The Concordance Index decomposition: A measure for a deeper understanding of survival prediction models

The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. In this paper, we propose a decomposition of the C-index into a weighted harmonic mean of two quantities: one for ranking observed events versus other observed events,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine Jg. 148; S. 102781
Hauptverfasser: Alabdallah, Abdallah, Ohlsson, Mattias, Pashami, Sepideh, Rögnvaldsson, Thorsteinn
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.02.2024
Schlagworte:
ISSN:0933-3657, 1873-2860, 1873-2860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. In this paper, we propose a decomposition of the C-index into a weighted harmonic mean of two quantities: one for ranking observed events versus other observed events, and the other for ranking observed events versus censored cases. This decomposition enables a finer-grained analysis of the relative strengths and weaknesses between different survival prediction methods. The usefulness of this decomposition is demonstrated through benchmark comparisons against classical models and state-of-the-art methods, together with the new variational generative neural-network-based method (SurVED) proposed in this paper. The performance of the models is assessed using four publicly available datasets with varying levels of censoring. Using the C-index decomposition and synthetic censoring, the analysis shows that deep learning models utilize the observed events more effectively than other models. This allows them to keep a stable C-index in different censoring levels. In contrast to such deep learning methods, classical machine learning models deteriorate when the censoring level decreases due to their inability to improve on ranking the events versus other events. •The C-Index Decomposition is proposed as a weighted harmonic mean of the C-index of the events vs other events and the C-index of events vs censored cases.•The C-Index Decomposition gives a more detailed image of the survival model performance.•SurVED; a new survival model based on Variational inference formulation was shown to be better at improving performance with more observed event.•Models which seem to perform similarly using the C-index, showed different behavior with respect to the terms of the C-index decomposition.
AbstractList The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. This paper proposes a decomposition of the C-index into a weighted harmonic mean of two quantities: one for ranking observed events versus other observed events, and the other for ranking observed events versus censored cases. This decomposition enables a more fine-grained analysis of the strengths and weaknesses of survival prediction methods. The usefulness of this decomposition is demonstrated through benchmark comparisons against state-of-the-art and classical models, together with a new variational generative neural-network-based method (SurVED), which is also proposed in this paper. Performance is assessed using four publicly available datasets with varying levels of censoring. The analysis using the C-index decomposition and synthetic censoring shows that deep learning models utilize the observed events more effectively than other models, allowing them to keep a stable C-index in different censoring levels. In contrast, classical machine learning models deteriorate when the censoring level decreases due to their inability to improve on ranking the events versus other events. © 2024 The Author(s)
The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. In this paper, we propose a decomposition of the C-index into a weighted harmonic mean of two quantities: one for ranking observed events versus other observed events, and the other for ranking observed events versus censored cases. This decomposition enables a finer-grained analysis of the relative strengths and weaknesses between different survival prediction methods. The usefulness of this decomposition is demonstrated through benchmark comparisons against classical models and state-of-the-art methods, together with the new variational generative neural-network-based method (SurVED) proposed in this paper. The performance of the models is assessed using four publicly available datasets with varying levels of censoring. Using the C-index decomposition and synthetic censoring, the analysis shows that deep learning models utilize the observed events more effectively than other models. This allows them to keep a stable C-index in different censoring levels. In contrast to such deep learning methods, classical machine learning models deteriorate when the censoring level decreases due to their inability to improve on ranking the events versus other events. 
The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. In this paper, we propose a decomposition of the C-index into a weighted harmonic mean of two quantities: one for ranking observed events versus other observed events, and the other for ranking observed events versus censored cases. This decomposition enables a finer-grained analysis of the relative strengths and weaknesses between different survival prediction methods. The usefulness of this decomposition is demonstrated through benchmark comparisons against classical models and state-of-the-art methods, together with the new variational generative neural-network-based method (SurVED) proposed in this paper. The performance of the models is assessed using four publicly available datasets with varying levels of censoring. Using the C-index decomposition and synthetic censoring, the analysis shows that deep learning models utilize the observed events more effectively than other models. This allows them to keep a stable C-index in different censoring levels. In contrast to such deep learning methods, classical machine learning models deteriorate when the censoring level decreases due to their inability to improve on ranking the events versus other events. •The C-Index Decomposition is proposed as a weighted harmonic mean of the C-index of the events vs other events and the C-index of events vs censored cases.•The C-Index Decomposition gives a more detailed image of the survival model performance.•SurVED; a new survival model based on Variational inference formulation was shown to be better at improving performance with more observed event.•Models which seem to perform similarly using the C-index, showed different behavior with respect to the terms of the C-index decomposition.
The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. In this paper, we propose a decomposition of the C-index into a weighted harmonic mean of two quantities: one for ranking observed events versus other observed events, and the other for ranking observed events versus censored cases. This decomposition enables a finer-grained analysis of the relative strengths and weaknesses between different survival prediction methods. The usefulness of this decomposition is demonstrated through benchmark comparisons against classical models and state-of-the-art methods, together with the new variational generative neural-network-based method (SurVED) proposed in this paper. The performance of the models is assessed using four publicly available datasets with varying levels of censoring. Using the C-index decomposition and synthetic censoring, the analysis shows that deep learning models utilize the observed events more effectively than other models. This allows them to keep a stable C-index in different censoring levels. In contrast to such deep learning methods, classical machine learning models deteriorate when the censoring level decreases due to their inability to improve on ranking the events versus other events.
The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. In this paper, we propose a decomposition of the C-index into a weighted harmonic mean of two quantities: one for ranking observed events versus other observed events, and the other for ranking observed events versus censored cases. This decomposition enables a finer-grained analysis of the relative strengths and weaknesses between different survival prediction methods. The usefulness of this decomposition is demonstrated through benchmark comparisons against classical models and state-of-the-art methods, together with the new variational generative neural-network-based method (SurVED) proposed in this paper. The performance of the models is assessed using four publicly available datasets with varying levels of censoring. Using the C-index decomposition and synthetic censoring, the analysis shows that deep learning models utilize the observed events more effectively than other models. This allows them to keep a stable C-index in different censoring levels. In contrast to such deep learning methods, classical machine learning models deteriorate when the censoring level decreases due to their inability to improve on ranking the events versus other events.The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. In this paper, we propose a decomposition of the C-index into a weighted harmonic mean of two quantities: one for ranking observed events versus other observed events, and the other for ranking observed events versus censored cases. This decomposition enables a finer-grained analysis of the relative strengths and weaknesses between different survival prediction methods. The usefulness of this decomposition is demonstrated through benchmark comparisons against classical models and state-of-the-art methods, together with the new variational generative neural-network-based method (SurVED) proposed in this paper. The performance of the models is assessed using four publicly available datasets with varying levels of censoring. Using the C-index decomposition and synthetic censoring, the analysis shows that deep learning models utilize the observed events more effectively than other models. This allows them to keep a stable C-index in different censoring levels. In contrast to such deep learning methods, classical machine learning models deteriorate when the censoring level decreases due to their inability to improve on ranking the events versus other events.
ArticleNumber 102781
Author Ohlsson, Mattias
Alabdallah, Abdallah
Pashami, Sepideh
Rögnvaldsson, Thorsteinn
Author_xml – sequence: 1
  givenname: Abdallah
  orcidid: 0000-0001-9416-5647
  surname: Alabdallah
  fullname: Alabdallah, Abdallah
  email: abdallah.alabdallah@hh.se
  organization: Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Sweden
– sequence: 2
  givenname: Mattias
  orcidid: 0000-0003-1145-4297
  surname: Ohlsson
  fullname: Ohlsson, Mattias
  organization: Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Sweden
– sequence: 3
  givenname: Sepideh
  orcidid: 0000-0003-3272-4145
  surname: Pashami
  fullname: Pashami, Sepideh
  organization: Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Sweden
– sequence: 4
  givenname: Thorsteinn
  orcidid: 0000-0001-5163-2997
  surname: Rögnvaldsson
  fullname: Rögnvaldsson, Thorsteinn
  organization: Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38325926$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52259$$DView record from Swedish Publication Index (Högskolan i Halmstad)
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-71927$$DView record from Swedish Publication Index
BookMark eNqNkt2L1DAUxYusuB_6H4jkUZAZkzRNm0UWhvFrYcGX1ddLmtzOZGybmrSj-9-bsbs-LMj4FEh-59wbzjnPTnrfY5a9ZHTJKJNvd0sdxg7tklMu0hUvK_YkO2NVmS94JelJdkZVni9yWZSn2XmMO0ppKZh8lp3mVc4LxeVZtrndIln73vhgdW-QXPcWfxGLxneDj250vr8kK9KhjlNA0vhAdHrGAQOZEhviqHvr-g3xDUnI3u11S4aA1pmDmHTeYhufZ08b3UZ8cX9eZF8_frhdf17cfPl0vV7dLIzk-bjIEZmqKy0Z04USlRa0ojUyzRhK01hWc6aFopWqBHKsG46qtoJKKRrGk8VFpmff-BOHqYYhuE6HO_DaweDDqFsIGFEHs4V2goiQqNYZfdg1gqClshoRGt5wENZaqLCQwHQpsKBMNVakGW_-OeO9-7YCHzYQHJRM8fL_6O0WCp4iSfTrmR6C_zFhHKFz0WDb6h79FIErniuWCyET-uoenerUg7_GD-Em4HIGTPAxBmzAuPHPR8egXQuMwqFJsIO5SXBoEsxNSmLxSPzgf0R2NctS5rh3GCAah6lY1gU0I1jvjhm8e2RgWtengNrveHdc_hsnd_su
CitedBy_id crossref_primary_10_1016_j_media_2025_103566
crossref_primary_10_3390_biomedicines13040826
crossref_primary_10_1002_sim_10311
crossref_primary_10_20295_2413_2527_2025_242_58_70
crossref_primary_10_1007_s11831_025_10251_6
crossref_primary_10_2147_IDR_S479374
crossref_primary_10_1016_j_uclim_2024_101962
crossref_primary_10_1515_oncologie_2024_0397
crossref_primary_10_23947_2687_1653_2024_24_4_413_423
Cites_doi 10.1016/j.eswa.2023.120218
10.1186/s12874-018-0482-1
10.1016/j.artmed.2011.06.006
10.1002/sim.2427
10.1002/sim.4154
10.1109/JBHI.2021.3052441
10.1111/1467-9876.00165
10.7326/0003-4819-122-3-199502010-00007
10.1002/sim.4780111409
10.2307/2090408
10.1016/j.artmed.2019.06.001
10.1214/08-AOAS169
10.1001/jama.1982.03320430047030
10.1371/journal.pcbi.1003047
10.1111/j.2517-6161.1972.tb00899.x
10.1088/1742-6596/1827/1/012066
10.1080/01621459.1958.10501452
10.1002/sim.3743
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1145/3214306
10.1093/biomet/92.4.965
10.1016/j.mayocp.2012.03.009
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
CorporateAuthor Thoraxkirurgi
Lunds universitets profilområden
Naturvetenskapliga fakulteten
LU Profile Area: Natural and Artificial Cognition
Centrum för miljö- och klimatvetenskap (CEC)
Department of Clinical Sciences, Lund
Strategiska forskningsområden (SFO)
Medicinska fakulteten
Centre for Environmental and Climate Science (CEC)
Institutionen för kliniska vetenskaper, Lund
Sektion II
Profile areas and other strong research environments
Lunds universitet
Section II
LU profilområde: Naturlig och artificiell kognition
Faculty of Science
Thoracic Surgery
Lund University
Lund University Profile areas
Artificial Intelligence in CardioThoracic Sciences (AICTS)
Faculty of Medicine
Strategic research areas (SRA)
eSSENCE: The e-Science Collaboration
Artificiell intelligens och thoraxkirurgisk vetenskap (AICTS)
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Section II
– name: Strategic research areas (SRA)
– name: Thoraxkirurgi
– name: Department of Clinical Sciences, Lund
– name: Lund University Profile areas
– name: Lund University
– name: Profile areas and other strong research environments
– name: Centrum för miljö- och klimatvetenskap (CEC)
– name: Artificial Intelligence in CardioThoracic Sciences (AICTS)
– name: Artificiell intelligens och thoraxkirurgisk vetenskap (AICTS)
– name: Faculty of Medicine
– name: Thoracic Surgery
– name: Medicinska fakulteten
– name: Sektion II
– name: LU Profile Area: Natural and Artificial Cognition
– name: Institutionen för kliniska vetenskaper, Lund
– name: Lunds universitet
– name: Faculty of Science
– name: Lunds universitets profilområden
– name: Profilområden och andra starka forskningsmiljöer
– name: Centre for Environmental and Climate Science (CEC)
– name: LU profilområde: Naturlig och artificiell kognition
– name: eSSENCE: The e-Science Collaboration
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
AAXBQ
ADTPV
AOWAS
D8T
D8Z
ZZAVC
AGCHP
D95
DOI 10.1016/j.artmed.2024.102781
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
SWEPUB Högskolan i Halmstad full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Högskolan i Halmstad
SwePub Articles full text
SWEPUB Lunds universitet full text
SWEPUB Lunds universitet
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
ExternalDocumentID oai_portal_research_lu_se_publications_4079daee_f2f2_4ddd_8e56_1a74e5019fd4
oai_DiVA_org_ri_71927
oai_DiVA_org_hh_52259
38325926
10_1016_j_artmed_2024_102781
S093336572400023X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
~HD
6I.
AACTN
AAFTH
AFCTW
RIG
9DU
AAYXX
CITATION
AGCQF
AGRNS
NPM
7X8
AAXBQ
ADTPV
AOWAS
D8T
D8Z
ZZAVC
AGCHP
D95
ID FETCH-LOGICAL-c623t-3ee19b8a611a5948a4080be1a11e6cfd1b21a4908984e2ebf2e9bd40664f12623
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171816900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0933-3657
1873-2860
IngestDate Fri Dec 05 01:30:17 EST 2025
Wed Sep 24 03:43:57 EDT 2025
Tue Nov 04 16:07:20 EST 2025
Sun Sep 28 12:12:59 EDT 2025
Mon Jul 21 06:00:34 EDT 2025
Sat Nov 29 07:08:43 EST 2025
Tue Nov 18 21:44:16 EST 2025
Sun Apr 06 06:54:01 EDT 2025
Tue Oct 14 19:30:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Survival analysis
Variational encoder–decoder
Evaluation metric
Concordance Index
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-3ee19b8a611a5948a4080be1a11e6cfd1b21a4908984e2ebf2e9bd40664f12623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5163-2997
0000-0003-1145-4297
0000-0003-3272-4145
0000-0001-9416-5647
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52259
PMID 38325926
PQID 2923913446
PQPubID 23479
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_4079daee_f2f2_4ddd_8e56_1a74e5019fd4
swepub_primary_oai_DiVA_org_ri_71927
swepub_primary_oai_DiVA_org_hh_52259
proquest_miscellaneous_2923913446
pubmed_primary_38325926
crossref_citationtrail_10_1016_j_artmed_2024_102781
crossref_primary_10_1016_j_artmed_2024_102781
elsevier_sciencedirect_doi_10_1016_j_artmed_2024_102781
elsevier_clinicalkey_doi_10_1016_j_artmed_2024_102781
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dispenzieri, Katzmann, Kyle, Larson, Therneau, Colby, Clark, Graham P. Mead, Kumar, III, Rajkumar (b31) 2012; 87
Wang, Li, Reddy (b2) 2019; 10
Chen (b26) 2021; 1827
Van Belle, Pelckmans, Suykens, Van Huffel (b12) 2010; 29
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b24) 2014; vol. 27
Ranganath, Perotte, Elhadad, Blei (b14) 2016; vol. 56
Harrel, Lee, Mark (b28) 1996; 15
Katzman, Shaham, Cloninger, Bates, Jiang, Kluger (b15) 2018; 18
Therneau (b34) 2020
Xiu, Tao, Henao (b20) 2020
Nagpal, Li, Dubrawski (b21) 2021; 25
Gönen, Heller (b6) 2005; 92
Jing, Zhang, Wang, Jin, Liu, Qiu, Ke, Sun, He, Hou, Tang, Lv, Li (b19) 2019; 98
Kvamme, Ørnulf Borgan, Scheel (b37) 2019; 20
Miscouridou, Perotte, Elhadad, Ranganath (b18) 2018; vol. 85
Kleinbaum, Klein (b1) 2010
Somers (b29) 1962; 27
Kaplan, Meier (b8) 1958; 53
Wei (b9) 1992; 11
Pölsterl (b36) 2020; 21
Hu, Fridgeirsson, Wingen, Welling (b22) 2021; vol. 146
Xu, Guo (b23) 2023; 227
Harrell, Califf, Pryor, Lee, Rosati (b4) 1982; 247
Knaus, Harrell, Lynn, Goldman, Phillips, Connors, Dawson, Fulkerson, Califf, Desbiens, Layde, Oye, Bellamy, Hakim, Wagner (b35) 1995; 122
Rahman, Ambler, Choodari-Oskooei, Omar (b3) 2017; 17
Van Belle, Pelckmans, Van Huffel, Suykens (b13) 2011; 53
Kodali, Abernethy, Hays, Kira (b25) 2017
Bilal, Dutkowski, Guinney, Jang, Logsdon, Pandey, Sauerwine, Shimoni, Vollan, Mecham3, Rueda, Tost, Curtis, Alvarez, Kristensen, Aparicio, Børresen-Dale, Caldas, Califano, Friend, Ideker, Schadt, Stolovitzky, Margolin (b32) 2013
Uno, Cai, Pencina, D’Agostino, Wei (b5) 2011; 30
Antolini, Boracchi, Biganzoli (b7) 2005; 24
Cox (b10) 1972; 34
Chapfuwa, Tao, Li, Page, Goldstein, Duke, Henao (b17) 2018; vol. 80
Lee, Zame, Yoon, van der Schaar (b16) 2018; 32
Steck, Krishnapuram, Dehing-Oberije, Lambin, Raykar (b30) 2008; vol. 20
Ishwaran, Kogalur, Blackstone, Lauer (b11) 2008; 2
Kingma DP, Welling M. Auto-Encoding Variational Bayes. In: Bengio Y, LeCun Y, editors. 2nd International conference on learning representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference track proceedings. 2014, URL.
Breslow, Chatterjee (b33) 1999; 48
10.1016/j.artmed.2024.102781_b27
Jing (10.1016/j.artmed.2024.102781_b19) 2019; 98
Gönen (10.1016/j.artmed.2024.102781_b6) 2005; 92
Kleinbaum (10.1016/j.artmed.2024.102781_b1) 2010
Uno (10.1016/j.artmed.2024.102781_b5) 2011; 30
Katzman (10.1016/j.artmed.2024.102781_b15) 2018; 18
Kodali (10.1016/j.artmed.2024.102781_b25) 2017
Ranganath (10.1016/j.artmed.2024.102781_b14) 2016; vol. 56
Xiu (10.1016/j.artmed.2024.102781_b20) 2020
Somers (10.1016/j.artmed.2024.102781_b29) 1962; 27
Xu (10.1016/j.artmed.2024.102781_b23) 2023; 227
Van Belle (10.1016/j.artmed.2024.102781_b13) 2011; 53
Wang (10.1016/j.artmed.2024.102781_b2) 2019; 10
Knaus (10.1016/j.artmed.2024.102781_b35) 1995; 122
Kvamme (10.1016/j.artmed.2024.102781_b37) 2019; 20
Lee (10.1016/j.artmed.2024.102781_b16) 2018; 32
Pölsterl (10.1016/j.artmed.2024.102781_b36) 2020; 21
Kaplan (10.1016/j.artmed.2024.102781_b8) 1958; 53
Van Belle (10.1016/j.artmed.2024.102781_b12) 2010; 29
Harrel (10.1016/j.artmed.2024.102781_b28) 1996; 15
Nagpal (10.1016/j.artmed.2024.102781_b21) 2021; 25
Rahman (10.1016/j.artmed.2024.102781_b3) 2017; 17
Steck (10.1016/j.artmed.2024.102781_b30) 2008; vol. 20
Bilal (10.1016/j.artmed.2024.102781_b32) 2013
Dispenzieri (10.1016/j.artmed.2024.102781_b31) 2012; 87
Cox (10.1016/j.artmed.2024.102781_b10) 1972; 34
Wei (10.1016/j.artmed.2024.102781_b9) 1992; 11
Miscouridou (10.1016/j.artmed.2024.102781_b18) 2018; vol. 85
Goodfellow (10.1016/j.artmed.2024.102781_b24) 2014; vol. 27
Hu (10.1016/j.artmed.2024.102781_b22) 2021; vol. 146
Chapfuwa (10.1016/j.artmed.2024.102781_b17) 2018; vol. 80
Breslow (10.1016/j.artmed.2024.102781_b33) 1999; 48
Ishwaran (10.1016/j.artmed.2024.102781_b11) 2008; 2
Therneau (10.1016/j.artmed.2024.102781_b34) 2020
Chen (10.1016/j.artmed.2024.102781_b26) 2021; 1827
Harrell (10.1016/j.artmed.2024.102781_b4) 1982; 247
Antolini (10.1016/j.artmed.2024.102781_b7) 2005; 24
References_xml – volume: 227
  year: 2023
  ident: b23
  article-title: CoxNAM: An interpretable deep survival analysis model
  publication-title: Expert Syst Appl
– volume: 53
  start-page: 107
  year: 2011
  end-page: 118
  ident: b13
  article-title: Support vector methods for survival analysis: a comparison between ranking and regression approaches
  publication-title: Artif Intell Med
– volume: 25
  start-page: 3163
  year: 2021
  end-page: 3175
  ident: b21
  article-title: Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks
  publication-title: IEEE J Biomed Health Inf
– reference: Kingma DP, Welling M. Auto-Encoding Variational Bayes. In: Bengio Y, LeCun Y, editors. 2nd International conference on learning representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference track proceedings. 2014, URL.
– volume: 29
  start-page: 296
  year: 2010
  end-page: 308
  ident: b12
  article-title: Additive survival least-squares support vector machines
  publication-title: Stat Med
– volume: vol. 85
  start-page: 244
  year: 2018
  end-page: 256
  ident: b18
  article-title: Deep survival analysis: Nonparametrics and missingness
  publication-title: Proceedings of the 3rd machine learning for healthcare conference
– volume: vol. 56
  start-page: 101
  year: 2016
  end-page: 114
  ident: b14
  article-title: Deep survival analysis
  publication-title: Proceedings of the 1st machine learning for healthcare conference
– volume: 87
  start-page: 517
  year: 2012
  end-page: 523
  ident: b31
  article-title: Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population
  publication-title: Mayo Clin Proc
– volume: 17
  year: 2017
  ident: b3
  article-title: Review and evaluation of performance measures for survival prediction models in external validation settings
  publication-title: BMC Med Res Methodol
– volume: 122
  start-page: 191
  year: 1995
  end-page: 203
  ident: b35
  article-title: The SUPPORT prognostic model. Objective estimates of survival for seriously ill hospitalized adults. Study to understand prognoses and preferences for outcomes and risks of treatments
  publication-title: Ann Internal Med
– volume: 24
  start-page: 3927
  year: 2005
  end-page: 3944
  ident: b7
  article-title: A time-dependent discrimination index for survival data
  publication-title: Stat Med
– volume: 2
  start-page: 841
  year: 2008
  end-page: 860
  ident: b11
  article-title: Random survival forests
  publication-title: Ann Appl Stat
– volume: 20
  start-page: 1
  year: 2019
  end-page: 30
  ident: b37
  article-title: Time-to-event prediction with neural networks and cox regression
  publication-title: J Mach Learn Res
– year: 2020
  ident: b34
  article-title: A package for survival analysis in R
– volume: 18
  start-page: 24
  year: 2018
  ident: b15
  article-title: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network
  publication-title: BMC Med Res Methodol
– year: 2017
  ident: b25
  article-title: On convergence and stability of GANs
– volume: 11
  start-page: 1871
  year: 1992
  end-page: 1879
  ident: b9
  article-title: The accelerated failure time model: A useful alternative to the cox regression model in survival analysis
  publication-title: Stat Med
– volume: 92
  start-page: 965
  year: 2005
  end-page: 970
  ident: b6
  article-title: Concordance probability and discriminatory power in proportional hazards regression
  publication-title: Biometrika
– volume: 30
  start-page: 1105
  year: 2011
  end-page: 1117
  ident: b5
  article-title: On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data
  publication-title: Stat Med
– volume: 32
  year: 2018
  ident: b16
  article-title: DeepHit: A deep learning approach to survival analysis with competing risks
  publication-title: Proc AAAI Conf Artif Intell
– year: 2013
  ident: b32
  article-title: Improving breast cancer survival analysis through competition-based multidimensional modeling
  publication-title: PLoS Comput Biol
– volume: vol. 27
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: b24
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– year: 2010
  ident: b1
  article-title: Survival analysis – A self-learning text
– volume: 53
  start-page: 457
  year: 1958
  end-page: 481
  ident: b8
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J Amer Statist Assoc
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  ident: b10
  article-title: Regression models and life-tables
  publication-title: J R Stat Soc Ser B Stat Methodol
– volume: 10
  year: 2019
  ident: b2
  article-title: Machine learning for survival analysis: A survey
  publication-title: ACM Comput Surv
– volume: vol. 80
  start-page: 735
  year: 2018
  end-page: 744
  ident: b17
  article-title: Adversarial time-to-event modeling
  publication-title: Proceedings of the 35th international conference on machine learning
– volume: vol. 146
  start-page: 132
  year: 2021
  end-page: 148
  ident: b22
  article-title: Transformer-based deep survival analysis
  publication-title: Proceedings of AAAI spring symposium on survival prediction - Algorithms, challenges, and applications 2021
– volume: 1827
  year: 2021
  ident: b26
  article-title: Challenges and corresponding solutions of generative adversarial networks (GANs): A survey study
  publication-title: J Phys Conf Ser
– volume: 98
  start-page: 1
  year: 2019
  end-page: 9
  ident: b19
  article-title: A deep survival analysis method based on ranking
  publication-title: Artif Intell Med
– volume: 21
  start-page: 1
  year: 2020
  end-page: 6
  ident: b36
  article-title: Scikit-survival: A library for time-to-event analysis built on top of scikit-learn
  publication-title: J Mach Learn Res
– volume: 15
  start-page: 361
  year: 1996
  end-page: 387
  ident: b28
  article-title: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
  publication-title: Stat Med
– start-page: 10
  year: 2020
  end-page: 18
  ident: b20
  article-title: Variational learning of individual survival distributions
  publication-title: CHIL ’20: Proceedings of the ACM conference on health, inference, and learning
– volume: vol. 20
  start-page: 1209
  year: 2008
  end-page: 1216
  ident: b30
  article-title: On ranking in survival analysis: Bounds on the concordance index
  publication-title: Advances in neural information processing systems
– volume: 48
  start-page: 457
  year: 1999
  end-page: 468
  ident: b33
  article-title: Design and analysis of two-phase studies with binary outcome applied to Wilms tumour prognosis
  publication-title: J R Stat Soc Ser C Appl Stat
– volume: 27
  start-page: 799
  year: 1962
  end-page: 811
  ident: b29
  article-title: A new asymmetric measure of association for ordinal variables
  publication-title: Am Sociol Rev
– volume: 247
  start-page: 2543
  year: 1982
  end-page: 2546
  ident: b4
  article-title: Evaluating the yield of medical tests
  publication-title: JAMA
– volume: 227
  year: 2023
  ident: 10.1016/j.artmed.2024.102781_b23
  article-title: CoxNAM: An interpretable deep survival analysis model
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120218
– volume: 18
  start-page: 24
  issue: 1
  year: 2018
  ident: 10.1016/j.artmed.2024.102781_b15
  article-title: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-018-0482-1
– volume: 53
  start-page: 107
  issue: 2
  year: 2011
  ident: 10.1016/j.artmed.2024.102781_b13
  article-title: Support vector methods for survival analysis: a comparison between ranking and regression approaches
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2011.06.006
– volume: vol. 20
  start-page: 1209
  year: 2008
  ident: 10.1016/j.artmed.2024.102781_b30
  article-title: On ranking in survival analysis: Bounds on the concordance index
– volume: 17
  issue: 60
  year: 2017
  ident: 10.1016/j.artmed.2024.102781_b3
  article-title: Review and evaluation of performance measures for survival prediction models in external validation settings
  publication-title: BMC Med Res Methodol
– volume: 24
  start-page: 3927
  issue: 24
  year: 2005
  ident: 10.1016/j.artmed.2024.102781_b7
  article-title: A time-dependent discrimination index for survival data
  publication-title: Stat Med
  doi: 10.1002/sim.2427
– volume: 30
  start-page: 1105
  issue: 10
  year: 2011
  ident: 10.1016/j.artmed.2024.102781_b5
  article-title: On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data
  publication-title: Stat Med
  doi: 10.1002/sim.4154
– volume: 25
  start-page: 3163
  issue: 8
  year: 2021
  ident: 10.1016/j.artmed.2024.102781_b21
  article-title: Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2021.3052441
– year: 2020
  ident: 10.1016/j.artmed.2024.102781_b34
– volume: 48
  start-page: 457
  issue: 4
  year: 1999
  ident: 10.1016/j.artmed.2024.102781_b33
  article-title: Design and analysis of two-phase studies with binary outcome applied to Wilms tumour prognosis
  publication-title: J R Stat Soc Ser C Appl Stat
  doi: 10.1111/1467-9876.00165
– volume: 122
  start-page: 191
  issue: 3
  year: 1995
  ident: 10.1016/j.artmed.2024.102781_b35
  article-title: The SUPPORT prognostic model. Objective estimates of survival for seriously ill hospitalized adults. Study to understand prognoses and preferences for outcomes and risks of treatments
  publication-title: Ann Internal Med
  doi: 10.7326/0003-4819-122-3-199502010-00007
– volume: 20
  start-page: 1
  issue: 129
  year: 2019
  ident: 10.1016/j.artmed.2024.102781_b37
  article-title: Time-to-event prediction with neural networks and cox regression
  publication-title: J Mach Learn Res
– volume: vol. 146
  start-page: 132
  year: 2021
  ident: 10.1016/j.artmed.2024.102781_b22
  article-title: Transformer-based deep survival analysis
– volume: 11
  start-page: 1871
  issue: 14–15
  year: 1992
  ident: 10.1016/j.artmed.2024.102781_b9
  article-title: The accelerated failure time model: A useful alternative to the cox regression model in survival analysis
  publication-title: Stat Med
  doi: 10.1002/sim.4780111409
– volume: vol. 27
  start-page: 2672
  year: 2014
  ident: 10.1016/j.artmed.2024.102781_b24
  article-title: Generative adversarial nets
– volume: 32
  issue: 1
  year: 2018
  ident: 10.1016/j.artmed.2024.102781_b16
  article-title: DeepHit: A deep learning approach to survival analysis with competing risks
  publication-title: Proc AAAI Conf Artif Intell
– volume: vol. 80
  start-page: 735
  year: 2018
  ident: 10.1016/j.artmed.2024.102781_b17
  article-title: Adversarial time-to-event modeling
– volume: 27
  start-page: 799
  issue: 6
  year: 1962
  ident: 10.1016/j.artmed.2024.102781_b29
  article-title: A new asymmetric measure of association for ordinal variables
  publication-title: Am Sociol Rev
  doi: 10.2307/2090408
– volume: 98
  start-page: 1
  year: 2019
  ident: 10.1016/j.artmed.2024.102781_b19
  article-title: A deep survival analysis method based on ranking
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.06.001
– volume: 2
  start-page: 841
  issue: 3
  year: 2008
  ident: 10.1016/j.artmed.2024.102781_b11
  article-title: Random survival forests
  publication-title: Ann Appl Stat
  doi: 10.1214/08-AOAS169
– start-page: 10
  year: 2020
  ident: 10.1016/j.artmed.2024.102781_b20
  article-title: Variational learning of individual survival distributions
– volume: 247
  start-page: 2543
  issue: 18
  year: 1982
  ident: 10.1016/j.artmed.2024.102781_b4
  article-title: Evaluating the yield of medical tests
  publication-title: JAMA
  doi: 10.1001/jama.1982.03320430047030
– year: 2013
  ident: 10.1016/j.artmed.2024.102781_b32
  article-title: Improving breast cancer survival analysis through competition-based multidimensional modeling
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003047
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  ident: 10.1016/j.artmed.2024.102781_b10
  article-title: Regression models and life-tables
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 1827
  issue: 1
  year: 2021
  ident: 10.1016/j.artmed.2024.102781_b26
  article-title: Challenges and corresponding solutions of generative adversarial networks (GANs): A survey study
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1827/1/012066
– year: 2010
  ident: 10.1016/j.artmed.2024.102781_b1
– volume: vol. 56
  start-page: 101
  year: 2016
  ident: 10.1016/j.artmed.2024.102781_b14
  article-title: Deep survival analysis
– volume: 53
  start-page: 457
  issue: 282
  year: 1958
  ident: 10.1016/j.artmed.2024.102781_b8
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J Amer Statist Assoc
  doi: 10.1080/01621459.1958.10501452
– volume: vol. 85
  start-page: 244
  year: 2018
  ident: 10.1016/j.artmed.2024.102781_b18
  article-title: Deep survival analysis: Nonparametrics and missingness
– volume: 29
  start-page: 296
  issue: 2
  year: 2010
  ident: 10.1016/j.artmed.2024.102781_b12
  article-title: Additive survival least-squares support vector machines
  publication-title: Stat Med
  doi: 10.1002/sim.3743
– year: 2017
  ident: 10.1016/j.artmed.2024.102781_b25
– volume: 15
  start-page: 361
  issue: 4
  year: 1996
  ident: 10.1016/j.artmed.2024.102781_b28
  article-title: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– volume: 21
  start-page: 1
  issue: 212
  year: 2020
  ident: 10.1016/j.artmed.2024.102781_b36
  article-title: Scikit-survival: A library for time-to-event analysis built on top of scikit-learn
  publication-title: J Mach Learn Res
– volume: 10
  issue: 6
  year: 2019
  ident: 10.1016/j.artmed.2024.102781_b2
  article-title: Machine learning for survival analysis: A survey
  publication-title: ACM Comput Surv
  doi: 10.1145/3214306
– volume: 92
  start-page: 965
  issue: 4
  year: 2005
  ident: 10.1016/j.artmed.2024.102781_b6
  article-title: Concordance probability and discriminatory power in proportional hazards regression
  publication-title: Biometrika
  doi: 10.1093/biomet/92.4.965
– ident: 10.1016/j.artmed.2024.102781_b27
– volume: 87
  start-page: 517
  issue: 6
  year: 2012
  ident: 10.1016/j.artmed.2024.102781_b31
  article-title: Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2012.03.009
SSID ssj0007416
Score 2.45672
Snippet The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. In this paper, we propose...
The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. This paper proposes a...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102781
SubjectTerms artificial neural network
Bioinformatics
Computer
Concordance Index
Deep learning
Encoder-decoder
Evaluation Metric
Evaluation metrics
Fine-grained analysis
Forecasting
Learning systems
Machine Learning
Matematik
Mathematical Sciences
Natural Sciences
Naturvetenskap
Neural Networks
Prediction modelling
Probability Theory and Statistics
Sannolikhetsteori och statistik
Signal encoding
Survival Analysis
Survival prediction
Variational Encoder-Decoder
Weighted harmonic means
Title The Concordance Index decomposition: A measure for a deeper understanding of survival prediction models
URI https://www.clinicalkey.com/#!/content/1-s2.0-S093336572400023X
https://dx.doi.org/10.1016/j.artmed.2024.102781
https://www.ncbi.nlm.nih.gov/pubmed/38325926
https://www.proquest.com/docview/2923913446
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52259
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-71927
Volume 148
WOSCitedRecordID wos001171816900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6lLUJcWAqFsFSD1BtylBnv3EwpokhUFQQUcRmNPc9NqtaJnDTq3-If8maxky7Q9sDFsuKZie33ed7-HiE7LEeml-CHFIW5Nt0E4CWcFV4cqbgIUcmNoG-aTcQHB8lwmB52Or-bXJjFSVxVyfl5Ov2vpMbfkNg6dfYO5G4XxR_wHImORyQ7Hm9N-N2JLk-pTDrAvq6H-E6BDh53EVo2Hf3UmgdtHCUOgCnUpi3uMtkFJUkcshgvdL5WrX06Bi6mfc5sVa7NahNzZDqArBb5HFdXvPcZ4k5p870x6GTuvDX2jvT7sQHGco7bTyvzH8rZSJ6a4IPvoPvatnO-aW__h-iowttUzezBaILPAeOqWjVs8KCJhV5aKH3f8yNbv7rdrG1dTrfdMu03ZddyAmuUOO4hHfA5e_oPesvhFwtvX2KIbZhiEwF3LOwqQq8i7CprZIPHYYob6Ua2vzf80rJ_LeKaAo_u7pt8TRNUePVu_iYPXdV3LhWzNQLQ4DF56DQXmlnEPSEdqDbJo6YrCHVMYpPc_-oI_pQcIRbpChapwSK9gMX3NKMOiRSRSCW1SKQXkEgnJW2QSJdIpBaJz8iPT3uD3c-e6-zhFShuzz0fgKV5IiPGpK4XJANUXHJgkjGIilKxnDNpXNJJABzykkOaK5Q9o6BkHJfYIuvVpIIXhOayAJaovp_mEKgolEUQRDzPJSS-8nPoEr95v6JwZe9195UT8S_qdonXzprasi83jA8b0okmpRmZsEA03jAvbuc5kdeKsreY-bZBiECOoN18soLJ2Uxw1Nl0PE0QdclzC532GXBb5mHK8cqOxVJ7RZeZ_zj-mYlJfSRGI4F6WZjeMKweixg1xLhLfl0zzNoPhCtaNhInZ2IGYrrijRBBP06VBBAlL7kIlFIigTASTCLTCFH7LFXw8o6keEUeLHeT12R9Xp_BG3KvWMzHs3qbrMXDZNt9s38Ac1cjnw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Concordance+Index+decomposition%3A+A+measure+for+a+deeper+understanding+of+survival+prediction+models&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Alabdallah%2C+Abdallah&rft.au=Ohlsson%2C+Mattias&rft.au=Pashami%2C+Sepideh&rft.au=R%C3%B6gnvaldsson%2C+Thorsteinn&rft.date=2024-02-01&rft.issn=0933-3657&rft.volume=148&rft.spage=102781&rft_id=info:doi/10.1016%2Fj.artmed.2024.102781&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_artmed_2024_102781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon