44 16423985 - Cancer Res. 2006 Jan 15;66(2):605-12 22308361 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2491-6 22959433 - Cell Rep. 2012 Sep 27;2(3):628-39 21654748 - Nature. 2011 Jul 14;475(7355):222-5 18555776 - Cell. 2008 Jun 13;133(6):994-1005 19596996 - J Immunol. 2009 Aug 1;183(3):1900-10 |
| References_xml | – reference: 6711557 - Am J Hematol. 1984 Apr;16(3):277-86 – reference: 23812096 - Nat Immunol. 2013 Aug;14(8):821-30 – reference: 15034056 - J Immunol. 2004 Apr 1;172(7):4410-7 – reference: 20371344 - Cell. 2010 Apr 2;141(1):39-51 – reference: 19644120 - Science. 2009 Jul 31;325(5940):612-6 – reference: 20179354 - J Clin Invest. 2010 Mar;120(3):883-93 – reference: 16423985 - Cancer Res. 2006 Jan 15;66(2):605-12 – reference: 22308361 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2491-6 – reference: 22439926 - Cancer Cell. 2012 Mar 20;21(3):309-22 – reference: 23333075 - Immunity. 2013 Feb 21;38(2):296-308 – reference: 16118626 - Mod Pathol. 2005 Dec;18(12):1550-61 – reference: 19596996 - J Immunol. 2009 Aug 1;183(3):1900-10 – reference: 2522492 - J Leukoc Biol. 1989 Mar;45(3):262-73 – reference: 16322423 - Science. 2006 Jan 6;311(5757):83-7 – reference: 11090068 - Blood. 2000 Dec 1;96(12):3838-46 – reference: 14008233 - Br J Cancer. 1962 Mar;16:120-30 – reference: 22282679 - J Blood Med. 2010;1:13-9 – reference: 18663225 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10871-6 – reference: 22234366 - Leukemia. 2012 Jan;26(1):86-90 – reference: 22213805 - J Exp Med. 2012 Jan 16;209(1):123-37 – reference: 21654748 - Nature. 2011 Jul 14;475(7355):222-5 – reference: 19740427 - BMC Dev Biol. 2009;9:49 – reference: 20605485 - Immunity. 2010 Jun 25;32(6):790-802 – reference: 24066072 - PLoS One. 2013;8(9):e73801 – reference: 23325651 - Methods Mol Biol. 2013;961:279-86 – reference: 22763456 - Nature. 2012 Jul 19;487(7407):325-9 – reference: 23241888 - J Immunol. 2013 Jan 15;190(2):605-12 – reference: 18650914 - Nature. 2008 Jul 24;454(7203):436-44 – reference: 22959433 - Cell Rep. 2012 Sep 27;2(3):628-39 – reference: 23619691 - Nature. 2013 Apr 25;496(7446):445-55 – reference: 18375791 - Blood. 2008 Jun 15;111(12):5457-66 – reference: 14708027 - Nat Rev Cancer. 2004 Jan;4(1):71-8 – reference: 16462739 - Nat Immunol. 2006 Mar;7(3):311-7 – reference: 18267078 - Cell. 2008 Feb 8;132(3):487-98 – reference: 15731765 - EMBO Rep. 2005 Mar;6(3):233-8 – reference: 5666958 - J Exp Med. 1968 Sep 1;128(3):415-35 – reference: 18555776 - Cell. 2008 Jun 13;133(6):994-1005 |
| SSID | ssj0009580 |
| Score | 2.5123892 |
| Snippet | Myeloid cells such as monocytes and monocyte-derived macrophages promote tumor progression. Recent reports suggest that extramedullary hematopoiesis sustains a... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 7771 |
| SubjectTerms | Analysis of Variance Animals Bone Marrow Cells - immunology Carcinogenesis - immunology Cell Movement - immunology Fluorescence Hematopoiesis - physiology Male Mice Mice, Inbred C57BL Monocytes - immunology Spleen - cytology Spleen - immunology |
| Title | Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24825888 https://www.proquest.com/docview/1534796584 |
| Volume | 111 |
| WOSCitedRecordID | wos000336411300062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDBZ2comdCSFExQBVB4q6VbbjoEo0KU2LxL_nnKSCBQmJxUuchy535893vu8IuUgRJDvlYpZkEWcAOCibhUwYoa0v3EyrOu6XR9nrqeEw6TcBt7I5Vrn0iZWjTgvrY-TXaJkgPVMJ3Ezfme8a5bOrTQuNVdIKEcp4w5RD9YN0V9VsBIlgMSR8Se0jw-tprkv0EjxIBAghfseX1TrT3frvF26TzQZh0ttaJdpkxeU7pN3YcEkvG6Lpq10ywIXK-lA5LTI6rk4HVL-BTsavtWJQT_CECkoRJtK6h1bpJ88Xk2LGUDnHbxXtLj4C317YTwSue2TQvX--e2BNmwVmEfvMmQajlYldZLOAWx5obmwg8JI2Yaa4L3VFT6RiYUEloMFFwkYiThOpOUhIg32ylhe5OyQUYjAR7vBU5gykaZSAUXHqDM6SkQTokPOl6Eaoxj43oXNXLMrRt_A65KCW_2ha822MAsBtLO7Uj_5w9zHZQEgDPr8fyBPSylBG7pSs2w-U4Oys0g8ce_2nL5G7xXU |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+of+intertissue+migration+reveals+the+origins+of+tumor-infiltrating+monocytes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Shand%2C+Francis+H+W&rft.au=Ueha%2C+Satoshi&rft.au=Otsuji%2C+Mikiya&rft.au=Koid%2C+Suang+Suang&rft.date=2014-05-27&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=21&rft.spage=7771&rft_id=info:doi/10.1073%2Fpnas.1402914111&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |